Simulating Peptide Monolayer Formation: GnRH-I on Silica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Peptide Layer Formation
2.2. GnRH-I Adsorption Configurations
3. Methods
4. Summary and Conclusions
- A straightforward procedure to transition from one stage of the simulation to the next, since the atom positions are retained between stages;
- The possibility of varying how often and how many peptides are released into the system;
- Its versatility, so that it can be used with different materials, biomolecules, potentials, and software packages.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshino, R.; Yasuo, N.; Sekijima, M. Molecular Dynamics Simulation reveals the mechanism by which the Influenza Cap-dependent Endonuclease acquires resistance against Baloxavir marboxil. Sci. Rep. 2019, 9, 17464. [Google Scholar] [CrossRef] [PubMed]
- Tamamis, P.; López de Victoria, A.; Gorham, R.; Bellows-Peterson, M.; Pierou, P.; Floudas, C.; Morikis, D.; Archontis, G. Molecular Dynamics in Drug Design: New Generations of Compstatin Analogs. Chem. Biol. Drug Des. 2012, 79, 703–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rallapalli, K.; Komor, A.; Paesani, F. Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors. Sci. Adv. 2020, 6, eaaz2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, L.; Guo, X.; Cong, Y.; Feng, G.; Li, Y.; Zhang, J. Accelerated Molecular Dynamics Simulation for Helical Proteins Folding in Explicit Water. Front. Chem. 2019, 7, 540. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.; Winogradoff, D.; Aksimentiev, A. Molecular dynamics simulations of DNA–DNA and DNA–protein interactions. Curr. Opin. Struct. Biol. 2020, 64, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, M.; Xuan, N.; Shang, Z.; Wu, J. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides. J. Zhejiang Univ. Sci. B 2015, 16, 883–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubiak-Ossowska, K.; Jachimska, B.; Al Qaraghuli, M.; Mulheran, P. Protein interactions with negatively charged inorganic surfaces. Curr. Opin. Colloid Interface Sci. 2019, 41, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, R.; Cann, I.; Schulten, K. Molecular dynamics study of enhanced Man5B enzymatic activity. Biotechnol. Biofuels 2014, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Al-Qattan, M.; Deb, P.; Tekade, R. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov. Today 2018, 23, 235–250. [Google Scholar] [CrossRef]
- Moore, S.; Sonar, K.; Bharadwaj, P.; Deplazes, E.; Mancera, R. Characterisation of the Structure and Oligomerisation of Islet Amyloid Polypeptides (IAPP): A Review of Molecular Dynamics Simulation Studies. Molecules 2018, 23, 2142. [Google Scholar] [CrossRef] [Green Version]
- Salomon-Ferrer, R.; Götz, A.; Poole, D.; Le Grand, S.; Walker, R. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. [Google Scholar] [CrossRef]
- Stone, J.; Hallock, M.; Phillips, J.; Peterson, J.; Luthey-Schulten, Z.; Schulten, K. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads. In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL, USA, 23–27 May 2016. [Google Scholar]
- Hollingsworth, S.; Dror, R. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [Green Version]
- Roch, G.; Busby, E.; Sherwood, N. Evolution of GnRH: Diving deeper. Gen. Comp. Endocrinol. 2011, 171, 1–16. [Google Scholar] [CrossRef]
- Khan, M.; Prevost, M.; Waterston, M.; Harvey, M.; Ferro, V. Effect of immunisation against gonadotrophin releasing hormone isoforms (mammalian GnRH-I, chicken GnRH-II and lamprey GnRH-III) on murine spermatogenesis. Vaccine 2007, 25, 2051–2063. [Google Scholar] [CrossRef]
- Miller, L.; Gionfriddo, J.; Fagerstone, K.; Rhyan, J.; Killian, G. The Single-Shot GnRH Immunocontraceptive Vaccine (GonaCon™) in White-Tailed Deer: Comparison of Several GnRH Preparations. Am. J. Reprod. Immunol. 2008, 60, 214–223. [Google Scholar] [CrossRef]
- Levy, J.; Friary, J.; Miller, L.; Tucker, S.; Fagerstone, K. Long-term fertility control in female cats with GonaCon™, a GnRH immunocontraceptive. Theriogenology 2011, 76, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Botha, A.; Birrell, J.; Schulman, M.; du Plessis, L.; Laver, P.; Soley, J.; Bertschinger, H. Effects of the GnRH vaccine Improvac® on testicular tissue of young stallions. Anim. Reprod. Sci. 2016, 169, 97. [Google Scholar] [CrossRef]
- Gebril, A.; Lamprou, D.; Alsaadi, M.; Stimson, W.; Mullen, A.; Ferro, V. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2014, 10, e971–e979. [Google Scholar] [CrossRef] [PubMed]
- Massei, G.; Cowan, D. Fertility control to mitigate human–wildlife conflicts: A review. Wildl. Res. 2014, 41, 1. [Google Scholar] [CrossRef] [Green Version]
