A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs)
Abstract
:1. Introduction
2. Ionic Liquids Structure and Properties
2.1. Types of ILs
2.2. ILs Synthesis
2.2.1. Alkylation Reactions
2.2.2. Metathesis Reactions
2.2.3. Acid-Base Neutralization
2.3. ILs Applications
3. Application of ILs in PEMFC at Elevated Temperatures
3.1. ILs Containing Sulfonate and Sulfate Groups
3.2. ILs Possessing Imide Group
3.3. ILs Comprising Phosphate Group
Type of FIL | Membrane Compositions | Preparation Technique | Results | Ref. |
---|---|---|---|---|
Sulfonate and sulfate | EB/Y2O3/SPEEK BS/Y2O3/SPEEK | Solution casting | Both ILs improved thermal stability (up to 250–350 °C), and water uptake of composite membranes. BS/Y2O3/SPEEK composite membrane showed the highest conductivity at 90 °C and at 50% and 100% RH. EB/Y2O3/SPEEK composite sample demonstrated the highest mechanical stability of 2.61 MPa. | [141] |
(TEA-PS)(HSO4)/PBI/SPEEK (BImH)(HSO4)/PBI/SPEEK | Solution casting | Oxidative stability, and proton conductivity were increased by addition of PBI/IL into the membrane. The composite membranes demonstrated good thermal stability between 300 and 400 °C. (TEA-PS)(HSO4)/PBI/SPEEK membranes with 2.5, and 5 wt% IL showed the highest thermal stability and the highest OCP, current density, and power density of 0.97 V, 1.83 A/cm2, and 0.41 W/cm2, respectively. | [142] | |
(BMI)(HSO4)/SPEEK (MI)(HSO4)/SPEEK (Im)(HSO4)/SPEEK | Solution casting | The thermal stability was improved up to 200 °C. The usage of ILs led to enhancing oxidative stability (MI)(HSO4)/SPEEK membrane displayed the highest proton conductivity of 150 mS/cm. (BMI)(HSO4)/SPEEK sample showed the highest current, and power density of 2.33 A/cm2 and 0.53 W/cm, respectively. | [143] | |
(dema)(OTf)/silica/SPEEK | Sol-gel | The composite membranes were studied at elevated temperature and under anhydrous environment. The composite membranes showed good thermal stability (250 °C). The proton conductivity was improved up to 2.0·10−2 S/cm at 220 °C and under the dry condition. The results presented that the addition of silica could improve the flexibility and mechanical properties. | [144] | |
(EIm)(TfO)/silica/poly(styrene-co-acrylonitrile) | Solution casting followed by photo cross-linking | The resultant membranes were thermally stable up to 300 °C. The hybrid samples presented good mechanical stability. The proton conductivity of hybrid membrane was 1·10−2 S/cm at 160 °C under anhydrous condition. | [145] | |
(MIm)(TfO)/(APMIm)(Br)-GO/poly(styrene-co-acrylonitrile) | Solution casting followed by photo cross-linking | The usage of IL increased significantly thermal stability up to 400 °C. The maximum proton conductivity was noted at 1.48·10−2 S/cm at 160 °C. The hybrid samples showed better retention ability of IL than pure membrane. | [72] | |
(BMIm)(TfO)/Nafion (BMIm)(TfO)/PVDF-co-HFP (EIm)(TfO)/Nafion (EIm)(TfO])/PVDF-co-HFP | Solution casting | The composite membranes revealed good performance under both hydrous and anhydrous conditions. The highest proton conductivity was obtained at 2.25 S/m at 160 °C with power density of 1.2 mW/cm2 for the (BMIm)(TfO)/Nafion composite membrane. (EIm])(TfO)/PVDF-co-HFP composite membrane displayed the highest proton conductivity of 8.5 S/m at 110 °C under 22% RH. | [139] | |
Imide | (VBIm)(NTf2)/H2PO4−/poly(styrene-co-acrylonitrile) | Solution casting followed by photo cross linking | The composite sample showed proton conductivity of 4.14·102 S/cm at 180 °C without humidification. The composite membrane showed good mechanical stability and was thermally stable up to 300 °C. | [128] |
PDC3/PA/PBI PMC6/PA/PBI | Solution casting | The composite membranes composed of PDC3 illustrated higher proton conductivity and thermal stability than the membrane containing PMC6. PDC3/PA/PBI membrane showed the highest proton conductivity of 81 mS/cm at 180 °C and anhydrous environment. The composite membrane containing PDC3/PA/PBI showed excellent power and current density (0.44 W/cm2, 0.89 A/cm2 at 180 °C and under anhydrous conditions, respectively). | [148] | |
(MIm)(TFSI)/Matrimid® (EIm)(TFSI)/Matrimid® (PIm)(TFSI)/Matrimid® (BIm)(TFSI)/ Matrimid® | Phase inversion | All composite membranes were thermally stable between 360 and 400 °C. The maximum proton conductivity of 10−3 S/cm was obtained at 160 °C. | [146] | |
(h-mim)(Ntf2)/PBI | Solution casting | The maximum ionic conductivity was 1.86 mS/cm at 190 °C. The highest power density was 0.039 W/cm2 was achieved at 150 °C. The lab-made composite membrane indicated great thermal stability up to 190 °C. | [147] | |
Phosphate | (N111)(H2PO4)/PP-NW | Reciprocating rolling process | The composite home-made membrane presented high current density of 600 mA/cm2 at 0.1 V, 140 °C, and under aqueous-free situation. The conductivity of composite sample was improved up to 0.016 S/cm1 at 160 °C. | [149] |
Phosphonated IL-SBA-15/SPEEK | Solution casting | Addition of composite content (PIL-SBA-15) resulted in enhancing the water uptake. The maximum value for power density was 183 mW/cm2 at 140 °C. The membrane mechanical stability of 23 MPa was obtained. The composite sample with 6 wt% PIL-SBA-15 demonstrated the highest proton conductivity of 10.2 mS/cm−1 at 140 °C. | [150] | |
(MIm)(H2PO4)-co-GO/ SPI | Solution casting | The maximum proton conductivity was 0.0772 S/cm at 160 °C. The highest value for water uptake was 47.3% for the sample possessing 5 wt% (MIm)(H2PO4)-co-GO. The composite membrane was thermally stable up to 275 °C. | [151] | |
(DMBuIm)(H2PO4)/ GO/Nafion | Solution casting | The thermal stability of composite membrane was boosted up to 300 °C. The conductivity of membranes was risen by increasing the temperature and content of (DMBuIm)(H2PO4). The maximum conductivity was 0.061 S/cm1 at 110 °C under non-humidification. The best value for power density was 0.02 W cm−2 at 110 °C. | [129] | |
(C4im)(BEHP)/Matrimid® (C4im)(DBP)/Matrimid® (C1im)(DBP)/Matrimid® | Phase inversion | Unlike Nafion membrane, the proton conductivity of composite samples had a direct correlation with temperature. The composite membrane comprising (C4im)(DBP) demonstrated the best conductivity of 2.0·10−2 S/cm at 115 °C. | [152] | |
(BEBzIm)(H2PO4)/ABPBI/PA | Solution casting | The addition of (BEBzIm)(H2PO) had a strong effect on thermal stability. The highest conductivity was 9.02·10−4 S/cm at 150 °C. | [153] |
4. Leaching of ILs from the Membranes
5. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFC | Alkaline fuel cell |
