Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice
Abstract
:1. Introduction
2. Results
2.1. Alkali Burn Leads to Corneal Scarring
2.2. Characterization of HS/HEP in Murine Corneas after Alkali Burn
2.3. Characterization of CS/DS in Murine Corneas after Alkali Burn
2.4. Distribution of CS Sulphated Epitopes in Murine Corneas after Alkali Burn
2.5. Changes in CSPG Expression 5 and 14 Days after Alkali Burn in Murine Corneas
2.6. Expression of KS and KSPS after Alkali Burn in Murine Corneas
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Alkali Burn Model
4.3. In Vivo Confocal Microscopy
4.4. RNA Extraction and Real-Time PCR Analysis
4.5. Glycosaminoglycan Extraction from Corneas
4.6. Characterization of GAGs by Analysis of Disaccharide Composition
4.7. Immunohistochemistry
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB | Alkali burn |
ECM | Extracellular matrix |
GAGs | Glycosaminoglycans |
PGs | Proteoglycans |
KS | Keratan sulfate |
CS | Chondroitin sulfate |
HS | Heparan sulfate |
KSPGs | Keratan sulfate proteoglycans |
CS/DSPGs | Chondroitin sulfate and dermatan sulfate proteoglycans |
HSPGs | Heparan Sulphate proteglycans |
HA | Hyaluronan |
HEP | Heparin |
TLR | Toll-like receptor |
SULF | Sulfatase |
D0A0 | ΔUA-GlcNAc |
D0S0 | ΔUA-GlcNS |
D2S0 | ΔUA2S-GlcNS |
D0A6 | ΔUA-GlcNAc6S |
D2S6 | ΔUA2S-GlcNS6S |
D0S6 | ΔUA-GlcNS6S |
D2A6 | ΔUA2S-GlcNAc6S |
D2A0 | ΔUA2S-GlcNAc |
D2a4 | ΔUA2S-GalNAc4S |
D0a4 | ΔUA-GalNAc4S |
D0a0 | ΔUA-GalNAc |
D0a6 | ΔUA-GalNAc6S |
D0A10 | ΔUA-GalNAc4S6S |
SAX | Strong anion chromatography |
HPLC | High-pressure liquid chromatography |
MIP-2 | Macrophage inflammatory protein 2 |
NF-Kβ | nuclear factor kappa B |
TNF-α | tumor necrosis factor a |
Actb | Beta-actin |
Gapdh | Glyceraldehyde-3-phosphate Dehydrogenase |
Chst1 | Carbohydrate sulfotransferase 1 |
Chst2 | Carbohydrate sulfotransferase 2 |
B4galt1 | Beta-1,4-galactosyltransferase 1 |
B4galt4 | Beta-1,4-galactosyltransferase 4 |
References
- Scott, J.E. Proteoglycan: Collagen interactions and corneal ultrastructure. Biochem. Soc. Trans. 1991, 19, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Williams, D.R. Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 1997, 14, 2873–2883. [Google Scholar] [CrossRef]
- Torricelli, A.A.; Wilson, S.E. Cellular and extracellular matrix modulation of corneal stromal opacity. Exp. Eye Res. 2014, 129, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Maurice, D.M. The structure and transparency of the cornea. J. Physiol. 1957, 136, 263–286. [Google Scholar] [CrossRef]
- Benedek, G.B. Theory of Transparency of the Eye. Appl. Opt. 1971, 10, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Møller-Pedersen, T. Keratocyte reflectivity and corneal haze. Exp. Eye Res. 2004, 78, 553–560. [Google Scholar] [CrossRef]
- Knupp, C.; Pinali, C.; Lewis, P.N.; Parfitt, G.J.; Young, R.D.; Meek, K.M.; Quantock, A.J. The Architecture of the Cornea and Structural Basis of Its Transparency. Adv. Protein Chem. Struct. Biol. 2009, 78, 25–49. [Google Scholar] [CrossRef] [PubMed]
- DelMonte, D.W.; Kim, T. Anatomy and physiology of the cornea. J. Cataract. Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef]
- Chen, S.; Young, M.F.; Chakravarti, S.; Birk, D.E. Interclass small leucine-rich repeat proteoglycan interactions regulate collagen fibrillogenesis and corneal stromal assembly. Matrix Biol. 2014, 35, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Ghoubay, D.; Borderie, M.; Grieve, K.; Martos, R.; Bocheux, R.; Nguyen, T.; Callard, P.; Chédotal, A.; Borderie, V.M. Corneal stromal stem cells restore transparency after N 2 injury in mice. Stem Cells Transl. Med. 2020, 9, 917–935. [Google Scholar] [CrossRef]
- Palka, B.P. Proteoglycans in the Corneal Stroma and Their Role in Development and Pathology. PQDT—UK Irel. 2010. Available online: http://abc.cardiff.ac.uk/login?url=https://search.proquest.com/docview/899757570?accountid=9883%0Ahttp://whel-primo.hosted.exlibrisgroup.com/openurl/44WHELF_CAR/44WHELF_CAR_services_page?genre=dissertations+%26+theses&atitle=&author=Palka%2C+Barbara+Pauli.
