Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities
Abstract
:1. Introduction
2. Characteristics of Toxoplasma gondii
2.1. Life Cycle
2.2. Routes of Toxoplasma Infection in Humans
2.3. Prophylaxis of Toxoplasma Infection in Humans
2.4. Toxoplasmosis Course in Humans
3. Oxidative Stress in Toxoplasma gondii Infection
3.1. Oxidant–Antioxidant Balance in Humans
3.2. Role of Oxidative Stress in Toxoplasma Infection
3.3. Antioxidant Defense of Toxoplasma gondii
3.4. Adaptative Response of Toxoplasma gondii to Oxidative Stress
3.5. Antioxidant Defense of the Host during Toxoplasma Infection
3.6. Oxidative Stress in the Early Stages of the Acute Phase of Toxoplasmosis
3.7. Oxidative Stress in the Later Stages of the Acute Phase of Toxoplasmosis
3.8. Oxidative Damage in the Host during Toxoplasma Infection
4. Oxidant–Antioxidant Effects in Toxoplasmosis Treatment
4.1. Inhibition of Antioxidant Defense of Toxoplasma gondii
4.2. Inorganic Nanoparticles
5. Plant-Derived Antioxidants in Toxoplasmosis Treatment
5.1. Tryptanthrin
5.2. Resveratrol and Selenium Compounds
5.3. Herb Extracts
5.4. Ursolic Acid Derivatives
6. Melatonin and Lipid-Soluble Vitamins in Toxoplasmosis Treatment
6.1. Melatonin Functions and Antioxidant Properties
6.2. Animal Model Studies on Melatonin in Toxoplasmosis
6.3. In Vitro Studies on Melatonin in Toxoplasmosis
6.4. Vitamin D Structure and Functions
6.5. Studies on Vitamin D in Toxoplasmosis
6.6. Vitamin E Functions and Antioxidant Properties
6.7. Studies on Vitamin E in Toxoplasmosis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flegr, J.; Prandota, J.; Sovičková, M.; Israili, Z.H. Toxoplasmosis—A Global Threat. Correlation of Latent Toxoplasmosis with Specific Disease Burden in a Set of 88 Countries. PLoS ONE 2014, 9, e90203. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Weiss, L.M. Toxoplasma gondii: The model apicomplexan. Int. J. Parasitol. 2004, 34, 423–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vonlaufen, N.; Kanzok, S.M.; Wek, R.C.; Sullivan, W.J., Jr. Stress response pathways in protozoan parasites. Cell. Microbiol. 2008, 10, 2387–2399. [Google Scholar] [CrossRef] [PubMed]
- Konstantinovic, N.; Guegan, H.; Stäjner, T.; Belaz, S.; Robert-Gangneux, F. Treatment of toxoplasmosis: Current options and future perspectives. Food Waterborne Parasitol. 2019, 15, e00036. [Google Scholar] [CrossRef] [PubMed]
- Kwok, L.Y.; Schlüter, D.; Clayton, C.; Soldati, D. The antioxidant systems in Toxoplasma gondii and the role of cytosolic catalase in defence against oxidative injury. Mol. Microbiol. 2003, 51, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Bosch, S.S.; Kronenberger, T.; Meissner, K.A.; Zimbres, F.M.; Stegehake, D.; Izui, N.M.; Schettert, I.; Liebau, E.; Wrenger, C. Oxidative Stress Control by Apicomplexan Parasites. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dincel, G.C.; Atmaca, H.T. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int. J. Immunopathol. Pharmacol. 2016, 29, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Dunay, I.R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya, J.G. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Clin. Microbiol. Rev. 2018, 31, e00057-17. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P. The History of Toxoplasma gondii—The First 100 Years. J. Eukaryot. Microbiol. 2008, 55, 467–475. [Google Scholar] [CrossRef]
- Dalimi, A.; Abdoli, A. Latent Toxoplasmosis and Human. Iran. J. Parasitol. 2012, 7, 1–17. [Google Scholar]
- Dardé, M. Toxoplasma gondii, “new” genotypes and virulence. Parasite 2008, 15, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Tenter, A.M. Toxoplasma gondii in animals used for human consumption. Memórias Do Inst. Oswaldo Cruz 2009, 104, 364–369. [Google Scholar] [CrossRef] [Green Version]
- Elsheikha, H.M.; Marra, C.M.; Zhu, X.-Q. Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis. Clin. Microbiol. Rev. 2020, 34, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, D.; Däubener, W.; Schares, G.; Groß, U.; Pleyer, U.; Lüder, C. Animals are key to human toxoplasmosis. Int. J. Med. Microbiol. 2014, 304, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J. Advances in the life cycle of Toxoplasma gondii. Int. J. Parasitol. 1998, 28, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Song, H.B.; Jung, B.-K.; Kim, J.H.; Lee, Y.-H.; Choi, M.-H.; Kim, J.H. Investigation of tissue cysts in the retina in a mouse model of ocular toxoplasmosis: Distribution and interaction with glial cells. Parasitol. Res. 2018, 117, 2597–2605. [Google Scholar] [CrossRef] [PubMed]
- Attias, M.; Teixeira, D.E.; Benchimol, M.; Vommaro, R.C.; Crepaldi, P.H.; De Souza, W. The life-cycle of Toxoplasma gondii reviewed using animations. Parasites Vectors 2020, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. Toxoplasma gondii Infections in Chickens (Gallus domesticus): Prevalence, Clinical Disease, Diagnosis and Public Health Significance. Zoonoses Public Health 2010, 57, 60–73. [Google Scholar] [CrossRef]