A-ILs | Aprotic ILs |
B-ILs | Basic ionic liquids |
Bio-ILs | Bio-ionic liquids |
C-ILs | Chiral ionic liquids |
CO | Carbon monoxide |
CODR | Chemical organic demand removal |
DMFC | Direct methanol fuel cell |
E-ILs | Energetic ionic liquids |
FIL | Functionalized ionic liquid |
GO | Graphene oxide |
HFP | Hexafluoropropylene |
HT-PEMFC | High temperature proton exchange membrane fuel cell |
IEC | Ion exchange capacity |
ILC | Ionic liquid cation |
ILs | Ionic liquids |
LT-PEMFC | Low temperature polymer electrolyte membrane fuel cell |
MCFC | Molten carbonate fuel cell |
MEA | Membrane electrode assembly |
MFC | Microbial fuel cell |
M-ILs | Metallic ionic liquids |
MT-PEMFC | Middle temperature proton exchange membrane fuel cell |
N-Ils | Neutral ionic liquids |
NPs | Nanoparticles |
OCP | Open circuit potential |
PA | Phosphoric acid |
PAFC | Phosphoric acid fuel cell |
PAMAM | Polyamidoamine |
PBI | Polybenzimidazole |
PEM | Polymer electrolyte membrane |
PEMFC | Proton exchange membrane fuel cell |
PFSA | Perfluorosulfonic acid |
PI Polyimide | |
P-Ils | Poly-ionic liquids |
Pr-Ils | Protic ionic liquids |
PVC | Polyvinylchloride |
PVDF | Polyvinyldenefluoride |
QAPSU | Quaternary ammonium functionalized polysulfone |
QPSU | Quaternary polysulfone |
RH | Relative humidity |
RT-ILs | Room temperature ionic liquids |
SAN Poly | (styrene-co-acrylonitrile) |
SBA-15 | Santata Barbara amorphous-15 |
SILMs | Supported ionic liquid membranes |
S-ILs | Supported ionic liquids |
SOFC | Solid oxide fuel cell |
SPEEK | Sulfonated poly (ether ether) ketone |
SPEK | Sulfonated poly (ether ketone) |
SPI | Sulfonated polyimide |
SPS-ILs | Switchable polarity solvent-ILs |
TnT | Titanate nanotubes |
TS-ILs | Task specific-ionic liquids |
References
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Qazi, A.; Hussain, F.; Rahim, N.A.; Hardaker, G.; AlGhazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and solution technologies for the integration of variable renewable energy sources—A review. Renew. Energy 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Elsaid, K.; Wilberforce, T.; Kamil, M.; Sayed, E.T.; Olabi, A. Environmental aspects of fuel cells: A review. Sci. Total Environ. 2021, 752, 141803. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Source 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Carrette, L.; Friedrich, K.; Stimming, U. Fuel cells-fundamentals and applications. Fuel Cells 2001, 1. [Google Scholar] [CrossRef]
- Wang, J.; Gong, C.; Wen, S.; Liu, H.; Qin, C.; Xiong, C.; Dong, L. Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications. Carbohydr. Polym. 2018, 186, 200–207. [Google Scholar] [CrossRef]
- Andújar-Márquez, J.M.; Segura, F. Fuel cells: History and updating. A walk along two centuries. Renew. Sustain. Energy Rev. 2009, 13, 2309–2322. [Google Scholar] [CrossRef]
- Pasupathi, S.; Gomez, J.C.C.; Su, H.; Reddy, H.; Bujlo, P.; Sita, C. Recent Advances in High-Temperature PEM Fuel Cells. In Recent Advances in High-Temperature PEM Fuel Cells; Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Jia, T.; Dai, Y.; Wang, R. Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective. Renew. Sustain. Energy Rev. 2018, 88, 278–296. [Google Scholar] [CrossRef]
- Suranovic, S. Fossil fuel addiction and the implications for climate change policy. Glob. Environ. Chang. 2013, 23, 598–608. [Google Scholar] [CrossRef]
- Haines, A.; Kovats, S.; Campbell-Lendrum, D.; Corvalan, C. Climate change and human health: Impacts, vulnerability and public health. Public Health 2006, 120, 585–596. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, B.F.A.; Ignotti, E.; Hacon, S.S. A systematic review of the physical and chemical characteristics of pollutants from biomass burning and combustion of fossil fuels and health effects in Brazil. Cadernos de Saúde Pública 2011, 27, 1678–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almetwally, A.A.; Bin-Jumah, M.; Allam, A. Ambient air pollution and its influence on human health and welfare: An overview. Environ. Sci. Pollut. Res. 2020, 27, 24815–24830. [Google Scholar] [CrossRef]
- Miller, M.R.; E Newby, D. Air pollution and cardiovascular disease: Car sick. Cardiovasc. Res. 2019, 116, 279–294. [Google Scholar] [CrossRef]
- Pordanjani, A.H.; Aghakhani, S.; Afrand, M.; Mahmoudi, B.; Mahian, O.; Wongwises, S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers. Manag. 2019, 198, 111886. [Google Scholar] [CrossRef]
- Sohrabi, F.; Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Asadi, S. Optimal chiller loading for saving energy by exchange market algorithm. Energy Build. 2018, 169, 245–253. [Google Scholar] [CrossRef]
- Shi, H.; Yang, G.; Liu, Z.; Zhang, G.; Ran, R.; Shao, Z.; Zhou, W.; Jin, W. High performance tubular solid oxide fuel cells with BSCF cathode. Int. J. Hydrogen Energy 2012, 37, 13022–13029. [Google Scholar] [CrossRef]
- Campanari, S.; Guandalini, G. Fuel cells: Opportunities and challenges. Divers. Funct. GABA Recept. A Tribute Hanns Möhler Part B 2020, 179, 335–358. [Google Scholar] [CrossRef]
- Carrette, L.; Friedrich, K.A.; Stimming, U. Fuel cells: Principles, types, fuels, and applications. Chem. Phys. Chem. 2000, 1, 162–193. [Google Scholar] [CrossRef]
- Li, G.; Kujawski, W.; Rynkowska, E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC). Rev. Chem. Eng. 2019. [Google Scholar] [CrossRef]
- Boldrin, P.; Brandon, N.P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2019, 2, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Chandan, A.; Hattenberger, M.; El-Kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B.G.; Ingram, A.; Bujalski, W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) A review. J. Power Source 2013, 231, 264–278. [Google Scholar] [CrossRef]
- Wee, J.-H. Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 2007, 11, 1720–1738. [Google Scholar] [CrossRef]
- Pan, L.; Ott, S.; Dionigi, F.; Strasser, P. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Curr. Opin. Electrochem. 2019, 18, 61–71. [Google Scholar] [CrossRef]
- Ogungbemi, E.; Wilberforce, T.; Ijaodola, O.; Thompson, J.; Olabi, A. Selection of proton exchange membrane fuel cell for transportation. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Shahgaldi, S.; Ozden, A.; Li, X.; Hamdullahpur, F. A novel membrane electrode assembly design for proton exchange membrane fuel cells: Characterization and performance evaluation. Electrochim. Acta 2019, 299, 809–819. [Google Scholar] [CrossRef]