- Eghrari, A.O.; Riazuddin, S.A.; Gottsch, J.D. Overview of the Cornea. Prog. Mol. Biol. Transl. Sci. 2015, 134, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Birk, D.E.; Fitch, J.M.; Linsenmayer, T.F. Organization of collagen types I and V in the embryonic chicken cornea. Investig. Ophthalmol. Vis. Sci. 1986, 27, 1470–1477. [Google Scholar]
- AlMubrad, T.; Akhtar, S. Ultrastructure features of camel cornea—Collagen fibril and proteoglycans. Veter. Ophthalmol. 2011, 15, 36–41. [Google Scholar] [CrossRef]
- AlMubrad, T.; Akhtar, S. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea. Mol. Vis. 2011, 17, 2283–2291. [Google Scholar]
- Funderburgh, J.L.; Funderburgh, M.L.; Hevelone, N.; Stech, M.E.; Justice, M.J.; Liu, C.Y.; Kao, W.W.; Conrad, G.W. Sequence, molecular properties, and chromosomal mapping of mouse lumican. Investig. Ophthalmol. Vis. Sci. 1995, 36. [Google Scholar]
- Puri, S.; Coulson-Thomas, Y.M.; Gesteira, T.F.; Coulson-Thomas, V.J. Distribution and Function of Glycosaminoglycans and Proteoglycans in the Development, Homeostasis and Pathology of the Ocular Surface. Front. Cell Dev. Biol. 2020, 8, 731. [Google Scholar] [CrossRef]
- Hahn, R.A.; Birk, D.E. β-D xyloside alters dermatan sulfate proteoglycan synthesis and the organization of the developing avian corneal stroma. Development 1992, 115, 383–393. [Google Scholar] [CrossRef]
- Adler, R.A. Osteoporosis in Men. Contemp. Endocrinol. 2020, 391–406. [Google Scholar] [CrossRef]
- McEwan, P.A.; Scott, P.G.; Bishop, P.N.; Bella, J. Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. J. Struct. Biol. 2006, 155, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Tasheva, E.S.; Koester, A.; Paulsen, A.Q.; Garrett, A.S.; Boyle, D.L.; Davidson, H.J.; Song, M.; Fox, N.; Conrad, G.W. Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol. Vis. 2002, 8, 407–415. [Google Scholar]
- Gesteira, T.F.; Coulson-Thomas, V.J.; Ogata, F.T.; Farias, E.H.; Cavalheiro, R.P.; De Lima, M.A.; Cunha, G.L.; Nakayasu, E.S.; Almeida, I.C.; Toma, L.; et al. A novel approach for the characterisation of proteoglycans and biosynthetic enzymes in a snail model. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2011, 1814, 1862–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Vergnes, J.-P.; Cornuet, P.K.; Hassell, J.R. cDNA clone to chick corneal chondroitin/dermatan sulfate proteoglycan reveals identity to decorin. Arch. Biochem. Biophys. 1992, 296, 190–197. [Google Scholar] [CrossRef]
- Kao, W.W.-Y.; Funderburgh, J.L.; Xia, Y.; Liu, C.-Y.; Conrad, G.W. Focus on Molecules: Lumican. Exp. Eye Res. 2006, 82, 3–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarti, S. Focus on Molecules: Keratocan (KERA). Exp. Eye Res. 2006, 82, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Michelacci, Y.M. Collagens and proteoglycans of the corneal extracellular matrix. Braz. J. Med. Biol. Res. 2003, 36, 1037–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iozzo, R.V. The Biology of the Small Leucine-rich Proteoglycans. J. Biol. Chem. 1999, 274, 18843–18846. [Google Scholar] [CrossRef] [Green Version]
- Hassell, J.R.; Newsome, D.A.; Krachmer, J.H.; Rodrigues, M.M. Macular corneal dystrophy: Failure to synthesize a mature keratan sulfate proteoglycan. Proc. Natl. Acad. Sci. USA 1980, 77, 3705–3709. [Google Scholar] [CrossRef] [Green Version]
- Chakravarti, S.; Magnuson, T.; Lass, J.H.; Jepsen, K.J.; LaMantia, C.; Carroll, H. Lumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican. J. Cell Biol. 1998, 141, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, S. Functions of lumican and fibromodulin: Lessons from knockout mice. Glycoconj. J. 2002, 19, 287–293. [Google Scholar] [CrossRef]
- Cornuet, P.K.; Blochberger, T.C.; Hassell, J.R. Molecular polymorphism of lumican during corneal development. Investig. Ophthalmol. Vis. Sci. 1994, 35, 870–877. [Google Scholar]
- Iozzo, R. The Family of the Small Leucine-Rich Proteoglycans: Key Regulators of Matrix Assembly and Cellular Growth. Crit. Rev. Biochem. Mol. Biol. 1997, 32, 141–174. [Google Scholar] [CrossRef] [PubMed]
- Ashby, B.D.; Garrett, Q.; Willcox, M.D. Corneal Injuries and Wound Healing—Review of Processes and Therapies. Austin J. Clin. Ophthalmol. 2014, 1, 1017. [Google Scholar]
- Bocheux, R.; Pernot, P.; Borderie, V.; Plamann, K.; Irsch, K. Quantitative measures of corneal transparency, derived from objective analysis of depth-resolved corneal images, demonstrated with full-field optical coherence tomographic microscopy. PLoS ONE 2019, 14, e0221707. [Google Scholar] [CrossRef] [PubMed]
