Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion
Abstract
:1. Introduction
1.1. Metabolic Diseases Associated with Insulin Resistance and Chronic Low-Grade Inflammation
1.2. Role of Protein Tyrosine Kinases and Protein Tyrosine Phosphatases Antagonism
2. RPTPs: The Transmembrane Receptor-Like Protein Tyrosine Phosphatases
2.1. CD45 and R1/6 Subfamily and Insulin Signaling
2.2. LAR and R2A Subfamily and Insulin Signaling
2.3. RPTPκ and R2B Subfamily
2.4. R3 Subfamily and Insulin Signaling
2.5. RPTP-α, RPTP-ε and the R4 Subfamily in Insulin Signaling
2.6. RPTP- β/ζ, RPTP-γ and the R5 Subfamily in Insulin Signaling
2.7. R7 Subfamily in Insulin Signaling
2.8. IA2 and the R8 Subfamily in Insulin Content and Secretion
3. RPTPS as Potential Therapeutic Targets
4. Concluding Remarks and Future Strategies
Author Contributions
Funding
Conflicts of Interest
References
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.M.; Wang, K.; Adler, A.J.; Vella, A.T.; Zhou, B. Macrophage polarization and meta-inflammation. Transl. Res. 2018, 191, 29–44. [Google Scholar] [CrossRef]
- Chen, L.; Chen, R.; Wang, H.; Liang, F. Mechanisms Linking Inflammation to Insulin Resistance. Int. J. Endocrinol. 2015, 2015, 508409. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012, 55, 2565–2582. [Google Scholar] [CrossRef] [Green Version]
- de Castro, J.; Sevillano, J.; Marciniak, J.; Rodriguez, R.; González-Martín, C.; Viana, M.; Eun-suk, O.H.; de Mouzon, S.H.; Herrera, E.; Ramos, M.P. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy. Endocrinology 2011, 152, 4094–4105. [Google Scholar] [CrossRef]
- Kasuga, M.; Zick, Y.; Blithe, D.L.; Crettaz, M.; Kahn, C.R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 1982, 298, 667–669. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 2010, 1802, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Tiganis, T. PTP1B and TCPTP—Nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J. 2013, 280, 445–458. [Google Scholar] [CrossRef]
- Bixby, J.L. Ligands and signaling through receptor-type tyrosine phosphatases. IUBMB Life 2001, 51, 157–163. [Google Scholar] [CrossRef]
- Fischer, E.H.; Charbonneau, H.; Tonks, N.K. Protein tyrosine phosphatases: A diverse family of intracellular and transmembrane enzymes. Science 1991, 253, 401–406. [Google Scholar] [CrossRef]
- Sun, H.; Tonks, N.K. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem. Sci. 1994, 19, 480–485. [Google Scholar] [CrossRef]
- Tonks, N.K. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 2006, 7, 833–846. [Google Scholar] [CrossRef]
- Kristjánsdóttir, K.; Rudolph, J. Cdc25 phosphatases and cancer. Chem. Biol. 2004, 11, 1043–1051. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, S.S.; Korashy, H.M.; Zeidan, A.; Agouni, A. The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance. Biomolecules 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Keyse, S.M. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr. Opin. Cell Biol. 2000, 12, 186–192. [Google Scholar] [CrossRef]
- Andersen, J.N.; Mortensen, O.H.; Peters, G.H.; Drake, P.G.; Iversen, L.F.; Olsen, O.H.; Jansen, P.G.; Andersen, H.S.; Tonks, N.K.; Møller, N.P. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 2001, 21, 7117–7136. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.L.; Dixon, J.E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J. Biol. Chem. 1991, 266, 17026–17030. [Google Scholar] [CrossRef]
- Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell 2004, 117, 699–711. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Fisher, G.J. Receptor type protein tyrosine phosphatases (RPTPs)—Roles in signal transduction and human disease. J. Cell Commun. Signal. 2012, 6, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Beltran, P.J.; Bixby, J.L. Receptor protein tyrosine phosphatases as mediators of cellular adhesion. Front. Biosci. 2003, 8, d87–d99. [Google Scholar] [CrossRef] [Green Version]