- Ferreira, R.; Falcão, D.; Oliveira, V.; Pinto, A. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel Cell: Effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment. Electrochim. Acta 2017, 224, 337–345. [Google Scholar] [CrossRef]
- Xing, L.; Shi, W.; Su, H.; Xu, Q.; Das, P.K.; Mao, B.; Scott, K. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization. Energy 2019, 177, 445–464. [Google Scholar] [CrossRef]
- Rao, Z.; Feng, K.; Tang, B.; Wu, P. Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. J. Membr. Sci. 2017, 533, 160–170. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, T.; Wang, J.; Pei, F.; He, Y.; Liu, J. Enhanced Proton Conductivity of Sulfonated Poly(ether ether ketone) Membrane Embedded by Dopamine-Modified Nanotubes for Proton Exchange Membrane Fuel Cell. Fuel Cells 2013, 13, 1155–1165. [Google Scholar] [CrossRef]
- He, Y.; Wang, J.; Zhang, H.; Zhang, T.; Zhang, B.; Cao, S.; Liu, J. Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A 2014, 2, 9548–9558. [Google Scholar] [CrossRef]
- Wang, J.; Bai, H.; Zhang, H.; Zhao, L.; Chen, H.; Li, Y. Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim. Acta 2015, 152, 443–455. [Google Scholar] [CrossRef]
- Sun, F.; Qin, L.-L.; Zhou, J.; Wang, Y.-K.; Rong, J.-Q.; Chen, Y.-J.; Ayaz, S.; Hai-Yin, Y.; Liu, L. Friedel-Crafts self-crosslinking of sulfonated poly(etheretherketone) composite proton exchange membrane doped with phosphotungstic acid and carbon-based nanomaterials for fuel cell applications. J. Membr. Sci. 2020, 611, 118381. [Google Scholar] [CrossRef]
- Roy, A.; Hickner, M.A.; Yu, X.; Li, Y.; Glass, T.E.; McGrath, J.E. Influence of chemical composition and sequence length on the transport properties of proton exchange membranes. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 2226–2239. [Google Scholar] [CrossRef]
- Herath, M.B.; Creager, S.E.; Kitaygorodskiy, A.; Desmarteau, D.D. Perfluoroalkyl Phosphonic and Phosphinic Acids as Proton Conductors for Anhydrous Proton-Exchange Membranes. ChemPhysChem 2010, 11, 2871–2878. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Yan, X.; He, G.; Wu, X.; Hu, Z.; Wang, Y. SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles. Int. J. Hydrogen Energy 2012, 37, 11853–11861. [Google Scholar] [CrossRef]
- Fu, Y.; Manthiram, A.; Guiver, M.D. Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem. Commun. 2006, 8, 1386–1390. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, F.; de Sá, A.I.; Teixeira, A.P.; Rangel, C. Nafion phosphonic acid composite membranes for proton exchange membranes fuel cells. Appl. Surf. Sci. 2019, 487, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Hooshyari, K.; Javanbakht, M.; Naji, L.; Enhessari, M. Nanocomposite proton exchange membranes based on Nafion containing Fe2TiO5 nanoparticles in water and alcohol environments for PEMFC. J. Membr. Sci. 2014, 454, 74–81. [Google Scholar] [CrossRef]
- Wu, H.; Wu, X.; Wu, Q.; Yan, W. High performance proton-conducting composite based on vanadium-substituted Dawson-type heteropoly acid for proton exchange membranes. Compos. Sci. Technol. 2018, 162, 1–6. [Google Scholar] [CrossRef]
- Haque, M.A.; Sulong, A.; Loh, K.; Majlan, E.H.; Husaini, T.; Rosli, R.E. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review. Int. J. Hydrogen Energy 2017, 42, 9156–9179. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, H.; Zheng, L. Anhydrous proton exchange membranes at elevated temperatures: Effect of protic ionic liquids and crosslinker on proton conductivity. RSC Adv. 2015, 5, 17683–17689. [Google Scholar] [CrossRef]
- Peng, K.-J.; Lai, J.-Y.; Liu, Y.-L. Nanohybrids of graphene oxide chemically-bonded with Nafion: Preparation and application for proton exchange membrane fuel cells. J. Membr. Sci. 2016, 514, 86–94. [Google Scholar] [CrossRef]
- Kim, T.-H.; Yoo, J.H.; Maiyalagan, T.; Yi, S.-C. Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells. Appl. Surf. Sci. 2019, 481, 777–784. [Google Scholar] [CrossRef]
- Wang, W.; Chen, S.; Li, J.; Wang, W. Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2015, 40, 4649–4658. [Google Scholar] [CrossRef]
- Oh, K.; Kwon, O.; Son, B.; Lee, D.H.; Shanmugam, S. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J. Membr. Sci. 2019, 583, 103–109. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, Y.; Lu, S.; Jiang, S.P. High Temperature Polymer Electrolyte Membrane Fuel Cells for Integrated Fuel Cell - Methanol Reformer Power Systems: A Critical Review. Adv. Sustain. Syst. 2018, 2, 1700184. [Google Scholar] [CrossRef]
- Saccà, A.; Carbone, A.; Gatto, I.; Pedicini, R.; Freni, A.; Patti, A.; Passalacqua, E. Composites Nafion-titania membranes for Polymer Electrolyte Fuel Cell (PEFC) applications at low relative humidity levels: Chemical physical properties and electrochemical performance. Polym. Test. 2016, 56, 10–18. [Google Scholar] [CrossRef]
- Xu, G.; Wei, Z.; Li, S.; Li, J.; Yang, Z.; Grigoriev, S.A. In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application. Int. J. Hydrogen Energy 2019, 44, 29711–29716. [Google Scholar] [CrossRef]
- Díaz, M.; Ortiz, A.; Vilas, M.; Tojo, E.; Ortiz, I. Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes. Int. J. Hydrogen Energy 2014, 39, 3970–3977. [Google Scholar] [CrossRef]
- Authayanun, S.; Im-Orb, K.; Arpornwichanop, A. A review of the development of high temperature proton exchange membrane fuel cells. Chin. J. Catal. 2015, 36, 473–483. [Google Scholar] [CrossRef]
- Oh, K.; Ju, H. Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes. Int. J. Hydrogen Energy 2015, 40, 7743–7753. [Google Scholar] [CrossRef]
- Haider, R.; Wen, Y.; Ma, Z.-F.; Wilkinson, D.P.; Zhang, L.; Yuan, X.; Song, S.; Zhang, J. High temperature proton exchange membrane fuel Cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Nakamura, S.-I.; Honda, Y.; Kinugawa, K.; Lee, S.-Y.; Watanabe, M. Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications. ACS Appl. Mater. Interfaces 2012, 4, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Zarrin, H.; Higgins, D.; Jun, Y.; Chen, Z.; Fowler, M. Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C 2011, 115, 20774–20781. [Google Scholar] [CrossRef]
- Jun, Y.; Zarrin, H.; Fowler, M.W.; Chen, Z. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2011, 36, 6073–6081. [Google Scholar] [CrossRef]
- Boutsika, L.G.; Enotiadis, A.; Nicotera, I.; Simari, C.; Charalambopoulou, G.; Giannelis, E.P.; Steriotis, T. Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments. Int. J. Hydrogen Energy 2016, 41, 22406–22414. [Google Scholar] [CrossRef] [Green Version]