- Jester, J.V. Corneal crystallins and the development of cellular transparency. Semin. Cell Dev. Biol. 2008, 19, 82–93. [Google Scholar] [CrossRef] [Green Version]
- West-Mays, J.A.; Dwivedi, D.J. The keratocyte: Corneal stromal cell with variable repair phenotypes. Int. J. Biochem. Cell Biol. 2006, 38, 1625–1631. [Google Scholar] [CrossRef] [Green Version]
- Jester, J.V.; Petroll, W.M.; Barry, P.A.; Cavanagh, H.D. Expression of α-smooth muscle (α-SM) actin during corneal stromal wound healing. Investig. Ophthalmol. Vis. Sci. 1995, 36, 809–819. [Google Scholar]
- Myrna, K.E.; Pot, S.A.; Murphy, C.J. Meet the corneal myofibroblast: The role of myofibroblast transformation in corneal wound healing and pathology. Veter. Ophthalmol. 2009, 12, 25–27. [Google Scholar] [CrossRef]
- Torricelli, A.A.; Santhanam, A.; Wu, J.; Singh, V.; Wilson, S.E. The corneal fibrosis response to epithelial–stromal injury. Exp. Eye Res. 2016, 142, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, S.L.; El Haj, A.J.; Yang, Y. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering. J. Funct. Biomater. 2012, 3, 642–687. [Google Scholar] [CrossRef] [Green Version]
- Tuft, S.J.; Gartry, D.S.; Rawe, I.M.; Meek, K.M. Photorefractive keratectomy: Implications of corneal wound healing. Br. J. Ophthalmol. 1993, 77, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Coulson-Thomas, V.J.; Gesteira, T.F.; Hascall, V.; Kao, W. Umbilical Cord Mesenchymal Stem Cells Suppress Host Rejection. J. Biol. Chem. 2014, 289, 23465–23481. [Google Scholar] [CrossRef] [Green Version]
- Caterson, B. Fell-Muir Lecture: Chondroitin sulphate glycosaminoglycans: Fun for some and confusion for others. Int. J. Exp. Pathol. 2012, 93, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, D.; Ruoslahti, E. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J. 1989, 8, 2975–2981. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; La Pierre, D.P.; Wu, J.; Yee, A.J.; Yang, B.B. The interaction of versican with its binding partners. Cell Res. 2005, 15, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ma, H.; Wei, W.; Ji, D.; Song, X.; Sun, J.; Zhang, J.; Jia, L. B4GALT family mediates the multidrug resistance of human leukemia cells by regulating the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1. Cell Death Dis. 2013, 4, e654. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tu, L.; Murphy, P.G.; Kadono, T.; Steeber, D.A.; Tedder, T.F. CHST1 and CHST2 sulfotransferase expression by vascular endothelial cells regulates shear-resistant leukocyte rolling via L-selectin. J. Leukoc. Biol. 2001, 69, 565–574. [Google Scholar]
- Li, X.; Tedder, T.F. CHST1 and CHST2 Sulfotransferases Expressed by Human Vascular Endothelial Cells: cDNA Cloning, Expression, and Chromosomal Localization. Genomics 1999, 55, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Shepler, A.M.; Chu, C.T.; Nischal, K.K. Sympathetic ophthalmia presenting 5 days after penetrating injury. Am. J. Ophthalmol. Case Rep. 2020, 19, 100816. [Google Scholar] [CrossRef]
- Rua, D.; Pohlmann, D.; Pleyer, U. Sympathetic Ophthalmia—A Contribution to Immunology, Clinic and Current Imaging. Klin. Mon. Für Augenheilkd. 2020, 237, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-J.; Wolff, D.; Zhang, K.-K.; He, W.-W.; Sun, X.-H.; Lu, Y.; Zhou, P. Molecular Inflammation in the Contralateral Eye After Cataract Surgery in the First Eye. Investig. Opthalmol. Vis. Sci. 2015, 56, 5566–5573. [Google Scholar] [CrossRef] [Green Version]
- Pronin, A.; Pham, D.; An, W.; Dvoriantchikova, G.; Reshetnikova, G.; Qiao, J.; Kozhekbaeva, Z.; Reiser, A.E.; Slepak, V.Z.; Shestopalov, V.I. Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular Hypertension Injury. Front. Mol. Neurosci. 2019, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiduschka, P.; Renninger, D.; Fischer, D.; Müller, A.; Hofmeister, S.; Schraermeyer, U. Lens Injury Has a Protective Effect on Photoreceptors in the RCS Rat. ISRN Ophthalmol. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Panagis, L.; Thanos, S.; Fischer, D.; Dermon, C.R. Unilateral optic nerve crush induces bilateral retinal glial cell proliferation. Eur. J. Neurosci. 2005, 21, 2305–2309. [Google Scholar] [CrossRef]
- Unilateral Injury to the Adult Rat Optic Nerve Causes Multiple Cellular Responses in the Contralateral Site—PubMed [Internet]. Available online: https://pubmed.ncbi.nlm.nih.gov/10027567/ (accessed on 19 May 2021).