- Jones, J.L.; Dargelas, V.; Roberts, J.; Press, C.; Remington, J.S.; Montoya, J.G. Risk Factors for Toxoplasma gondii Infection in the United States. Clin. Infect. Dis. 2009, 49, 878–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, J.M.; Coghill, A.E.; Kim, Y.; Bender, N.; Smith-Warner, S.A.; Gapstur, S.; Teras, L.R.; Grimsrud, T.K.; Waterboer, T.; Egan, K.M. Toxoplasma gondii infection and the risk of adult glioma in two prospective studies. Int. J. Cancer 2021, 148, 2449–2456. [Google Scholar] [CrossRef]
- Tong, W.H.; Pavey, C.; O’Handley, R.; Vyas, A. Behavioral biology of Toxoplasma gondii infection. Parasites Vectors 2021, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Prandovszky, E.; Kannan, G.; Pletnikov, M.V.; Dickerson, F.; Severance, E.G.; Yolken, R.H. Toxoplasma gondii: Biological Parameters of the Connection to Schizophrenia. Schizophr. Bull. 2018, 44, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Johnson, H.J.; Koshy, A.A. Latent Toxoplasmosis Effects on Rodents and Humans: How Much is Real and How Much is Media Hype? mBio 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.K.; Johnson, P.T. Toxoplasmosis: Recent Advances in Understanding the Link Between Infection and Host Behavior. Annu. Rev. Anim. Biosci. 2021, 9, 249–264. [Google Scholar] [CrossRef]
- Betteridge, D.J. What is oxidative stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Kehrer, J.P. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef]
- Southorn, P.A.; Powis, G. Free Radicals in Medicine. I. Chemical Nature and Biologic Reactions. Mayo Clin. Proc. 1988, 63, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B. Free radicals and antioxidants: Updating a personal view. Nutr. Rev. 2012, 70, 257–265. [Google Scholar] [CrossRef]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Kamata, H.; Hirata, H. Redox Regulation of Cellular Signalling. Cell. Signal. 1999, 11, 1–14. [Google Scholar] [CrossRef]
- Nordberg, J.; Arnér, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Halliwell, B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: Measurement, mechanism and the effects of nutrition. Mutat. Res. Toxicol. Environ. Mutagen. 1999, 443, 37–52. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of Oxidative Damage in Human Disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Res. Int. 2014, 2014, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Shakiba, Y.; Mahmoudi, M. Chronic Inflammation and Oxidative Stress as a Major Cause of Age- Related Diseases and Cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [Green Version]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.; Bae, S.-J.; Kim, Y.; Park, B.-J.; Choi, J.-W.; Kwon, J.; Cha, G.-H.; Yoo, H.J.; Jo, E.-K.; et al. NADPH oxidase 4 is required for the generation of macrophage migration inhibitory factor and host defense against Toxoplasma gondii infection. Sci. Rep. 2017, 7, 6361. [Google Scholar] [CrossRef] [Green Version]
- Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 2007, 17, 422–427. [Google Scholar] [CrossRef]
- Çinar, A.N. Evaluation of oxidative stress, hematological and biochemical parameters during Toxoplasma gondii infection in gerbils. Ank. Üniv. Vet. Fak. Derg. 2015, 62, 165–170. [Google Scholar] [CrossRef]
- Al-Kayiem, A.H.H.; Ibrahim, M.A. The influence of the equivalent hydraulic diameter on the pressure drop prediction of annular test section. IOP Conf. Ser.: Mater. Sci. Eng. 2015, 100, 012049. [Google Scholar] [CrossRef]
- Pietarinen-Runtti, P.; Lakari, E.; Raivio, K.O.; Kinnula, V.L. Expression of antioxidant enzymes in human inflammatory cells. Am. J. Physiol. Cell Physiol. 2000, 278, C118–C125. [Google Scholar] [CrossRef]
- Stinefelt, B.; Leonard, S.S.; Blemings, K.P.; Shi, X.; Klandorf, H. Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Ann. Clin. Lab. Sci. 2005, 35, 37–45. [Google Scholar]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Kiran, T.; Karaman, U.; Arici, Y.; Yildiz, S. Comparison of malondialdehyde, nitric oxide, adenosine deaminase and glutathione levels in patients with Entamoeba coli, Enterobius vermicularis, Giardia intestinalis, Demodex spp. positive, hydatid cyst and Toxoplasma gondii serum positive. Ann. Med. Res. 2019, 26, 1420. [Google Scholar] [CrossRef]
- Al-Azzauy, A.A.M. Evaluation of Erythrocyte Malondialdehyde, Glutathione Concentration and Serum Nitric Oxide Levels in Patients with Toxoplasma gondii. Ibn AL-Haitham J. Pure Appl. Sci. 2011, 24, 35–40. [Google Scholar]
- McCall, M.R.; Frei, B. Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic. Biol. Med. 1999, 26, 1034–1053. [Google Scholar] [CrossRef]