- Saccà, A.; Gatto, I.; Carbone, A.; Pedicini, R.; Passalacqua, E. ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J. Power Source 2006, 163, 47–51. [Google Scholar] [CrossRef]
- Amjadi, M.; Rowshanzamir, S.; Peighambardoust, S.; Hosseini, M.; Eikani, M.H. Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int. J. Hydrogen Energy 2010, 35, 9252–9260. [Google Scholar] [CrossRef]
- Amjadi, M.; Rowshanzamir, S.; Peighambardoust, S.; Sedghi, S. Preparation, characterization and cell performance of durable nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. J. Power Source 2012, 210, 350–357. [Google Scholar] [CrossRef]
- Esmaeilifar, A.; Yazdanpour, M.; Rowshanzamir, S.; Eikani, M.H. Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems. Int. J. Hydrogen Energy 2011, 36, 5500–5511. [Google Scholar] [CrossRef]
- Hooshyari, K.; Javanbakht, M.; Shabanikia, A.; Enhessari, M. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J. Power Source 2015, 276, 62–72. [Google Scholar] [CrossRef]
- Mossayebi, Z.; Saririchi, T.; Rowshanzamir, S.; Parnian, M.J. Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2016, 41, 12293–12606. [Google Scholar] [CrossRef]
- Moradi, M.; Moheb, A.; Javanbakht, M.; Hooshyari, K. Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe 2 TiO 5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC). Int. J. Hydrogen Energy 2016, 41, 2896–2910. [Google Scholar] [CrossRef]
- Linlin, M.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Poly(2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J. Membr. Sci. 2012, 411–412, 91–98. [Google Scholar] [CrossRef]
- Guhan, S.; Muruganantham, R.; Sangeetha, D. Development of a solid polymer electrolyte membrane based on sulfonated poly(ether ether)ketone and polysulfone for fuel cell applications. Can. J. Chem. 2012, 90, 205–213. [Google Scholar] [CrossRef]
- Karimi, M.B.; Mohammadi, F.; Hooshyari, K. Recent approaches to improve Nafion performance for fuel cell applications: A review. Int. J. Hydrogen Energy 2019, 44, 28919–28938. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Yang, G.; Zhan, S. New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone)s for high temperature polymer electrolyte fuel cells. Int. J. Hydrogen Energy 2018, 43, 8464–8473. [Google Scholar] [CrossRef]
- Lin, B.; Yuan, W.; Xu, F.; Chen, Q.; Zhu, H.; Li, X.; Yuan, N.; Chu, F.; Ding, J. Protic ionic liquid/functionalized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cell applications. Appl. Surf. Sci. 2018, 455, 295–301. [Google Scholar] [CrossRef]
- Amde, M.; Liu, J.-F.; Pang, L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015, 49, 12611–12627. [Google Scholar] [CrossRef] [PubMed]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Friess, K.; Izák, P.; Kárászová, M.; Pasichnyk, M.; Lanč, M.; Nikolaeva, D.; Luis, P.; Jansen, J.C. A Review on Ionic Liquid Gas Separation Membranes. Membranes 2021, 11, 97. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sui, H.; Jia, Z.; Yang, Z.; He, L.; Li, X. Recovery and purification of ionic liquids from Solutions: A Review. RSC Adv. 2018, 8, 32832–32864. [Google Scholar] [CrossRef] [Green Version]
- Masri, A.N.; Mi, A.M.; Leveque, J.-M. A Review on Dicationic Ionic Liquids: Classification and Application. Ind. Eng. Manag. 2016, 5, 1000197–1000203. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Rynkowska, E.; Fatyeyeva, K.; Kujawski, W. Application of polymer-based membranes containing ionic liquids in membrane separation Processes: A critical review. Rev. Chem. Eng. 2018, 34, 341–363. [Google Scholar] [CrossRef]
- Ding, J.; Armstrong, D.W. Chiral ionic liquids: Synthesis and applications. Chirality 2005, 17, 281–292. [Google Scholar] [CrossRef]
- Krossing, I.; Slattery, J.M.; Daguenet, C.; Dyson, P.J.; Oleinikova, A.A.; Weingärtner, H. Why Are Ionic Liquids Liquid? A Simple Explanation Based on Lattice and Solvation Energies. J. Am. Chem. Soc. 2006, 128, 13427–13434. [Google Scholar] [CrossRef]
- Ravula, S.; Larm, N.E.; Mottaleb, M.A.; Heitz, M.P.; Baker, G.A. Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis. ChemEngineering 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Jacquemin, J.; Husson, P.; Padua, A.A.H.; Majer, V. Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 2005, 8, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Pereira, C.M.; Silva, A.F. 5. Ionic Liquids at Electrified Interfaces for Advanced Energy/Charge Storage Applications. In Ionic Liquids: Synthesis, Properties, Technologies and Applications; Rasmus, F., Catherine, S., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 101–128. [Google Scholar]
- Villanueva, M.; Parajó, J.; Sánchez, P.B.; García, J.; Salgado, J. Liquid range temperature of ionic liquids as potential working fluids for absorption heat pumps. J. Chem. Thermodyn. 2015, 91, 127–135. [Google Scholar] [CrossRef]
- Noda, A.; Susan, A.B.H.; Kudo, K.; Mitsushima, S.; Hayamizu, K.; Watanabe, M. Brønsted Acid−Base Ionic Liquids as Proton-Conducting Nonaqueous Electrolytes. J. Phys. Chem. B 2003, 107, 4024–4033. [Google Scholar] [CrossRef]
- Salgado, J.; Villanueva, M.; Parajó, J.J.; Fernández, J. Long-term thermal stability of five imidazolium ionic liquids. J. Chem. Thermodyn. 2013, 65, 184–190. [Google Scholar] [CrossRef]
- Welton, T. Ionic Liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratti, R. Ionic Liquids: Synthesis and Applications in Catalysis. Adv. Chem. 2014, 2014, 1–16. [Google Scholar] [CrossRef]
- Viboud, S.; Papaiconomou, N.; Cortesi, A.; Chatel, G.; Draye, M.; Fontvieille, D. Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: A systematic study. J. Hazard. Mater. 2012, 215–216, 40–48. [Google Scholar] [CrossRef]
- Kumar, R.A.; Papaïconomou, N.; Lee, J.-M.; Salminen, J.; Clark, D.S.; Prausnitz, J.M. In vitrocytotoxicities of ionic liquids: Effect of cation rings, functional groups, and anions. Environ. Toxicol. 2009, 24, 388–395. [Google Scholar] [CrossRef]
- Wells, A.S.; Coombe, V.T. On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids. Org. Process. Res. Dev. 2006, 10, 794–798. [Google Scholar] [CrossRef]
- Romero, A.; Santos, A.; Tojo, J.; Rodriguez, A. Toxicity and biodegradability of imidazolium ionic liquids. J. Hazard. Mater. 2008, 151, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Matzke, M.; Stolte, S.; Thiele, K.; Juffernholz, T.; Arning, J.; Ranke, J.; Welz-Biermann, U.; Jastorff, B. The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem. 2007, 9, 1198–1207. [Google Scholar] [CrossRef]