- Kubota, M.; Shimmura, S.; Kubota, S.; Miyashita, H.; Kato, N.; Noda, K.; Ozawa, Y.; Usui, T.; Ishida, S.; Umezawa, K.; et al. Hydrogen andN-Acetyl-l-Cysteine Rescue Oxidative Stress-Induced Angiogenesis in a Mouse CornealAlkali-Burn Model. Investig. Opthalmol. Vis. Sci. 2011, 52, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakami, N.Y.; Dusting, G.J.; Chan, E.C.; Shah, M.H.; Peshavariya, H.M. Wound Healing After Alkali Burn Injury of the Cornea Involves Nox4-Type NADPH Oxidase. Investig. Opthalmol. Vis. Sci. 2020, 61, 20. [Google Scholar] [CrossRef]
- Kim, J.W.; Jeong, H.; Yang, M.-S.; Lim, C.W.; Kim, B. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model. Int. Immunopharmacol. 2017, 48, 126–134. [Google Scholar] [CrossRef]
- Espandar, L.; Caldwell, D.; Watson, R.; Blanco-Mezquita, T.; Zhang, S.; Bunnell, B. Application of Adipose-Derived Stem Cells on Scleral Contact Lens Carrier in an Animal Model of Severe Acute Alkaline Burn. Eye Contact Lens Sci. Clin. Pr. 2014, 40, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.-H.; Kang, Y.-G.; Kim, H.-J. Effect of 0.1% dexamethasone on epithelial healing in experimental corneal alkali wounds: Morphological changes during the repair process. Graefe’s Arch. Clin. Exp. Ophthalmol. 1998, 236, 537–545. [Google Scholar] [CrossRef]
- Wang, S.; Sugahara, K.; Li, F. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria. Glycoconj. J. 2016, 33, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, M.; Shinomura, T.; Kimata, K. Tissue variation of two large chondroitin sulfate proteoglycans (PG-M/versican and PG-H/aggrecan) in chick embryos. Brain Struct. Funct. 1993, 187, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Inatani, M.; Hirata, A.; Inomata, Y.; Zako, M.; Kimata, K.; Oohira, A.; Gotoh, T.; Mori, M.; Tanihara, H. Expression of a Chondroitin Sulfate Proteoglycan, Versican (PG-M), During Development of Rat Cornea. Curr. Eye Res. 2005, 30, 455–463. [Google Scholar] [CrossRef]
- Zako, M.; Shinomura, T.; Ujita, M.; Ito, K.; Kimata, K. Expression of PG-M(V3), an Alternatively Spliced Form of PG-M without a Chondroitin Sulfate Attachment Region in Mouse and Human Tissues. J. Biol. Chem. 1995, 270, 3914–3918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, K.; Shinomura, T.; Zako, M.; Ujita, M.; Kimata, K. Multiple Forms of Mouse PG-M, a Large Chondroitin Sulfate Proteoglycan Generated by Alternative Splicing. J. Biol. Chem. 1995, 270, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Wight, T.N. Provisional matrix: A role for versican and hyaluronan. Matrix Biol. 2017, 60–61, 38–56. [Google Scholar] [CrossRef]
- Yamagata, M.; Sanes, J.R. Versican in the Developing Brain: Lamina-Specific Expression in Interneuronal Subsets and Role in Presynaptic Maturation. J. Neurosci. 2005, 25, 8457–8467. [Google Scholar] [CrossRef]
- Wight, T.N. Versican: A versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol. 2002, 14, 617–623. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Dietrich, T.; Saito, K.; Sorokin, L.; Sasaki, T.; Paulsson, M.; Kruse, F. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp. Eye Res. 2007, 85, 845–860. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Harten, I.A.; Chang, M.Y.; Braun, K.R.; Sheih, A.; Nivison, M.P.; Johnson, P.Y.; Workman, G.; Kaber, G.; Evanko, S.P.; et al. Versican Deficiency Significantly Reduces Lung Inflammatory Response Induced by Polyinosine-Polycytidylic Acid Stimulation. J. Biol. Chem. 2017, 292, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Hattori, N.; Carrino, D.A.; Lauer, M.E.; Vasanji, A.; Wylie, J.D.; Nelson, C.M.; Apte, S.S. Pericellular Versican Regulates the Fibroblast-Myofibroblast Transition. J. Biol. Chem. 2011, 286, 34298–34310. [Google Scholar] [CrossRef] [Green Version]
- Wight, T.N.; Kinsella, M.G.; Evanko, S.P.; Potter-Perigo, S.; Merrilees, M.J. Versican and the regulation of cell phenotype in disease. Biochim. Biophys. Acta BBA Bioenerg. 2014, 1840, 2441–2451. [Google Scholar] [CrossRef] [Green Version]
- Wight, T.N.; Kang, I.; Evanko, S.P.; Harten, I.A.; Chang, M.Y.; Pearce, O.M.T.; Allen, C.E.; Frevert, C.W. Versican—A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front. Immunol. 2020, 11, 512. [Google Scholar] [CrossRef] [Green Version]
- Wight, T.N.; Kang, I.; Merrilees, M.J. Versican and the control of inflammation. Matrix Biol. 2014, 35, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, A. Occurrence and structural characterization of versican-like proteoglycan in human vitreous. Biochimie 2002, 84, 1235–1241. [Google Scholar] [CrossRef]