- Khaleel, F.M.; Hameed, A.S.; Dawood, A.S. Evaluation of antioxidant (GSH, Vitamin A, E, C) and MDA in Iraqi women with toxoplasmosis. Indian J. Forensic Med. Toxicol. 2020, 14, 1446–1449. [Google Scholar] [CrossRef]
- Van De Crommenacker, J.; Richardson, D.S.; Koltz, A.M.; Hutchings, K.; Komdeur, J. Parasitic infection and oxidative status are associated and vary with breeding activity in the Seychelles warbler. Proc. R. Soc. B Biol. Sci. 2011, 279, 1466–1476. [Google Scholar] [CrossRef]
- Zhuang, H.; Yao, C.; Zhao, X.; Chen, X.; Yang, Y.; Huang, S.; Pan, L.; Du, A.; Yang, Y. DNA double-strand breaks in the Toxoplasma gondii-infected cells by the action of reactive oxygen species. Parasites Vectors 2020, 13, 1–9. [Google Scholar] [CrossRef]
- Yazar, S.; Kilic, E.; Saraymen, R.; Sahin, I. MDA Levels in Toxoplasma seropositive patients. Ann. Saudi Med. 2003, 23, 413–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaman, U.; Çelik, T.; Kiran, T.R.; Colak, C.; Daldal, N.U. Malondialdehyde, Glutathione and Nitric Oxide Levels in Toxoplasma gondii Seropositive Patients. Korean J. Parasitol. 2008, 46, 293–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Jiang, W.; Chen, Y.; Gong, F.; Wang, M.; Zeng, P.; Xia, C.; Wang, Q.; Huang, K. Thioredoxin reductase from Toxoplasma gondii: An essential virulence effector with antioxidant function. FASEB J. 2017, 31, 4447–4457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charvat, R.; Arrizabalaga, G. Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function. Sci. Rep. 2016, 6, 22997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerman, S.E.; Müller, S. Peroxiredoxin-linked Detoxification of Hydroperoxides in Toxoplasma gondii. J. Biol. Chem. 2005, 280, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Deponte, M.; Becker, K. Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx. Mol. Biochem. Parasitol. 2005, 140, 87–96. [Google Scholar] [CrossRef]
- Ding, M.; Clayton, C.; Soldati, D. Toxoplasma gondii catalase: Are there peroxisomes in toxoplasma? J. Cell Sci. 2000, 113, 2409–2419. [Google Scholar] [CrossRef]
- Scandalios, J.G. Oxygen Stress and Superoxide Dismutases. Plant Physiol. 1993, 101, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Amalric, L.; Guillard, C.; Pichat, P. Use of catalase and superoxide dismutase to assess the roles of hydrogen peroxide and superoxide in the TiO2 or ZnO photocatalytic destruction of 1,2-dimethoxybenzene in water. Res. Chem. Intermed. 1994, 20, 579–594. [Google Scholar] [CrossRef]
- DeRocher, A.E.; Coppens, I.; Karnataki, A.; Gilbert, L.A.; Rome, M.E.; Feagin, J.E.; Bradley, P.J.; Parsons, M. A Thioredoxin Family Protein of the Apicoplast Periphery Identifies Abundant Candidate Transport Vesicles in Toxoplasma gondii. Eukaryot. Cell 2008, 7, 1518–1529. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Wek, R.C. Role of eIF2α Kinases in Translational Control and Adaptation to Cellular Stress. Cold Spring Harb. Perspect. Biol. 2018, 10, a032870. [Google Scholar] [CrossRef]
- Augusto, L.; Martynowicz, J.; Amin, P.H.; Carlson, K.R.; Wek, R.C.; Sullivan, W.J. TgIF2K-B Is an eIF2α Kinase in Toxoplasma gondii That Responds to Oxidative Stress and Optimizes Pathogenicity. mBio 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Nazarlu, Z.H.A.; Matini, M.; Bahmanzadeh, M.; Foroughi-Parvar, F. Toxoplasma gondii: A Possible Inducer of Oxidative Stress in Re-productive System of Male Rats. Iran. J. Parasitol. 2020, 15, 521–529. [Google Scholar] [CrossRef]
- Bahrami, S.; Shahriari, A.; Tavalla, M.; Azadmanesh, S.; Hamidinejat, H. Blood Levels of Oxidant/Antioxidant Parameters in Rats Infected with Toxoplasma gondii. Oxidative Med. Cell. Longev. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef]
- Machado, V.S.; Bottari, N.B.; Baldissera, M.D.; Rech, V.C.; Ianiski, F.R.; Signor, C.; Rubin, M.A.; Waczuk, E.P.; Schwertz, C.I.; Mendes, R.E.; et al. Diphenyl diselenide supplementation in infected mice by Toxoplasma gondii: Protective effect on behavior, neuromodulation and oxidative stress caused by disease. Exp. Parasitol. 2016, 169, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Delavari, I.; Khadjeh, G.; Bahrami, S.; Jalali, S.M.; Esmaeelzadeh, S. Evaluation of local tissue oxidative stress and its possible involvement in the pathogenesis of toxoplasmosis in rats experimentally infected with Toxoplasma gondii. Trop. Biomed. 2017, 34, 708–716. [Google Scholar]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health Lien. Int. J. Biomed. Sci. Rev. 2008, 4, 89–96. [Google Scholar]
- Faria, J.; Couto, C.; Wierzynski, S.; Bottari, N.; Baldissera, M.; Pereira, W.; Da Silva, A. Feline Toxoplasmosis: Tumor Necrosis Factor, Nitric Oxide, and Free Radicals in Seropositive Cats. J. Parasitol. 2018, 104, 86–88. [Google Scholar] [CrossRef]