- Farrokhara, M.; Dorosti, F. New high permeable polysulfone/ionic liquid membrane for gas separation. Chin. J. Chem. Eng. 2020, 28, 2301–2311. [Google Scholar] [CrossRef]
- Łukomska, A.; Wiśniewska, A.; Dąbrowski, Z.; Domańska, U. Liquid-liquid extraction of cobalt(II) and zinc(II) from aqueous solutions using novel ionic liquids as an extractants. J. Mol. Liq. 2020, 307, 112955. [Google Scholar] [CrossRef]
- Huang, W.; Wu, X.; Qi, J.; Zhu, Q.; Wu, W.; Lu, Y.; Chen, Z. Ionic Liquids: Green and tailor-made solvents in drug delivery. Drug Discov. Today 2020, 25, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Skoronski, E.; Fernandes, M.; Malaret, F.J.; Hallett, J.P. Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Sep. Purif. Technol. 2020, 248, 117069. [Google Scholar] [CrossRef]
- Freire, M.G.; Neves, C.M.S.S.; Carvalho, P.J.; Gardas, R.L.; Fernandes, A.M.; Marrucho, I.M.; Santos, L.M.N.B.F.; Coutinho, J.A.P. Mutual Solubilities of Water and Hydrophobic Ionic Liquids. J. Phys. Chem. B 2007, 111, 13082–13089. [Google Scholar] [CrossRef] [Green Version]
- Chapeaux, A.; Simoni, L.D.; Stadtherr, M.A.; Brennecke, J.F. Liquid Phase Behavior of Ionic Liquids with Water and 1-Octanol and Modeling of 1-Octanol/Water Partition Coefficients. J. Chem. Eng. Data 2007, 52, 2462–2467. [Google Scholar] [CrossRef]
- Papaiconomou, N.; Lee, J.-M.; Salminen, J.; Von Stosch, M.; Prausnitz, J.M. Selective Extraction of Copper, Mercury, Silver, and Palladium Ions from Water Using Hydrophobic Ionic Liquids. Ind. Eng. Chem. Res. 2008, 47, 5080–5086. [Google Scholar] [CrossRef] [Green Version]
- Giridhar, P.; Venkatesan, K.; Subramaniam, S.; Srinivasan, T.; Rao, P.V. Extraction of uranium (VI) by 1.1M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J. Alloy Compd. 2008, 448, 104–108. [Google Scholar] [CrossRef]
- Latała, A.; Stepnowski, P.; Nędzi, M.; Mrozik, W. Marine toxicity assessment of imidazolium ionic liquids: Acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquat. Toxicol. 2005, 73, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Ionic Liquids: A Pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403. [Google Scholar] [CrossRef]
- Lin, I.J.; Vasam, C.S. Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J. Organomet. Chem. 2005, 690, 3498–3512. [Google Scholar] [CrossRef]
- Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036. [Google Scholar] [CrossRef]
- Pernak, J.; Łęgosz, B.; Klejdysz, T.; Marcinkowska, K.; Rogowski, J.; Kurasiak-Popowska, D.; Stuper-Szablewska, K. Ammonium bio-ionic liquids based on camelina oil as potential novel agrochemicals. RSC Adv. 2018, 8, 28676–28683. [Google Scholar] [CrossRef] [Green Version]
- Mehnert, C.P. Supported Ionic Liquid Catalysis. Chem. A Eur. J. 2005, 11, 50–56. [Google Scholar] [CrossRef]
- Zhang, Q.; Shreeve, J.M. Energetic Ionic Liquids as Explosives and Propellant Fuels: A New Journey of Ionic Liquid Chemistry. Chem. Rev. 2014, 114, 10527–10574. [Google Scholar] [CrossRef]
- Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014, 4, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Hajipour, A.R.; Rafiee, F. Basic ionic liquids. A short review. J. Iran. Chem. Soc. 2009, 6, 647–678. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, P.; Meng, X.; Zhang, R.; Yue, H.; Xu, C.; Hu, Y. Synthesis and properties of switchable polarity ionic liquids based on organic superbases and fluoroalcohols. Chem. Eng. Sci. 2014, 108, 176–182. [Google Scholar] [CrossRef]
- Klepić, M.; Jansen, J.C.; Fuoco, A.; Esposito, E.; Izák, P.; Petrusová, Z.; Vankelecom, I.F.; Randová, A.; Fíla, V.; Lanč, M.; et al. Gas separation performance of carbon dioxide-selective poly(vinyl alcohol)—ionic liquid blend membranes: The effect of temperature, feed pressure and humidity. Sep. Purif. Technol. 2021, 270, 118812. [Google Scholar] [CrossRef]
- Klepić, M.; Fuoco, A.; Monteleone, M.; Esposito, E.; Friess, K.; Izák, P.; Jansen, J.C. Effect of the CO2-philic ionic liquid [BMIM][Tf2N] on the single and mixed gas transport in PolyActive™ membranes. Sep. Purif. Technol. 2021, 256, 117813. [Google Scholar] [CrossRef]
- Bodo, E.; Bonomo, M.; Mariani, A. Assessing the Structure of Protic Ionic Liquids Based on Triethylammonium and Organic Acid Anions. J. Phys. Chem. B 2021, 125, 2781–2792. [Google Scholar] [CrossRef] [PubMed]
- Andreev, I.A.; Ratmanova, N.K.; Augustin, A.U.; Ivanova, O.A.; Levina, I.I.; Khrustalev, V.N.; Werz, D.B.; Trushkov, I.V. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1-Methylimidazolium Thiocyanate. Angew. Chem. Int. Ed. 2021, 60, 7927–7934. [Google Scholar] [CrossRef]
- Stettner, T.; Balducci, A. Protic ionic liquids in energy storage devices: Past, present and future perspective. Energy Storage Mater. 2021. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, W.; Shi, M.; Wu, Y.; Hu, X. Task-specific ionic liquids as absorbents and catalysts for efficient capture and conversion of H2S into value-added mercaptan acids. Chem. Eng. J. 2021, 408, 127866. [Google Scholar] [CrossRef]
- Tu, Z.; Liu, P.; Zhang, X.; Shi, M.; Zhang, Z.; Luo, S.; Zhang, L.; Wu, Y.; Hu, X. Highly-selective separation of CO2 from N2 or CH4 in task-specific ionic liquid membranes: Facilitated transport and salting-out effect. Sep. Purif. Technol. 2021, 254, 117621. [Google Scholar] [CrossRef]
- Craveiro, R.; Neves, L.A.; Duarte, A.R.C.; Paiva, A. Supported liquid membranes based on deep eutectic solvents for gas separation processes. Sep. Purif. Technol. 2021, 254, 117593. [Google Scholar] [CrossRef]
- Das, A.K.; Sequeira, R.A.; Maity, T.K.; Prasad, K. Bio-ionic liquid promoted selective coagulation of κ-carrageenan from Kappaphycus alvarezii extract. Food Hydrocoll. 2021, 111, 106382. [Google Scholar] [CrossRef]
- McIntosh, A.J.; Griffith, J.; Gräsvik, J. Methods of Synthesis and Purification of Ionic Liquids. In Application, Purification, and Recovery of Ionic Liquids; Elsevier: Amsterdam, The Netherlands, 2016; pp. 59–99. [Google Scholar]
- Cristina, R.F.; Ferraz, C.P.R. Ionic Liquids Synthesis-Methodologies. Org. Chem. Curr. Res. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Lévêque, J.-M.; Estager, J.; Draye, M.; Cravotto, G.; Boffa, L.; Bonrath, W. Synthesis of Ionic Liquids Using Non Conventional Activation Methods: An Overview. Monatshefte für Chemie Chemical Monthly 2007, 138, 1103–1113. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, F.; Liu, Q. Sulfonated poly(2,5-benzimidazole) (ABPBI)/ MMT/ ionic liquids composite membranes for high temperature PEM applications. Int. J. Hydrogen Energy 2015, 40, 16767–16774. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Lyu, M.; Wang, X.; Wu, Y.; Zhao, J. Synthesis and performance of novel anion exchange membranes based on imidazolium ionic liquids for alkaline fuel cell applications. J. Power Source 2015, 284, 517–523. [Google Scholar] [CrossRef]