- Zhao, X.; Russell, P. Versican splice variants in human trabecular meshwork and ciliary muscle. Mol. Vis. 2005, 11, 603–608. [Google Scholar] [PubMed]
- Popovic, Z.V.; Wang, S.; Papatriantafyllou, M.; Kaya, Z.; Porubsky, S.; Meisner, M.; Bonrouhi, M.; Burgdorf, S.; Young, M.F.; Schaefer, L.; et al. The Proteoglycan Biglycan Enhances Antigen-Specific T Cell Activation Potentially via MyD88 and TRIF Pathways and Triggers Autoimmune Perimyocarditis. J. Immunol. 2011, 187, 6217–6226. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, L.; Babelova, A.; Kiss, E.; Hausser, H.-J.; Baliova, M.; Krzyzankova, M.; Marsche, G.; Young, M.F.; Mihalik, D.; Götte, M.; et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Investig. 2005, 115, 2223–2233. [Google Scholar] [CrossRef]
- Pearlman, E.; Johnson, A.; Adhikary, G.; Sun, Y.; Chinnery, H.R.; Fox, T.; Kester, M.; McMenamin, P.G. Toll-like receptors at the ocular surface. Ocul. Surf. 2008, 6, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Tarabishy, A.B.; Aldabagh, B.; Sun, Y.; Imamura, Y.; Mukherjee, P.K.; Lass, J.H.; Ghannoum, M.A.; Pearlman, E. MyD88 Regulation ofFusariumKeratitis Is Dependent on TLR4 and IL-1R1 but Not TLR2. J. Immunol. 2008, 181, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Du, W.; McClellan, S.A.; Barrett, R.P.; Hazlett, L.D. TLR4 Is Required for Host Resistance in Pseudomonas aeruginosa Keratitis. Investig. Opthalmol. Vis. Sci. 2006, 47, 4910–4916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Zhang, J.; Yu, F.-S.X. Toll-like receptor 2-mediated expression of β-defensin-2 in human corneal epithelial cells. Microbes Infect. 2006, 8, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Chen, S.; Goldoni, S.; Calder, B.W.; Simpson, H.C.; Owens, R.T.; McQuillan, D.J.; Young, M.F.; Iozzo, R.; Birk, D.E. Genetic Evidence for the Coordinated Regulation of Collagen Fibrillogenesis in the Cornea by Decorin and Biglycan. J. Biol. Chem. 2009, 284, 8888–8897. [Google Scholar] [CrossRef] [Green Version]
- Funderburgh, J.L.; Hevelone, N.; Roth, M.R.; Funderburgh, M.L.; Rodrigues, M.R.; Nirankari, V.S.; Conrad, G.W. Decorin and biglycan of normal and pathologic human corneas. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1957–1964. [Google Scholar]
- Krull, N.; Gressner, A. Differential expression of keratan sulphate proteoglycans fibromodulin, lumican and aggrecan in normal and fibrotic rat liver. FEBS Lett. 1992, 312, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Barallobre-Barreiro, J.; Didangelos, A.; Schoendube, F.A.; Drozdov, I.; Yin, X.; Fernández-Caggiano, M.; Willeit, P.; Puntmann, V.O.; Aldama-López, G.; Shah, A.M.; et al. Proteomics Analysis of Cardiac Extracellular Matrix Remodeling in a Porcine Model of Ischemia/Reperfusion Injury. Circulation 2012, 125, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Barallobre-Barreiro, J.; Woods, E.; Bell, R.E.; Easton, J.A.; Hobbs, C.; Eager, M.; Baig, F.; Ross, A.M.; Mallipeddi, R.; Powell, B.; et al. Cartilage-like composition of keloid scar extracellular matrix suggests fibroblast mis-differentiation in disease. Matrix Biol. Plus 2019, 4, 100016. [Google Scholar] [CrossRef]
- Dunlevy, J.R.; Rada, J.A.S.; Grewal, R.; Stepczynski, J.; Kelln, R.; Erickson, T.; Darrow, R.; Barsalou, L.; Patterson, M.; Organisciak, D.T.; et al. Interaction of Lumican with Aggrecan in the Aging Human Sclera. Investig. Opthalmol. Vis. Sci. 2004, 45, 3849–3895. [Google Scholar] [CrossRef] [Green Version]
- Malgouries, S.; Thibaut, S.; Bernard, B. Proteoglycan expression patterns in human hair follicle. Br. J. Dermatol. 2007, 158, 234–342. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.; Li, J.; DiPietro, L.; Stepp, M.A.; Sandy, J.D.; Plaas, A. Adamts5 Deletion Blocks Murine Dermal Repair through CD44-mediated Aggrecan Accumulation and Modulation of Transforming Growth Factor β1 (TGFβ1) Signaling. J. Biol. Chem. 2011, 286, 26016–26027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, X.; Dong, N.; Zheng, Z. Small Leucine-Rich Proteoglycans in Skin Wound Healing. Front. Pharmacol. 2020, 10, 1649. [Google Scholar] [CrossRef] [Green Version]
- Cintron, C.; Kublin, C.L. Regeneration of Cornea1 Tissue. Dev. Biol. 1977, 61, 346–357. [Google Scholar] [CrossRef]
- Hassell, J.R.; Cintron, C.; Kublin, C.; Newsome, D.A. Proteoglycan changes during restoration of transparency in corneal scars. Arch. Biochem. Biophys. 1983, 222, 362–369. [Google Scholar] [CrossRef]
- Cintron, C.; Gregory, J.D.; Damle, S.P.; Kublin, C.L. Biochemical analyses of proteoglycans in rabbit corneal scars. Investig. Ophthalmol. Vis. Sci. 1990, 31, 1975–1981. [Google Scholar]