- Dahlgren, C.; Karlsson, A. Respiratory burst in human neutrophils. J. Immunol. Methods 1999, 232, 3–14. [Google Scholar] [CrossRef]
- James, S.L.; Nacy, C. Effector functions of activated macrophages against parasites. Curr. Opin. Immunol. 1993, 5, 518–523. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef] [PubMed]
- Matta, S.K.; Patten, K.; Wang, Q.; Kim, B.-H.; MacMicking, J.D.; Sibley, L.D. NADPH Oxidase and Guanylate Binding Protein 5 Restrict Survival of Avirulent Type III Strains of Toxoplasma gondii in Naive Macrophages. mBio 2018, 9, e01393-18. [Google Scholar] [CrossRef] [Green Version]
- James, S.L. Role of nitric oxide in parasitic infections. Microbiol. Rev. 1995, 59, 533–547. [Google Scholar] [CrossRef]
- Tonin, A.; Weber, A.; Ribeiro, A.; Camillo, G.; Vogel, F.; Moura, A.; Bochi, G.; Moresco, R.; Da Silva, A. Serum levels of nitric oxide and protein oxidation in goats seropositive for Toxoplasma gondii and Neospora caninum. Comp. Immunol. Microbiol. Infect. Dis. 2015, 41, 55–58. [Google Scholar] [CrossRef]
- Miller, C.; Smith, N.; Johnson, A. Cytokines, Nitric Oxide, Heat Shock Proteins and Virulence in Toxoplasma. Parasitol. Today 1999, 15, 418–422. [Google Scholar] [CrossRef]
- Türkoğlu, Ş.A.; Yaman, K.; Orallar, H.; Camsari, C.; Karabörk, Ş.; Ayaz, E. Acute toxoplasmosis and antioxidant levels in the liver, kidney and brain of rats. Ann. Parasitol. 2018, 64, 241–247. [Google Scholar] [PubMed]
- Elsheikha, H.M.; El-Motayam, M.H.; Abouel-Nour, M.F.; Morsy, A.T.A. Oxidative stress and immune-suppression in Toxoplasma gondii positive blood donors: Implications for safe blood transfusion. J. Egypt. Soc. Parasitol. 2009, 39, 421–428. [Google Scholar] [PubMed]
- Alajmi, R.A.; Al-Megrin, W.A.; Metwally, D.M.; Al-Subaie, H.; Altamrah, N.; Barakat, A.M.; Moneim, A.E.A.; Al-Otaibi, T.T.; El-Khadragy, M.F. Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci. Rep. 2019, 39, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terman, A.; Kurz, T.; Gustafsson, B.; Brunk, U.T. Lysosomal labilization. IUBMB Life 2006, 58, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Al-Kuraishy, H.M.; Al-Kuraishi, A.H.; Al-Windy, S.; Al-Gareeb, A.I. Toxoplasmosis and Risk of Endothelial Dysfunction: Role of Oxidative Stress and Pro-Inflammatory Mediators. Arch. Clin. Infect. Dis. 2020, 14, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Meneceur, P.; Bouldouyre, M.-A.; Aubert, D.; Villena, I.; Menotti, J.; Sauvage, V.; Garin, J.-F.; DeRouin, F. In Vitro Susceptibility of Various Genotypic Strains of Toxoplasma gondii to Pyrimethamine, Sulfadiazine, and Atovaquone. Antimicrob. Agents Chemother. 2008, 52, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Alday, P.H.; Doggett, J.S. Drugs in development for toxoplasmosis: Advances, challenges, and current status. Drug Des. Dev. Ther. 2017, 11, 273–293. [Google Scholar] [CrossRef] [Green Version]
- Capasso, C.; Supuran, C.T. Sulfa and trimethoprim-like drugs—Antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J. Enzym. Inhib. Med. Chem. 2014, 29, 379–387. [Google Scholar] [CrossRef]
- Anacleto-Santos, J.; López-Camacho, P.; Mondragón-Flores, R.; Vega-Ávila, E.; Islas, G.B.; Mondragón-Castelán, M.; Carrasco-Ramírez, E.; Rivera-Fernández, N. Anti-toxoplasma, antioxidant and cytotoxic activities of Pleopeltis crassinervata (Fée) T. Moore hexane fraction. Saudi J. Biol. Sci. 2020, 27, 812–819. [Google Scholar] [CrossRef]
- Montazeri, M.; Mehrzadi, S.; Sharif, M.; Sarvi, S.; Shahdin, S.; Daryani, A. Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitol. Res. 2018, 117, 3045–3057. [Google Scholar] [CrossRef]
- Smith, N.C.; Goulart, C.; Hayward, J.A.; Kupz, A.; Miller, C.M.; van Dooren, G.G. Control of human toxoplasmosis. Int. J. Parasitol. 2021, 51, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Portes, J.A.; Souza, T.G.; Dos Santos, T.A.T.; Da Silva, L.L.R.; Ribeiro, T.P.; Pereira, M.D.; Horn, A.; Fernandes, C.; DaMatta, R.A.; De Souza, W.; et al. Reduction of Toxoplasma gondii Development Due to Inhibition of Parasite Antioxidant Enzymes by a Dinuclear Iron(III) Compound. Antimicrob. Agents Chemother. 2015, 59, 7374–7386. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.M.; Reed, S.L. New drug target in protozoan parasites: The role of thioredoxin reductase. Front. Microbiol. 2015, 6, 975. [Google Scholar] [CrossRef]