- Hooshyari, K.; Javanbakht, M.; Adibi, M. Novel composite membranes based on dicationic ionic liquid and polybenzimidazole mixtures as strategy for enhancing thermal and electrochemical properties of proton exchange membrane fuel cells applications at high temperature. Int. J. Hydrogen Energy 2016, 41, 10870–10883. [Google Scholar] [CrossRef]
- Lin, B.; Qiao, G.; Chu, F.; Zhang, S.; Yuan, N.; Ding, J. Phosphoric acid doped hydrophobic ionic liquid-based composite membranes for anhydrous proton exchange membrane application. RSC Adv. 2017, 7, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Maiti, J.; Kakati, N.; Woo, S.P.; Yoon, Y.S. Nafion® based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell. Compos. Sci. Technol. 2018, 155, 189–196. [Google Scholar] [CrossRef]
- Lemus, J.; Eguizábal, A.; Pina, M. Endurance strategies for the preparation of high temperature polymer electrolyte membranes by UV polymerization of 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide for fuel cell applications. Int. J. Hydrogen Energy 2016, 41, 3981–3993. [Google Scholar] [CrossRef]
- Salar-García, M.; Ortiz-Martínez, V.; Ríos, A.D.L.; Hernández-Fernández, F. A method based on impedance spectroscopy for predicting the behavior of novel ionic liquid-polymer inclusion membranes in microbial fuel cells. Energy 2015, 89, 648–654. [Google Scholar] [CrossRef]
- Elumalai, V.; Sangeetha, D. Synergic effect of ionic liquid grafted titanate nanotubes on the performance of anion exchange membrane fuel cell. J. Power Source 2019, 412, 586–596. [Google Scholar] [CrossRef]
- Elumalai, V.; Dharmalingam, S. Synthesis characterization and performance evaluation of ionic liquid immobilized SBA-15 /quaternised polysulfone composite membrane for alkaline fuel cell. Microporous Mesoporous Mater. 2016, 236, 260–268. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.; Ríos, A.P.D.L.; Mateo-Ramírez, F.; Juarez, M.; Lozano-Blanco, L.; Godínez, C. New application of polymer inclusion membrane based on ionic liquids as proton exchange membrane in microbial fuel cell. Sep. Purif. Technol. 2016, 160, 51–58. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.; Ríos, A.P.D.L.; Mateo-Ramírez, F.; Godínez, C.; Lozano-Blanco, L.; Moreno, J.; Tomás-Alonso, F. New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chem. Eng. J. 2015, 279, 115–119. [Google Scholar] [CrossRef]
- Da Trindade, L.G.; Becker, M.R.; Celso, F.; Petzhold, C.L.; Martini, E.M.; De Souza, R.F. Modification of sulfonated poly(ether ether ketone) membranes by impregnation with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate for proton exchange membrane fuel cell applications. Polym. Eng. Sci. 2016, 56, 1037–1044. [Google Scholar] [CrossRef]
- Yang, J.; Che, Q.; Zhou, L.; He, R.; Savinell, R.F. Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix. Electrochim. Acta 2011, 56, 5940–5946. [Google Scholar] [CrossRef]
- Ye, H.; Huang, J.; Xu, J.; Kodiweera, N.; Jayakody, J.; Greenbaum, S. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J. Power Source 2008, 178, 651–660. [Google Scholar] [CrossRef]
- Mališ, J.; Mazúr, P.; Schauer, J.; Paidar, M.; Bouzek, K. Polymer-supported 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate as electrolytes for the high temperature PEM-type fuel cell. Int. J. Hydrogen Energy 2013, 38, 4697–4704. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Wang, F. Preparation and properties of sulfonated poly (2, 6-dimethyl-1, 4- phenylene oxide) / ionic liquid /phosphoric acid high temperature proton exchange composite membrane. Polym. Technol. Mater. 2021, 60, 650–658. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Q.; Li, D.; Tong, J.; Li, X. Properties improvement of SPEEK based proton exchange membranes by doping of ionic liquids and Y2O3. Prog. Nat. Sci. 2012, 22, 26–30. [Google Scholar] [CrossRef] [Green Version]
- da Trindade, L.G.; Zanchet, L.; Martins, P.C.; Borba, K.M.; Santos, R.D.; Paiva, R.D.S.; Vermeersch, L.A.; Ticianelli, E.A.; de Souza, M.O.; Martini, E.M. The influence of ionic liquids cation on the properties of sulfonated poly (ether ether ketone)/polybenzimidazole blends applied in PEMFC. Polymer 2019, 179, 121723. [Google Scholar] [CrossRef]
- Da Trindade, L.G.; Zanchet, L.; Souza, J.C.; Leite, E.R.; Martini, E.M.A.; Pereira, E.C. Enhancement of sulfonated poly(ether ether ketone)-based proton exchange membranes doped with different ionic liquids cations. Ionics 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Wang, X.; Li, Z.; Zhao, L. Anhydrous conducting composite membranes composed of SPEEK/silica/ionic liquids for high-temperature proton exchange. Electrochim. Acta 2016, 222, 1308–1315. [Google Scholar] [CrossRef]
- Lin, B.; Cheng, S.; Qiu, L.; Yan, F.; Shang, S.; Lu, J. Protic Ionic Liquid-Based Hybrid Proton-Conducting Membranes for Anhydrous Proton Exchange Membrane Application. Chem. Mater. 2010, 22, 1807–1813. [Google Scholar] [CrossRef]
- Fatyeyeva, K.; Rogalsky, S.; Makhno, S.; Tarasyuk, O.; Puente, J.A.S.; Marais, S. Polyimide/Ionic Liquid Composite Membranes for Middle and High Temperature Fuel Cell Application: Water Sorption Behavior and Proton Conductivity. Membranes 2020, 10, 82. [Google Scholar] [CrossRef]
- van de Ven, E.; Chairuna, A.; Merle, G.; Benito, S.P.; Borneman, Z.; Nijmeijer, K. Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. J. Power Source 2013, 222, 202–209. [Google Scholar] [CrossRef]
- Hooshyari, K.; Javanbakht, M.; Adibi, M. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells. Electrochim. Acta 2016, 205, 142–152. [Google Scholar] [CrossRef]
- Ke, C.; Li, J.; Li, X.; Shao, Z.; Yi, B. Protic ionic Liquids: An alternative proton-conducting electrolyte for high temperature proton exchange membrane fuel cells. RSC Adv. 2012, 2, 8953. [Google Scholar] [CrossRef]
- Elumalai, V.; Ganesh, T.; Selvakumar, C.; Sangeetha, D. Phosphonate ionic liquid immobilised SBA-15/SPEEK composite membranes for high temperature proton exchange membrane fuel cells. Mater. Sci. Energy Technol. 2018, 1, 196–204. [Google Scholar] [CrossRef]