- Hassell, J.R.; Birk, D.E. The molecular basis of corneal transparency. Exp. Eye Res. 2010, 91, 326–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varkoly, G.; Bencze, J.; Hortobágyi, T.; Módis, L. A cornealis sebgyógyulás és az extracelluláris mátrix. Orvosi Hetil. 2016, 157, 995–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funderburgh, J.L.; Mann, M.M.; Funderburgh, M.L. Keratocyte Phenotype Mediates Proteoglycan Structure. J. Biol. Chem. 2003, 278, 45629–45637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Iorio, E.; Barbaro, V.; Volpi, N.; Bertolin, M.; Ferrari, B.; Fasolo, A.; Arnaldi, R.; Brusini, P.; Prosdocimo, G.; Ponzin, D.; et al. Localization and expression of CHST6 and keratan sulfate proteoglycans in the human cornea. Exp. Eye Res. 2010, 91, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Carlson, E.C.; Liu, C.-Y.; Chikama, T.-I.; Hayashi, Y.; Kao, C.W.-C.; Birk, D.E.; Funderburgh, J.L.; Jester, J.V.; Kao, W.W.-Y. Keratocan, a Cornea-specific Keratan Sulfate Proteoglycan, Is Regulatedby Lumican. J. Biol. Chem. 2005, 280, 25541–25547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazawa, K.; Suzuki, S.; Wada, K.; Nakazawa, K. Proteoglycan Synthesis by Corneal Explants from Developing Embryonic Chicken. J. Biochem. 1995, 117, 707–718. [Google Scholar] [CrossRef]
- Funderburgh, J.L.; Caterson, B.; Conrad, G.W. Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J. Biol. Chem. 1987, 262, 11634–11640. [Google Scholar] [CrossRef]
- Akhtar, S.; Kerr, B.C.; Hayes, A.J.; Hughes, C.E.; Meek, K.M.; Caterson, B. Immunochemical Localization of Keratan Sulfate Proteoglycans in Cornea, Sclera, and Limbus Using a Keratanase-Generated Neoepitope Monoclonal Antibody. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2424–2431. [Google Scholar] [CrossRef] [Green Version]
- Cintron, C.; I Covington, H.; Kublin, C.L. Morphologic analyses of proteoglycans in rabbit corneal scars. Investig. Ophthalmol. Vis. Sci. 1990, 31, 1789–1798. [Google Scholar]
- Hayashida, Y.; Akama, T.O.; Beecher, N.; Lewis, P.; Young, R.D.; Meek, K.M.; Kerr, B.; Hughes, C.E.; Caterson, B.; Tanigami, A.; et al. Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 13333–13338. [Google Scholar] [CrossRef] [Green Version]
- Musselmann, K.; Hassell, J.R. Focus on Molecules: CHST6 (carbohydrate sulfotransferase 6; corneal N-acetylglucosamine-6-sulfotransferase). Exp. Eye Res. 2006, 83, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Plaas, A.H.; West, L.A.; Thonar, E.J.; Karcioglu, Z.A.; Smith, C.J.; Klintworth, G.K.; Hascall, V.C. Altered Fine Structures of Corneal and Skeletal Keratan Sulfate and Chondroitin/Dermatan Sulfate in Macular Corneal Dystrophy. J. Biol. Chem. 2001, 276, 39788–39796. [Google Scholar] [CrossRef] [Green Version]
- Vance, J.M.; Jonasson, F.; Lennon, F.; Sarrica, J.; Damji, K.F.; Stauffer, J.; Pericak-Vance, M.A.; Klintworth, G.K. Linkage of a Gene for Macular Corneal Dystrophy to Chromosome 16. Am. J. Hum. Genet. 1996, 58, 757. [Google Scholar]
- Akama, T.O.; Nishida, K.; Nakayama, J.; Watanabe, H.; Ozaki, K.; Nakamura, T.; Dota, A.; Kawasaki, S.; Inoue, Y.; Maeda, N.; et al. Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat. Genet. 2000, 26, 237–241. [Google Scholar] [CrossRef]
- Liu, N.-P.; Bao, W.; Smith, C.F.; Vance, J.; Klintworth, G.K. Different Mutations in Carbohydrate Sulfotransferase 6 (CHST6) Gene Cause Macular Corneal Dystrophy Types I and II in a Single Sibship. Am. J. Ophthalmol. 2005, 139, 1118–1120. [Google Scholar] [CrossRef]
- Thonar, E.J.-M.; Meyer, R.F.; Dennis, R.F.; Lenz, M.E.; Maldonado, B.; Hassell, J.R.; Hewitt, A.T.; Stark, W.J.; Stock, E.L.; Kuettner, K.E.; et al. Absence of Normal Keratan Sulfate in the Blood of Patients With Macular Corneal Dystrophy. Am. J. Ophthalmol. 1986, 102, 561–569. [Google Scholar] [CrossRef]
- Edward, D.P.; Thonar, E.J.-M.; Srinivasan, M.; Yue, B.J.; Tso, M.O. Macular Dystrophy of the Cornea. Ophthalmology 1990, 97, 1194–1200. [Google Scholar] [CrossRef]
- Coulson-Thomas, V.J.; Chang, S.-H.; Yeh, L.-K.; Coulson-Thomas, Y.M.; Yamaguchi, Y.; Esko, J.; Liu, C.-Y.; Kao, W. Loss of Corneal Epithelial Heparan Sulfate Leads to Corneal Degeneration and Impaired Wound Healing. Investig. Opthalmol. Vis. Sci. 2015, 56, 3004–3014. [Google Scholar] [CrossRef] [Green Version]
- Morimoto-Tomita, M.; Uchimura, K.; Werb, Z.; Hemmerich, S.; Rosen, S.D. Cloning and Characterization of Two Extracellular Heparin-degrading Endosulfatases in Mice and Humans. J. Biol. Chem. 2002, 277, 49175–49185. [Google Scholar] [CrossRef] [Green Version]