- Andrade, R.M.; Chaparro, J.D.; Capparelli, E.; Reed, S.L. Auranofin Is Highly Efficacious against Toxoplasma gondii In Vitro and in an In Vivo Experimental Model of Acute Toxoplasmosis. PLoS Negl. Trop. Dis. 2014, 8, e2973. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.; He, J.-J.; Elsheikha, H.M.; Li, J.-X.; Zhu, X.-Q.; Yang, X. Transcriptional changes in Toxoplasma gondii in response to treatment with monensin. Parasites Vectors 2020, 13, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, Y.; Sugi, T.; Weiss, L.M.; Kato, K. Identification of compounds that suppress Toxoplasma gondii tachyzoites and bradyzoites. PLoS ONE 2017, 12, e0178203. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, O.S.; Murata, Y.; Sugi, T.; Kato, K. Inorganic nanoparticles kill Toxoplasma gondii via changes in redox status and mitochondrial membrane potential. Int. J. Nanomed. 2017, 12, 1647–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyemi, O.S.; Faniyan, T.O. Antioxidant status of rats administered silver nanoparticles orally. J. Taibah Univ. Med. Sci. 2014, 9, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Hudecová, A.; Kusznierewicz, B.; Rundén-Pran, E.; Magdolenová, Z.; Hašplová, K.; Rinna, A.; Fjellsbø, L.M.; Kruszewski, M.; Lankoff, A.; Sandberg, W.J.; et al. Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea. Mutagenesis 2012, 27, 759–769. [Google Scholar] [CrossRef]
- Pan, W.-H.; Xu, X.-Y.; Shi, N.; Tsang, S.W.; Zhang, H.-J. Antimalarial Activity of Plant Metabolites. Int. J. Mol. Sci. 2018, 19, 1382. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg. Med. Chem. 2017, 25, 4533–4552. [Google Scholar] [CrossRef]
- Krivogorsky, B.; Nelson, A.C.; Douglas, K.A.; Grundt, P. Tryptanthrin derivatives as Toxoplasma gondii inhibitors—structure–activity-relationship of the 6-position. Bioorg. Med. Chem. Lett. 2013, 23, 1032–1035. [Google Scholar] [CrossRef]
- Ishihara, T.; Kohno, K.; Ushio, S.; Iwaki, K.; Ikeda, M.; Kurimoto, M. Tryptanthrin inhibits nitric oxide and prostaglandin E2 synthesis by murine macrophages. Eur. J. Pharmacol. 2000, 407, 197–204. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, X.; Ma, G.; Yan, J.; Wang, H.; Yang, Q. Transport characteristics of tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 cells. J. Pharm. Pharm. Sci. 2011, 14, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.Y.; Lee, J.-H.; Choi, H.Y.; Cho, I.J.; Kim, S.C.; Kim, Y.W. Tryptanthrin Protects Hepatocytes against Oxidative Stress via Activation of the Extracellular Signal-Regulated Kinase/NF-E2-Related Factor 2 Pathway. Biol. Pharm. Bull. 2014, 37, 1633–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, H.-G.; Bogerts, B.; Keilhoff, G. The many faces of nitric oxide in schizophrenia. A review. Schizophr. Res. 2005, 78, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Dincel, G.C.; Atmaca, H.T. Nitric oxide production increases during Toxoplasma gondii encephalitis in mice. Exp. Parasitol. 2015, 156, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Bottari, N.B.; Baldissera, M.D.; Tonin, A.A.; Rech, V.C.; Alves, C.B.; D’Avila, F.; Thomé, G.R.; Guarda, N.S.; Moresco, R.N.; Camillo, G.; et al. Synergistic effects of resveratrol (free and inclusion complex) and sulfamethoxazole-trimetropim treatment on pathology, oxidant/antioxidant status and behavior of mice infected with Toxoplasma gondii. Microb. Pathog. 2016, 95, 166–174. [Google Scholar] [CrossRef]
- Barbosa, C.F.; Tonin, A.A.; Da Silva, A.S.; De Azevedo, M.I.; Monteiro, D.U.; Waczuk, E.P.; Duarte, T.; Hermes, C.; Camillo, G.; Vogel, F.F.; et al. Diphenyl diselenide and sodium selenite associated with chemotherapy in experimental toxoplasmosis: Influence on oxidant/antioxidant biomarkers and cytokine modulation. Parasitology 2014, 141, 1761–1768. [Google Scholar] [CrossRef]
- Lee, W.C.; Mahmud, R.; Noordin, R.; Piaru, S.P.; Perumal, S.; Ismail, S. Free Radicals Scavenging Activity, Cytotoxicity and Anti-parasitic Activity of Essential Oil of Psidium guajava L. Leaves against Toxoplasma gondii. J. Essent. Oil Bear. Plants 2013, 16, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Mirzaalizadeh, B.; Sharif, M.; Daryani, A.; Ebrahimzadeh, M.A.; Zargari, M.; Sarvi, S.; Mehrzadi, S.; Rahimi, M.T.; Mirabediny, Z.; Golpour, M.; et al. Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp. Parasitol. 2018, 192, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Atolani, O.; Oguntoye, H.; Areh, E.T.; Adeyemi, O.S.; Kambizi, L. Chemical composition, anti-toxoplasma, cytotoxicity, antioxidant, and anti-inflammatory potentials of Cola gigantea seed oil. Pharm. Biol. 2019, 57, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavitha, N.; Noordin, R.; Chan, K.-L.; Sasidharan, S. In vitro Anti-Toxoplasma gondii Activity of Root Extract/Fractions of Eurycoma longifolia Jack. BMC Complement. Altern. Med. 2012, 12, 91. [Google Scholar] [CrossRef] [Green Version]
- Melo, E.; Vilela, K.; Carvalho, C. Effects of aqueous leaf extracts of Azadirachta indica A. Juss. (neem) and Melia azedarach L. (Santa Barbara or cinnamon) on the intracellular development of Toxoplasma gondii. Rev. Bras. Plantas Med. 2011, 13, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-H.; Jin, L.-L.; Liu, F.; Jin, C.-M.; Wei, Z.-Y. Evaluation of ursolic acid derivatives with potential anti-Toxoplasma gondii activity. Exp. Parasitol. 2020, 216, 107935. [Google Scholar] [CrossRef]