- Emons, G.; Grundker, C.; Gunthert, A.; Westphalen, S.; Kavanagh, J.; Verschraegen, C. GnRH antagonists in the treatment of gynecological and breast cancers. Endocr. Relat. Cancer 2004, 10, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Gründker, C.; Emons, G. The Role of Gonadotropin-Releasing Hormone in Cancer Cell Proliferation and Metastasis. Front. Endocrinol. 2017, 8, 187. [Google Scholar] [CrossRef]
- Talwar, T. Fertility regulating and immunotherapeutic vaccines reaching human trials stage. Hum. Reprod. Update 1997, 3, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Connell, D.; Gebril, A.; Khan, M.; Patwardhan, S.; Kubiak-Ossowska, K.; Ferro, V.; Mulheran, P. Rationalising drug delivery using nanoparticles: A combined simulation and immunology study of GnRH adsorbed to silica nanoparticles. Sci. Rep. 2018, 8, 17115. [Google Scholar] [CrossRef] [PubMed]
- Mulheran, P.; Connell, D.; Kubiak-Ossowska, K. Steering protein adsorption at charged surfaces: Electric fields and ionic screening. Rsc Adv. 2016, 6, 73709–73716. [Google Scholar] [CrossRef] [Green Version]
- Kubiak-Ossowska, K.; Burley, G.; Patwardhan, S.V.; Mulheran, P.A. Spontaneous Membrane-Translocating Peptide Adsorption at Silica Surfaces: A Molecular Dynamics Study. J. Phys. Chem. B 2013, 117, 14666–14675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, J.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; Pedersen, L. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Patwardhan, S.; Emami, F.; Berry, R.; Jones, S.; Naik, R.; Deschaume, O.; Heinz, H.; Perry, C. Chemistry of Aqueous Silica Nanoparticle Surfaces and the Mechanism of Selective Peptide Adsorption. J. Am. Chem. Soc. 2012, 134, 6244–6256. [Google Scholar] [CrossRef]
- Tokarczyk, K.; Kubiak-Ossowska, K.; Jachimska, B.; Mulheran, P. Energy Landscape of Negatively Charged BSA Adsorbed on a Negatively Charged Silica Surface. J. Phys. Chem. B 2018, 122, 3744–3753. [Google Scholar] [CrossRef]
- Spyroulias, G.; Zompra, A.; Magafa, V.; Cordopatis, P. NMR Conformational Analysis of LHRH and Its Analogues 2006. Protein Data Bank. Available online: https://www.rcsb.org/structure/1YY1 (accessed on 17 May 2021).
Peptide Number | Colour |
---|---|
1 | purple |
2 | blue |
3 | red |
4 | orange |
5 | green |
6 | cyan |
7 | pink |
8 | grey |
9 | brown |
Peptide | Mean | Range | Standard Deviation |
---|---|---|---|
1 | 6.60 | 1.42 | 0.35 |
2 | 6.46 | 1.63 | 0.39 |
3 | 7.70 | 1.44 | 0.33 |
4 | 6.77 | 2.89 | 0.70 |
5 | 6.31 | 1.14 | 0.26 |
6 | 6.47 | 2.50 | 0.46 |
7 | 8.05 | 4.48 | 1.00 |
8 | 8.79 | 2.00 | 0.32 |
9 | 10.52 | 0.97 | 0.18 |
Peptide | Glu | His | Trp | Ser | Tyr | Gly | Leu | Arg | Pro | Gly | % |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 60 | ||||
2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 60 | ||||
3 | ✓ | ✓ | ✓ | 30 | |||||||
4 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 70 | |||
5 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 60 | ||||
6 | ✓ | ✓ | ✓ | ✓ | ✓ | 50 | |||||
7 | ✓ | ✓ | ✓ | 30 | |||||||
8 | ✓ | ✓ | ✓ | 30 | |||||||
9 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 60 |
Peptide | 0 | D1 | D2 | AD | 10 | 20 |
---|---|---|---|---|---|---|
1 | ||||||
25.47 | 59.36 | 65.39 | 69.40 | 77.41 | 70.02 | |
2 | ||||||
25.47 | 78.78 | 44.94 | 42.79 | 11.84 | 35.19 | |
3 | ||||||
25.47 | 77.27 | 66.77 | 23.97 | 73.23 | 72.59 | |
4 | ||||||
25.47 | 75.51 | 34.84 | 80.75 | 69.34 | 70.09 | |
5 | ||||||
25.47 | 25.52 | 23.96 | 42.57 | 26.17 | 46.52 | |
6 | ||||||
25.47 | 43.38 | 54.39 | 32.37 | 71.01 | 66.76 | |
7 | ||||||
25.47 | 72.87 | 43.79 | 83.70 | 69.56 | 55.52 | |
8 | ||||||
25.47 | 44.65 | 79.98 | 55.24 | 20.19 | 18.35 | |
9 | ||||||
25.47 | 81.46 | 42.95 | 52.66 | 45.22 | 53.15 |
Binding at Arg8 | 100% | |||||
Binding at N-terminus | 78% | |||||
Binding at C-terminus | 0% | |||||
Orientation of dipole | 89% | 0% | 11% | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujol-Navarro, N.; Kubiak-Ossowska, K.; Ferro, V.; Mulheran, P. Simulating Peptide Monolayer Formation: GnRH-I on Silica. Int. J. Mol. Sci. 2021, 22, 5523. https://doi.org/10.3390/ijms22115523
Pujol-Navarro N, Kubiak-Ossowska K, Ferro V, Mulheran P. Simulating Peptide Monolayer Formation: GnRH-I on Silica. International Journal of Molecular Sciences. 2021; 22(11):5523. https://doi.org/10.3390/ijms22115523
Chicago/Turabian StylePujol-Navarro, Neret, Karina Kubiak-Ossowska, Valerie Ferro, and Paul Mulheran. 2021. "Simulating Peptide Monolayer Formation: GnRH-I on Silica" International Journal of Molecular Sciences 22, no. 11: 5523. https://doi.org/10.3390/ijms22115523
APA StylePujol-Navarro, N., Kubiak-Ossowska, K., Ferro, V., & Mulheran, P. (2021). Simulating Peptide Monolayer Formation: GnRH-I on Silica. International Journal of Molecular Sciences, 22(11), 5523. https://doi.org/10.3390/ijms22115523