- Viviano, B.L.; Paine-Saunders, S.; Gasiunas, N.; Gallagher, J.; Saunders, S. Domain-specific Modification of Heparan Sulfate by Qsulf1 Modulates the Binding of the Bone Morphogenetic Protein Antagonist Noggin. J. Biol. Chem. 2004, 279, 5604–5611. [Google Scholar] [CrossRef] [Green Version]
- Ai, X.; Do, A.-T.; Lozynska, O.; Kusche-Gullberg, M.; Lindahl, U.; Emerson, C.P., Jr. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J. Cell Biol. 2003, 162, 341–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhoot, G.K.; Gustafsson, M.K.; Ai, X.; Sun, W.; Standiford, D.M.; Emerson, C.P., Jr. Regulation of Wnt Signaling and Embryo Patterning by an Extracellular Sulfatase. Science 2001, 293, 1663–1666. [Google Scholar] [CrossRef] [PubMed]
- Stepp, M.A.; Gibson, H.E.; Gala, P.H.; Iglesia, D.D.S.; Pajoohesh-Ganji, A.; Pal-Ghosh, S.; Brown, M.; Aquino, C.; Schwartz, A.M.; Goldberger, O.; et al. Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J. Cell Sci. 2002, 115, 4517–4531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inomata, T.; Ebihara, N.; Funaki, T.; Matsuda, A.; Watanabe, Y.; Ning, L.; Xu, Z.; Murakami, A.; Arikawa-Hirasawa, E. Perlecan-Deficient Mutation Impairs Corneal Epithelial Structure. Investig. Opthalmol. Vis. Sci. 2012, 53, 1277–1284. [Google Scholar] [CrossRef]
- Stepp, M.A.; Liu, Y.; Pal-Ghosh, S.; Jurjus, R.A.; Tadvalkar, G.; Sekaran, A.; LoSicco, K.; Jiang, L.; Larsen, M.; Li, L.; et al. Reduced migration, altered matrix and enhanced TGFβ1 signaling are signatures of mouse keratinocytes lacking Sdc1. J. Cell Sci. 2007, 120, 2851–2863. [Google Scholar] [CrossRef] [Green Version]
- Stepp, M.A.; Daley, W.P.; Bernstein, A.M.; Pal-Ghosh, S.; Tadvalkar, G.; Shashurin, A.; Palsen, S.; Jurjus, R.A.; Larsen, M. Syndecan-1 regulates cell migration and fibronectin fibril assembly. Exp. Cell Res. 2010, 316, 2322–2339. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Coulson-Thomas, V.J.; Ferreira, T.G.; Kao, W.W.Y. Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol. 2015, 15, 155. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Puri, S.; Mutoji, K.N.; Coulson-Thomas, Y.M.; Hascall, V.C.; Jackson, D.G.; Gesteira, T.F.; Coulson-Thomas, V.J. Hyaluronan Derived From the Limbus is a Key Regulator of Corneal Lymphangiogenesis. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1050–1062. [Google Scholar] [CrossRef] [Green Version]
- Thomas, V.J.C.; Caterson, B.; Kao, W.W.-Y. Transplantation of human umbilical mesenchymal stem cells cures the corneal defects of mucopolysaccharidosis VII mice. Stem Cells 2013, 31, 2116–2126. [Google Scholar] [CrossRef] [Green Version]
- Ticar, B.F.; Rohmah, Z.; Neri, T.A.N.; Pahila, I.G.; Vasconcelos, A.; Archer-Hartmann, S.A.; Reiter, C.E.; Dobruchowska, J.M.; Choi, B.-D.; Heiss, C.; et al. Biocompatibility and structural characterization of glycosaminoglycans isolated from heads of silver-banded whiting (Sillago argentifasciata Martin & Montalban 1935). Int. J. Biol. Macromol. 2020, 151, 663–676. [Google Scholar] [CrossRef]
- Casasnovas, J.; Damron, C.L.; Jarrell, J.; Orr, K.S.; Bone, R.N.; Archer-Hartmann, S.; Azadi, P.; Kua, K.L. Offspring of Obese Dams Exhibit Sex-Differences in Pancreatic Heparan Sulfate Glycosaminoglycans and Islet Insulin Secretion. Front. Endocrinol. 2021, 12. [Google Scholar] [CrossRef]
- Gesteira, T.F.; Sun, M.; Coulson-Thomas, Y.M.; Yamaguchi, Y.; Yeh, L.-K.; Hascall, V.; Coulson-Thomas, V.J. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4407–4421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Puri, S.; Parfitt, G.J.; Mutoji, N.; Coulson-Thomas, V.J. Hyaluronan Regulates Eyelid and Meibomian Gland Morphogenesis. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3713–3727. [Google Scholar] [CrossRef]
Ctr 5 Days | AB 5 Days | Ctr 14 Days | AB 14 Days | |||||
---|---|---|---|---|---|---|---|---|
HS | ||||||||
D0A0 | 2.081633 | 23 | 1.755102 | 27 | 2.244898 | 32 | 2.285714 | 33 |
D0S0 | 1.734694 | 19 | 1.530612 | 24 | 1.387755 | 20 | 1 | 15 |
D2S0 | 1.755102 | 20 | 1.061224 | 16 | 1.061224 | 15 | 1.040816 | 15 |
D0A6 | 1.530612 | 17 | 0.816327 | 13 | 1 | 14 | 0.795918 | 12 |
D2S6 | 1 | 11 | 0.489796 | 8 | 0.632653 | 9 | 1.306122 | 19 |
D0S6 | 0.44898 | 5 | 0.408163 | 6 | 0.387755 | 6 | 0.142857 | 2 |
D2A6 | 0.22449 | 3 | 0.122449 | 2 | ND | 0 | 0.102041 | 1 |
D2A0 | 0.204286 | 2 | 0.282857 | 4 | 0.195714 | 3 | 0.205714 | 3 |
Total HS | 8.979796 | 100 | 6.466531 | 100 | 6.91 | 100 | 6.879184 | 100 |