- Lourido, S.; Shuman, J.; Zhang, C.; Shokat, K.M.; Hui, R.; Sibley, L.D. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nat. Cell Biol. 2010, 465, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardew, E.M.; Verlinde, C.L.M.J.; Pohl, E. The calcium-dependent protein kinase 1 from Toxoplasma gondii as target for structure-based drug design. Parasitology 2018, 145, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Mayo, J.C.; Tan, D.-X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [Google Scholar] [CrossRef]
- Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 2016, 15, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Bhutani, S.; Kim, C.H.; Irwin, M.R. Anti-inflammatory effects of melatonin: A systematic review and meta-analysis of clinical trials. Brain Behav. Immun. 2021, 93, 245–253. [Google Scholar] [CrossRef]
- Kopustinskiene, D.; Bernatoniene, J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics 2021, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Emet, M.; Ozcan, H.; Ozel, L.; Yayla, M.; Halici, Z.; Hacimuftuoglu, A. A Review of Melatonin, Its Receptors and Drugs. Eurasian J. Med. 2016, 48, 135–141. [Google Scholar] [CrossRef]
- Vielma, J.R.; Bonilla, E.; Chacín-Bonilla, L.; Mora, M.; Medina-Leendertz, S.; Bravo, Y. Effects of melatonin on oxidative stress, and resistance to bacterial, parasitic, and viral infections: A review. Acta Trop. 2014, 137, 31–38. [Google Scholar] [CrossRef]
- Daryani, A.; Montazeri, M.; Pagheh, A.S.; Sharif, M.; Sarvi, S.; Hosseinzadeh, A.; Reiter, R.J.; Hadighi, R.; Joghataei, M.T.; Ghaznavi, H.; et al. The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed. Pharmacother. 2018, 97, 948–957. [Google Scholar] [CrossRef]
- Bagnaresi, P.; Nakabashi, M.; Thomas, A.P.; Reiter, R.J.; Garcia, C.R. The role of melatonin in parasite biology. Mol. Biochem. Parasitol. 2012, 181, 1–6. [Google Scholar] [CrossRef]
- Carrillo-Vico, A.; Lardone, P.J.; Álvarez-Sánchez, N.; Rodríguez-Rodríguez, A.; Guerrero, J.M. Melatonin: Buffering the Immune System. Int. J. Mol. Sci. 2013, 14, 8638–8683. [Google Scholar] [CrossRef] [Green Version]
- Avunduk, A.M.; Avunduk, M.C.; Baltaci, A.K.; Moğulkoç, R. Effect of Melatonin and Zinc on the Immune Response in Experimental Toxoplasma Retinochoroiditis. Ophthalmologica 2007, 221, 421–425. [Google Scholar] [CrossRef]
- Baltaci, A.K.; Bediz, C.S.; Mogulkoc, R.; Kurtoğlu, E.; Pekel, A. Effect of Zinc and Melatonin Supplementation on Cellular Immunity in Rats with Toxoplasmosis. Biol. Trace Elem. Res. 2003, 96, 237–246. [Google Scholar] [CrossRef]
- Baltaci, A.K.; Mogulkoc, R.; Bediz, C.S.; Pekel, A. Effects of Zinc Deficiency and Pinealectomy on Cellular Immunity in Rats Infected with Toxoplasma gondii. Biol. Trace Elem. Res. 2005, 104, 047–056. [Google Scholar] [CrossRef]
- Baltaci, A.K.; Mogulkoc, R.; Turkoz, Y.; Bediz, C.S.; Ozugurlu, F. The effect of pinealectomy and zinc deficiency on nitric oxide levels in rats with induced Toxoplasma gondii infection. Swiss Med. Wkly. 2004, 134, 359–363. [Google Scholar] [PubMed]
- Singh, M.K.; Dias, B.K.D.M.; Garcia, C.R.S. Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum. Biomolecules 2020, 10, 1243. [Google Scholar] [CrossRef]
- Machado, N.I.; Dos Santos, T.A.T.; De Souza, W.; DaMatta, R.A.; Seabra, S.H. Treatment with melatonin induces a reduction of Toxoplasma gondii development in LLC-MK2 cells. Parasitol. Res. 2020, 119, 2703–2711. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, T.; Sharma, S.; Kumar, M.; Hussain, A.; Chauhan, N.; Kalia, I.; Sahu, A.K.; Rana, V.S.; Bharti, R.; Haldar, A.K.; et al. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis. 2019, 10, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D Bioavailability: State of the Art. Crit. Rev. Food Sci. Nutr. 2013, 55, 1193–1205. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Sepidarkish, M.; Farsi, F.; Akbari-Fakhrabadi, M.; Namazi, N.; Almasi-Hashiani, A.; Hagiagha, A.M.; Heshmati, J. The effect of vitamin D supplementation on oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol. Res. 2019, 139, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, R.; Mousli, M.; Pfaff, A.W.; Uring-Lambert, B.; Marcellin, L.; Bronner, C.; Jeanblanc, M.; Villard, O.; Letscher-Bru, V.; Klein, J.-P.; et al. 1,25-Dihydroxyvitamin D3 induces splenocyte apoptosis and enhances BALB/c mice sensitivity to toxoplasmosis. J. Steroid Biochem. Mol. Biol. 2005, 96, 179–185. [Google Scholar] [CrossRef]
- Rajapakse, R.; Uring-Lambert, B.; Andarawewa, K.L.; Rajapakse, R.; Abou-Bacar, A.; Marcellin, L.; Candolfi, E. 1,25(OH)2D3 inhibits in vitro and in vivo intracellular growth of apicomplexan parasite Toxoplasma gondii. J. Steroid Biochem. Mol. Biol. 2007, 103, 811–814. [Google Scholar] [CrossRef]