- Kowsari, E.; Zare, A.; Ansari, V. Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. Int. J. Hydrogen Energy 2015, 40, 13964–13978. [Google Scholar] [CrossRef]
- Dahi, A.; Fatyeyeva, K.; Langevin, D.; Chappey, C.; Rogalsky, S.P.; Tarasyuk, O.P.; Marais, S. Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures. Electrochim. Acta 2014, 130, 830–840. [Google Scholar] [CrossRef]
- Carrillo, R.H.; Suárez-Guevara, J.; Torres-González, L.C.; Gómez-Romero, P.; Sánchez, E.M. Incorporation of benzimidazolium ionic liquid in proton exchange membranes ABPBI-H3PO4. J. Mol. Liq. 2013, 181, 115–120. [Google Scholar] [CrossRef]
- Eguizábal, A.; Lemus, J.; Pina, M. On the incorporation of protic ionic liquids imbibed in large pore zeolites to polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Power Source 2013, 222, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Chu, F.; Lin, B.; Yan, F.; Qiu, L.; Lu, J. Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange membrane application. J. Power Source 2011, 196, 7979–7984. [Google Scholar] [CrossRef]
- Jothi, P.R.; Dharmalingam, S. An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J. Membr. Sci. 2014, 450, 389–396. [Google Scholar] [CrossRef]
- Malik, R.S.; Tripathi, S.N.; Gupta, D.; Choudhary, V. Novel anhydrous composite membranes based on sulfonated poly (ether ketone) and aprotic ionic liquids for high temperature polymer electrolyte membranes for fuel cell applications. Int. J. Hydrogen Energy 2014, 39, 12826–12834. [Google Scholar] [CrossRef]
- Fernicola, A.; Panero, S.; Scrosati, B. Proton-conducting membranes based on protic ionic liquids. J. Power Source 2008, 178, 591–595. [Google Scholar] [CrossRef]
- Lin, B.; Qiu, B.; Qiu, L.; Si, Z.; Chu, F.; Chen, X.; Yan, F. Imidazolium-Functionalized SiO2Nanoparticle Doped Proton Conducting Membranes for Anhydrous Proton Exchange Membrane Applications. Fuel Cells 2012, 13, 72–78. [Google Scholar] [CrossRef]
- Wang, X.; Jin, M.; Li, Y.; Zhao, L. The influence of various ionic liquids on the properties of SPEEK membrane doped with mesoporous silica. Electrochim. Acta 2017, 257, 290–300. [Google Scholar] [CrossRef]
- Izák, P.; Köckerling, M.; Kragl, U. Stability and selectivity of a multiphase membrane, consisting of dimethylpolysiloxane on an ionic liquid, used in the separation of solutes from aqueous mixtures by pervaporation. Green Chem. 2006, 8, 947–948. [Google Scholar] [CrossRef]
Type of Ionic Liquid | Abbreviated Name | Summary and Property | Applications | Ref. |
---|---|---|---|---|
Chiral ionic liquids | C-ILs | The best option for asymmetric induction in catalysis. Because of the nature of C-ILs, the process of their synthesis is difficult (needed several steps) and expensive. These kinds of ILs are usually synthesized by asymmetric synthesis or chiral pool and they can contain polar, axial or central chirality. | Liquid chiral chromatography, stereo selective polymerization, synthesis of potential active chiral compounds, liquids crystal, NMR chiral discrimination, solvent, electrolyte, and catalyst. | [78] |
Switchable polarity solvent ionic liquids | SPS-ILs | SPS-ILs are usually synthesized by proton transfer reaction. Additionally, SPS-ILs have acceptable resistance against wet condition for synthesis and operation. By adjusting the value for molecular triggers, including CO2 and CS2, the physical features of SPS-ILs can be changed. | Solvent recovery and solute separation. | [112] |
Protic ionic liquids | Pr-ILs | Pr-ILs can be quickly synthesized by transferring hydrogen ion (H+) from a Brønsted acid to a Brønsted base. The process of proton-transfer is boosted by using strong bases or acids or both of them. These ILs have good proton conductivity, fluidity, and low melting point. | Alkaline batteries, fuel cells, dehydration, and choromatogeraphy (both liquid and gas). | [110] |
Bio-ionic liquids | Bio-ILs | Bio-ILs are often produced by sustainable bio-precursors; therefore, they are environmentally friendly, bio-degradable, biocompatible, and non-toxic. They have high thermal (between 220 and 290ºC) stability and solubility (in methanol, Dimethyl sulfoxide, chloroform, and water). | Biodiesel production, renewable diesel and jet fuel, chemical compounds production (like herbicides). | [107] |
Poly- ionic liquids | P-ILs | P-ILs are also known as polymerized ionic liquids. P-ILs refer to a subclass of polyelectrolytes that feature an ionic liquid (IL) species in each monomer repeating unit, connected through a polymeric backbone to form a macromolecular architecture. In spite of the high charge density of P-ILs, they usually have wide glass transition temperature ranges. | Polymer electrolytes, batteries, fuel cells, carbon electrodes, sensors, organic transistors, super capacitors, catalysts, photoresists, and corrosion inhibitors. | [106] |
Energetic ionic liquids | E-ILs | E-ILs have low melting point, and high thermal stability and can be used as eco-friendly explosives. These ILs have very low vapor pressure and structural designability. Due to the great safety and energy, as well as low negative environmental impacts on the eco-system of E-ILs, they can be good alternative instead of energetic materials, such as HMX, RDX, TNT, and CL-20. | Explosives, pyrotechnics, and propellants. | [109] |
Neutral ionic liquids | N-ILs | In these ILs, the electrostatic interactions between anions and cations are typically very weak. Moreover, N-ILs hold low melting point and viscosity. As a result, N-ILs are usually used as neutral solvents. | Solvent. | [78] |
Metallic ionic liquids | M-ILs | These types of ILs contain metal halides (e.g., (AlCl3−), (CuCl3−), (SnCl3−), and (Al2Br7−)). M-ILs are highly viscous in comparison with other types of ILs. M-ILs are typically stable under moisture and ambient conditions. | Catalyst, solvent, organometallic chemistry hydration process, and recycling of nuclear waste. | [105] |
Basic ionic liquids | B-ILs | B-ILs are regarded as eco-friendly, flexible, non-volatile, active and selective catalysts; thus, B-ILs are good alternatives for conventional bases (e.g., KOH, NaOH, and NaHCO3). Unlike traditional bases, B-ILs do not suffer from environmental issue, waste production, and corrosion. | Organic transformation (e.g., Michael addition, aldol condensation, Knoevenagel condensation, Henry reaction, oximation, and Michael reaction), catalyst, and solvent. | [111] |