Ctr 5 Days | AB 5 Days | Ctr 14 Days | AB 14 Days | |||||
---|---|---|---|---|---|---|---|---|
CS | ||||||||
D0a0 | 0.914285714 | 19 | 0.485714286 | 8 | 1 | 17 | 0.671428571 | 7 |
D0a6 | 0.414285714 | 9 | 0.271428571 | 4 | 0.814285714 | 14 | 0.142857143 | 2 |
D0a4 | 0.771428571 | 16 | 1.071428571 | 18 | 0.714285714 | 12 | 1.057142857 | 12 |
D0a10 | 0.271428571 | 5 | 1.214285714 | 20 | ND | 0.957142857 | 11 | |
D2a4 | 2.428571429 | 51 | 3.042857143 | 50 | 3.214285714 | 56 | 6.257142857 | 69 |
Total CS | 4.8 | 100 | 6.085714286 | 100 | 5.757142857 | 100 | 9.1 | 100 |
Gene | Name | Mean Count | Log 2 Fold Change | Log Fold Change | p-Value |
---|---|---|---|---|---|
Fut8 | glycoprotein 6-alpha-L-fucosyltransferase | 303.5 | −0.374 | 0.610 | 0.540 |
B3gnt2 | N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase | 592.6 | 0.133 | 0.555 | 0.811 |
St3gal1 | beta-galactoside alpha-2,3-sialyltransferase | 734.4 | −1.302 | 0.686 | 0.0578 |
St3gal3 | neolactotetraosylceramide alpha-2,3-sialyltransferase | 143.1 | −0.890 | 0.699 | 0.203 |
Chst1 | keratan sulfate 6-sulfotransferase 1 | 26.8 | −0.818 | 0.608 | 0.178 |
St3gal2 | beta-galactoside alpha-2,3-sialyltransferase | 792.2 | 0.0791 | 0.541 | 0.884 |
Chst2 | carbohydrate 6-sulfotransferase 2 | 71.4 | −0.299 | 0.706 | 0.672 |
B4galt1 | beta-1,4-galactosyltransferase 1 | 2806.6 | −0.0580 | 0.509 | 0.909 |
B4galt2 | beta-1,4-galactosyltransferase 2 | 110.6 | −0.836 | 0.707 | 0.237 |
B4galt3 | beta-1,4-galactosyltransferase 3 | 866.6 | −0.796 | 0.616 | 0.196 |
B4galt4 | beta-1,4-galactosyltransferase 4 | 59.6 | −0.536 | 0.716 | 0.455 |
B4galt7 | beta-1,3-N-acetylglucosaminyltransferase 7 | 205.2 | −0.244 | 0.629 | 0.698 |
B3gnt7 | solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) transporter) | 291.7 | −0.224 | 0.601 | 0.657 |
Slc35a3 | glycoprotein 6-alpha-L-fucosyltransferase | 1062.6 | 0.743 | 0.603 | 0.218 |
Gene (Mus Musculus) | Accession Number | Forward (5⟶3′) | Reverse (5′⟶3′) | Product Length |
---|---|---|---|---|
Mimecan | NM_008760.5 | TTTGCAGACATGCCAAACCT | AGCTTTGGAGGAAGAACTGGA | 152 |
Keratocan | NM_008438.3 | TAGCTAACCTAACACCAGCCA | GGTTGCCATTACAGCACCTTG | 70 |
Lumican | NM_008524.2 | CCCACCCTGACAGAGTTCAC | CAGCAAGTCCTCTGTGACCTTA | 112 |
Byglican | NM_007542.5 | TGTCCCTCCCCAGGAACATT | GTCCCAGAAACCCTTCTGCT | 102 |
Decorin | NM_001190451. | AACTGTGCTATGGAGTAGAAGCA | ATCTCATGTATTTTCACGACCTTTT | 192 |
Versican | NM_001081249.1 | ACCTACCTTACCACCCAATTAC | GTAGTGAAACACAACACCATCCA | 316 |
Vcan-Transcript variant 1 | NM_001081249.1 | CCAAGTTCCACCCTGACATAAA | CACTGCAAGGTTCCTCTTCTT | 129 |
Vcan-Transcript variant 2 | NM_019389.2 | TGAGAACCAGACATGCTTCC | TGAATCTATTGGATGACCACTTACA | 103 |
Vcan-Transcript variant 3 | NM_001134474.1 | GGTGAGAACCCTGTATCGTTT | GGTGGTTGCCTCTGATATATTCT | 109 |
Vcan-Transcript variant 4 | NM_001134475.1 | CAGATTTGATGCCTACTGCTTTAAAC | GATAACAGGTGCCTCCGTTGA | 77 |
carbohydrate sulfotransferase 1 | NM_018763.2 | CCCCTAGCAGAAGAGAACCG | GCTCCGAGAAGGACCTGGAG | 116 |
carbohydrate sulfotransferase 2 | NM_001356552.1 | CCTCCCTTCAGGAGCTTCAAA | CACACAGCAGTTACCTTCCC | 126 |
4-galactosyltransferase, polypeptide 4 | NM_001285793.1 | GGGCTGTGAGCCGGTGAT | CGGGGATCTGATGGCAACTC | 80 |
4-galactosyltransferase, polypeptide 1 | NM_022305.6 | GGTGGCCATCATCATCCCAT | GGTGTCTCCAGCCTGATTGA | 130 |
Actb | NM_007393.5 | CACTGTCGAGTCGCGTCC | TCATCCATGGCGAACTGGTG | 89 |
Gapdh | NM_001289726.1 | AACAGCAACTCCCACTCTTC | CCTGTTGCTGTAGCCGTATT | 111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutoji, K.N.; Sun, M.; Elliott, G.; Moreno, I.Y.; Hughes, C.; Gesteira, T.F.; Coulson-Thomas, V.J. Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice. Int. J. Mol. Sci. 2021, 22, 5708. https://doi.org/10.3390/ijms22115708
Mutoji KN, Sun M, Elliott G, Moreno IY, Hughes C, Gesteira TF, Coulson-Thomas VJ. Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice. International Journal of Molecular Sciences. 2021; 22(11):5708. https://doi.org/10.3390/ijms22115708
Chicago/Turabian StyleMutoji, Kazadi N., Mingxia Sun, Garrett Elliott, Isabel Y. Moreno, Clare Hughes, Tarsis F. Gesteira, and Vivien J. Coulson-Thomas. 2021. "Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice" International Journal of Molecular Sciences 22, no. 11: 5708. https://doi.org/10.3390/ijms22115708
APA StyleMutoji, K. N., Sun, M., Elliott, G., Moreno, I. Y., Hughes, C., Gesteira, T. F., & Coulson-Thomas, V. J. (2021). Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice. International Journal of Molecular Sciences, 22(11), 5708. https://doi.org/10.3390/ijms22115708