- Lindner, J.; Rausch, S.; Treptow, S.; Geldmeyer-Hilt, K.; Krause, T.; St-Arnaud, R.; Arabian, A.; Radbruch, A.; Hartmann, S.; Worm, M.; et al. Endogenous Calcitriol Synthesis Controls the Humoral IgE Response in Mice. J. Immunol. 2017, 199, 3952–3958. [Google Scholar] [CrossRef] [Green Version]
- Machado, P.D.A.; Escrivani, D.O.; Gomes, D.C.O.; Rossi-Bergmann, B.; Chaves, S.P.; Coimbra, E.S.; Guedes, H.L.D.M. Vitamin D increases killing of intracellular Leishmania amazonensis in vitro independently of macrophage oxidative mechanisms. Parasitology 2020, 147, 1792–1800. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Iwagami, M.; Seki, T.; Kano, S.; Ota, N.; Ato, M. Dual antiplasmodial activity of vitamin D3 and its analog, 22-oxacalcitriol, by direct and indirect mechanisms. Parasitol. Int. 2017, 66, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Takahashi, K.; Ato, M.; Iwanaga, S.; Ohta, N. Antimalarial activity of vitamin D3 (VD3) does not result from VD3-induced antimicrobial agents including nitric oxide or cathelicidin. Exp. Parasitol. 2019, 201, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarifar, F.; Pour, M.A.; Sharifi, Z.; Asl, A.D.; Al-Kawaz, E. The Effect of Vitamin D3 Alone and Mixed With IFN-γ on Tachyzoites of Toxoplasma gondii (RH Strain) Proliferation and Nitric Oxide (NO) Production in Infected Macrophages of BALB/C Mice. Iran. J. Parasitol. 2010, 5, 48–56. [Google Scholar] [PubMed]
- Zhang, Y.; Song, X.; Jiang, L.; Wu, J.; Chen, G.; Chai, J.; Zheng, X.; Pei, L. Association between vitamin D deficiency and Toxoplasma gondii infection in women of childbearing age. Wei Sheng Yan Jiu J. Hyg. Res. 2020, 49, 368–373. [Google Scholar]
- Kashan, Z.F.; Shojaee, S.; Keshavarz, H.; Arbabi, M.; Delavari, M.; Salimi, M. Vitamin D Deficiency and Toxoplasma Infection. Iran. J. Public Health 2020, 48, 1184–1186. [Google Scholar] [CrossRef]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Stürchler, D.; Berger, R.; Just, M. Congenital toxoplasmosis in Switzerland. Seroprevalence, risk factors and recommendations for prevention. Schweiz. Med. Wochenschr. 1987, 117, 161–167. [Google Scholar]
- Mendy, A.; Vieira, E.; Albatineh, A.N.; Gasana, J. Toxoplasma gondii seropositivity and cognitive functions in school-aged children. Parasitology 2015, 142, 1221–1227. [Google Scholar] [CrossRef]
- McCarthy, S.M.; Davis, C.D. Prooxidant diet provides protection during murine infection with Toxoplasma gondii. J. Parasitol. 2003, 89, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Olofin, I.O.; Spiegelman, D.; Aboud, S.; Duggan, C.; Danaei, G.; Fawzi, W.W. Supplementation With Multivitamins and Vitamin A and Incidence of Malaria Among HIV-Infected Tanzanian Women. JAIDS J. Acquir. Immune Defic. Syndr. 2014, 67, S173–S178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeta, M.; Miura, N.; Tanaka, H.; Nakamura, T.; Kawanishi, R.; Nishikawa, Y.; Asano, K.; Tanaka, M.; Tamagawa, S.; Nakai, Y.; et al. Vitamin E Scaffolds of pH-Responsive Lipid Nanoparticles as DNA Vaccines in Cancer and Protozoan Infection. Mol. Pharm. 2020, 17, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
Models | Compound | IC50 /EC50 | Results/Oxidant–Antioxidant Effect | References |
---|---|---|---|---|
Human foreskin fibroblasts | tert-butyl hydroperoxide | IC50 = 100 ± 8 nM | • ↑ T. gondii parasites death • stable viability of the host cells • ↓ peroxiredoxin activity • changes in redox status of the parasites and destruction of their oxidant homeostasis | |
5-hydroxy-1,4-naphtoquinone (Juglon) | IC50 = 148 ± 6 nM | |||
Phenazine methyl sulfate | IC50 = 406 ± 134 nM | [57] | ||
Vero cell line from kidney of African green monkey | Extract of Azadirachta indica leaves | Toxoplasma elimination at concentrations higher than 2 mg/mL | • ↑ disorganization and elimination of intracellular tachyzoites • antioxidant effect on host cells | [114] |
Extract of Melia azedarach leaves | Toxoplasma elimination at concentrations higher than 0.5 mg/mL | • ↑ disorganization and elimination of intracellular tachyzoites • antioxidant effect on host cells | [113] | |
Human foreskin fibroblasts | 6-oximes of the tryptanthrin (6,12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) and its 8-bromoderivative | ID50 range (0.003 ÷ 1.3) µM | • anti-T. gondii activity • no host cell cytotoxicity • hepatoprotection of host cells • activation of the ERK-Nrf2 pathway • ↓ oxidative damage | [101,102,105] |
6-hydrazones of the tryptanthrin and its 8-bromoderivative | ID50 range (0.31 ÷ 12) µM | |||
6-hydroxy derivatives of the tryptanthrin and 8-bromotryptanthrin | ID50 range (0.002 ÷ 8.7) µM | |||