Supported ionic liquids | S-ILs | The use of S-ILs have been increased because of high cost of pure ILs utilization. These ILs are usually benefited from silica support; hence, the requirement for using ILs significantly reduced. The application of S-ILs can accelerate exploitation of ILs in industrial and commercial processes. | Solvent, catalyst, reactor systems, and separation process. | [108] |
Membrane | Types of Investigations Concerning IL Leaching | Observations | Ref. |
---|---|---|---|
(EMIm)(DEP)/SPEEK | Influence of the IL content. | The results confirmed that the enhancement of both IL content and operation temperature resulted in increasing the proton conductivity, in which the maximum conductivity was 3.16·10−3 Scm−1 at 145 °C for membrane with 50 wt% IL. However, increasing the IL content showed opposite impact on the leaching of IL from the membranes, and the membrane sample with 10 wt% (EMIm)(DEP) demonstrated the least IL leaching. The order of leaching after 48 h immersion was: SPEEK/IL-50% = 28% > SPEEK/IL-30% = 19.11% > SPEEK/IL-10% = 9.20%. The main reason is that the large amount of IL cannot be well bonded with polymer body. Moreover, it is stated that the primary absorption of IL on the polymer matrix is important, and, at lower IL concentrations, this interaction is stronger. | [156] |
(bmim)(OTf)/SPEK (bmim)(NTf2)/SPEK | Influence of the operation temperature, hydrophilicity or hydrophobicity nature, and content of ILs. | The results revealed the rising the temperature brought about increasing the leakage. In addition, IL with hydrophilic nature ((bmim)(OTf)) demonstrated more leakage from membrane than hydrophobic one ((bmim)(NTf2)) in that hydrophilic compounds easily wash with water due to their nature affinity. Moreover, enhancing the concentration of ILs caused increasing the leakage. | [157] |
(EIm)(TFSI)/PVDF-co-HFP (MIm)(TFSI)/PVDF-co-HFP (MPy)(TFSI)/PVDF-co-HFP | Utilization of inorganic compounds (Al2O3 or SiO2) and various cations. | (MPy)(TFSI)/PVDF-co-HFP composite membrane (with 60 wt% (MPy)(TFSI)) showed the least IL leakage among all membranes containing ILs (the order of ILs leakage is: (EIm)(TFSI) > (MIm)(TFSI) > (MPy)(TFSI)). Basically, the main reason is that (MPy) cation is stronger base than two others. Therefore, this IL can be more stable and less affected by water. Furthermore, the results showed that the addition of inorganic compounds (Al2O3 or SiO2) could reduce the leakage of ILs from the samples. The composite membrane comprising (MPy)(TFSI)/Al2O3 showed a better retention ability of IL than (MPy)(TFSI)/SiO2 because Al2O3 demonstrated much absorbent features with organic compounds, thanks to the hydrogen bondings. | [158] |
(dema)(OTf)/SiO2/SPEEK | Influence of the sulfonation degree and silica addition of silica. | The results illustrated that, by increasing the sulfonation degree, IL leaching were decreased from the membranes. The main reason is that the existence of electrostatic interaction between ILs cation and sulfonic groups (on the structure of SPEEK) can diminish the leaching of ILs from the membranes. Nonetheless, further enhancement of sulfonation degree (more than 83%) led to increasing the leakage of ILs from the membrane owing to rising the hydrophilicity. Besides, adding silica decreased the leaching because this inorganic compound holds reactive sites which have great ability to interact with IL. | [144] |
(EIm)(TfO)/(TMI)(Cl)-silica NPs/polymerizable oil | Using SiO2 NPs. | Due to the fact that SiO2 NPs are nanoscaled, they can be easily dispersed into the membrane and could react with IL; hence, the composite samples comprising NPs indicated much better retention ability than pristine ones. The results showed that the membranes without SiO2 NPs dramatically lost ILs (almost 90 wt%) after 10 min immersion in water, while the sample with 1 wt% SiO2 NPs demonstrated better result after 10 min (approximately 70 wt% IL weight loss). | [159] |
(EIm)(TfO)/mesoporous silica/SPEEK (dema)(TfO)/mesoporous silica/SPEEK (BMIm)(TfO)/mesoporous silica/SPEEK (BMIm)(Cl)/mesoporous silica/SPEEK (BMIm)(BF4)/mesoporous silica/SPEEK | Influence of mesoporous silica and different types of IL cations. | Employing porous silica decreased the weight loss of ILs because not only does silica hold a number of reactive sites in its structure, but it also provides large pores which can trap ILs. Additionally, among three ILs with the same anion ((TfO)), the order of leaching was: (dema)(Tfo) > (EIm)(Tfo) > (BMIm)(Tfo) and the minimum IL weight loss was for the hybrid membrane composed of (BMIm) cation, in which this result revealed that the type of cation has a direct influence on leaching. | [160] |
PAMAM G4.0-NH3+H2PO4− PAMAM G4.0-NH3+HSO4− PAMAM G4.0-NH3+Tf2N− | Influence of the nature of ILs. | The hydrophilic ILs-based membranes ((PAMAM G4.0-NH3+HSO4−)) > PAMAM G4.0-NH3+H2PO4−)) showed a better conductivity, whereas the hydrophobic one ((PAMAM G4.0-NH3+Tf2N−)) had better stability with regard to leakage phenomenon. The composite membrane possessing (PAMAM G4.0-NH3+Tf2N−) lost only 35 wt% of IL after 120 min, while the membrane containing (PAMAM G4.0-NH3+H2PO4−) showed worse IL leaching in the same condition (around 90 wt%). | [155] |
Ceramic nanofiltration module/((C3H7)4N)(B(CN)4))/silicon | Influence of coating silicon. | The multiphase membrane containing ceramic nanofiltration module/((C3H7)4N)(B(CN)4)) was coated by silicon showed the highest seperation factor of 177. Moreover, coating the silicon led to increasing the stability of ILs in the structure of membrane (more than 9 months). The modified membrane showed low permeation flux (3.86 g/m2h). | [161] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi, M.; Kujawski, W.; Fatyeyeva, K.; Kujawa, J. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). Int. J. Mol. Sci. 2021, 22, 5430. https://doi.org/10.3390/ijms22115430
Ebrahimi M, Kujawski W, Fatyeyeva K, Kujawa J. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). International Journal of Molecular Sciences. 2021; 22(11):5430. https://doi.org/10.3390/ijms22115430
Chicago/Turabian StyleEbrahimi, Mohammad, Wojciech Kujawski, Kateryna Fatyeyeva, and Joanna Kujawa. 2021. "A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs)" International Journal of Molecular Sciences 22, no. 11: 5430. https://doi.org/10.3390/ijms22115430
APA StyleEbrahimi, M., Kujawski, W., Fatyeyeva, K., & Kujawa, J. (2021). A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). International Journal of Molecular Sciences, 22(11), 5430. https://doi.org/10.3390/ijms22115430