Vero cell line from kidney of African green monkey entry 4 | Extract of Psidium guajava (guava) | EC50 = 4.94 ± 0.039 µg/mL | • inhibition of T. gondii growth • no host toxicity • moderate antioxidant—inhibition of free radicals action in host cells | [110] |
Human foreskin fibroblasts | 1-thio-β-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate (Auranofin) | IC50 = 0.28 nM | • ↓ viability of T. gondii parasites • inhibition of thioredoxin reductase activity • ↓ resistance to oxidative damage | [55,93,94] |
LLC-MK2 host cells—kidney epithelial cells of rhesus monkey | [Fe(1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol)(SO4)]2 µ-oxo | IC50 = 3.6 µM nontoxic up to 200 µM | • inhibition of parasites growth at concentration for 2.5–25 µM • no effect on host cell viability • ↑ oxidative stress • ↓ metalloenzymes activity | [92] |
Human foreskin fibroblasts | Gold nanoparticles (AuNPs) | EC50 ≤ 7 µg/mL | • ↓ viability of the parasites • no host toxicity • alteration in redox status by ROS production and reduction in mitochondrial membrane potential | [97] |
Silver nanoparticles (AgNPs) | EC50 ≤ 1 µg/mL | |||
Platinum nanoparticles (PtNPs) | EC50 ≤ 100 µg/mL | |||
Vero cell line from kidney of African green monkey | Extract of Aloe vera | IC50 = 13.2 µg/mL | • anti-T. gondii activity in infected cells • ↓ MDA levels in host cells • potent antioxidant effect | [111] |
Extract of Eucalyptus globulus | IC50 = 24.7 µg/mL | |||
Human foreskin fibroblasts | Seed oil of the fruit of Cola gigantea | EC50 ≤ 15 µg/mL | • ↓ viability of T. gondii parasites • ↑ toxicity for parasites by ROS production • mild antioxidant potential in host cells | [112] |
GES-1 cells | Amide of 10-oxo derivative of ursolic acid and 1-H-tetrazol-5-amine | IC50 = 218.6 µM | • reduction of number of T. gondii invading of host cells • antioxidant effect on host cells | [115] |
Models | Compound | Dosage | Results/Oxidant–Antioxidant effect | References |
---|---|---|---|---|
Balb/c mice | Sulfamethoxazole/trimethoprim(S/T) supplemented with diphenyl diselenide or sodium selenite | S/T—0.5 mg/kg bid orally Na2O3Se—1 mg/kg intramuscularly | • ↓ viability of the parasites • ↓ TBARS and AOPP in liver samples • ↓ lipid peroxidation and protein oxidation in host organism | [109] |
S/T—0.5 mg/kg bid orally Ph2Se2—5 µmol/kg subcutaneously | ||||
Fourteen day old chicken embryos | 1-thio-β-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate (Auranofin) | 1 mg/kg a single dose | • protection from death in all acutely infected embryos • reduction of the parasite load in organs such as brain and liver • inhibition of thioredoxin reductase activity • ↓ resistance to oxidative damage | [55,93,94] |
Female mice | Diphenyl diselenide | 5 µmol/kg subcutaneously | • no reverse of the behavioral changes caused by the parasite • ↓ TBARS and ↑ GST in brain of the host • protective action as an antioxidant | [70] |
Female Balb/c mice | Extract of Aloe vera | 50/100 mg/kg/day orally | • ↑ survival rate of infected mice • ↓ MDA levels in host cells • potent antioxidant activity | [111] |
Extract of Eucalyptus globulus | 100/200 mg/kg/day orally | |||
Female Balb/c mice | Silver nanoparticles (AgNPs) green synthesized by Phoenix dactylifera (date palm) extract and Ziziphus spina-christi (Nabka) powder | 100 mg/kg/day orally | • ↑ survival rate of infected mice • ↓ lipid peroxidation, ↓ NO concentration in liver homogenate • ↑ GSH, SOD, CAT in liver homogenate | [83] |
Female KM mice | Amide of 10-oxo derivative of ursolic acid and 1-H-tetrazol-5-amine | 100 mg/kg/day oral gavage | • inhibition of tachyzoite growth in infected mice • restoration of the normal body weight of infected mice and reduction of hepatotoxicity • ↓ MDA levels and ↑ GSH • ↓ lipid peroxidation | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewczyk-Golec, K.; Pawłowska, M.; Wesołowski, R.; Wróblewski, M.; Mila-Kierzenkowska, C. Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities. Int. J. Mol. Sci. 2021, 22, 5705. https://doi.org/10.3390/ijms22115705
Szewczyk-Golec K, Pawłowska M, Wesołowski R, Wróblewski M, Mila-Kierzenkowska C. Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities. International Journal of Molecular Sciences. 2021; 22(11):5705. https://doi.org/10.3390/ijms22115705
Chicago/Turabian StyleSzewczyk-Golec, Karolina, Marta Pawłowska, Roland Wesołowski, Marcin Wróblewski, and Celestyna Mila-Kierzenkowska. 2021. "Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities" International Journal of Molecular Sciences 22, no. 11: 5705. https://doi.org/10.3390/ijms22115705
APA StyleSzewczyk-Golec, K., Pawłowska, M., Wesołowski, R., Wróblewski, M., & Mila-Kierzenkowska, C. (2021). Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities. International Journal of Molecular Sciences, 22(11), 5705. https://doi.org/10.3390/ijms22115705