- Tonks, N.K.; Charbonneau, H.; Diltz, C.D.; Fischer, E.H.; Walsh, K.A. Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry 1988, 27, 8695–8701. [Google Scholar] [CrossRef]
- Thomas, M.L. The leukocyte common antigen family. Annu. Rev. Immunol. 1989, 7, 339–369. [Google Scholar] [CrossRef]
- Penninger, J.M.; Irie-Sasaki, J.; Sasaki, T.; Oliveira-dos-Santos, A.J. CD45: New jobs for an old acquaintance. Nat. Immunol. 2001, 2, 389–396. [Google Scholar] [CrossRef]
- Hasegawa, K.; Nishimura, H.; Ogawa, S.; Hirose, S.; Sato, H.; Shirai, T. Monoclonal antibodies to epitope of CD45R (B220) inhibit interleukin 4-mediated B cell proliferation and differentiation. Int. Immunol. 1990, 2, 367–375. [Google Scholar] [CrossRef]
- Way, B.A.; Mooney, R.A. Activation of phosphatidylinositol-3-kinase by platelet-derived growth factor and insulin-like growth factor-1 is inhibited by a transmembrane phosphotyrosine phosphatase. J. Biol. Chem. 1993, 268, 26409–26415. [Google Scholar] [CrossRef]
- Kulas, D.T.; Freund, G.G.; Mooney, R.A. The transmembrane protein-tyrosine phosphatase CD45 is associated with decreased insulin receptor signaling. J. Biol. Chem. 1996, 271, 755–760. [Google Scholar] [CrossRef] [Green Version]
- Lammers, R.; Bossenmaier, B.; Cool, D.E.; Tonks, N.K.; Schlessinger, J.; Fischer, E.H.; Ullrich, A. Differential activities of protein tyrosine phosphatases in intact cells. J. Biol. Chem. 1993, 268, 22456–22462. [Google Scholar] [CrossRef]
- Streuli, M.; Krueger, N.X.; Hall, L.R.; Schlossman, S.F.; Saito, H. A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J. Exp. Med. 1988, 168, 1523–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, F.; Goldstein, B.J. Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J. Biol. Chem. 1997, 272, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Kulas, D.T.; Zhang, W.R.; Goldstein, B.J.; Furlanetto, R.W.; Mooney, R.A. Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR. J. Biol. Chem. 1995, 270, 2435–2438. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Considine, R.V.; Goldstein, B.J. Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J. Clin. Investig. 1995, 95, 2806–2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabolotny, J.M.; Kim, Y.B.; Peroni, O.D.; Kim, J.K.; Pani, M.A.; Boss, O.; Klaman, L.D.; Kamatkar, S.; Shulman, G.I.; Kahn, B.B.; et al. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proc. Natl. Acad. Sci. USA 2001, 98, 5187–5192. [Google Scholar] [CrossRef] [Green Version]
- Besco, J.; Popesco, M.C.; Davuluri, R.V.; Frostholm, A.; Rotter, A. Genomic structure and alternative splicing of murine R2B receptor protein tyrosine phosphatases (PTPkappa, mu, rho and PCP-2). BMC Genom. 2004, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Sakuraba, J.; Shintani, T.; Tani, S.; Noda, M. Substrate specificity of R3 receptor-like protein-tyrosine phosphatase subfamily toward receptor protein-tyrosine kinases. J. Biol. Chem. 2013, 288, 23421–23431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shintani, T.; Higashi, S.; Takeuchi, Y.; Gaudio, E.; Trapasso, F.; Fusco, A.; Noda, M. The R3 receptor-like protein tyrosine phosphatase subfamily inhibits insulin signalling by dephosphorylating the insulin receptor at specific sites. J. Biochem. 2015, 158, 235–243. [Google Scholar] [CrossRef]
- Møller, N.P.; Møller, K.B.; Lammers, R.; Kharitonenkov, A.; Hoppe, E.; Wiberg, F.C.; Sures, I.; Ullrich, A. Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon. J. Biol. Chem. 1995, 270, 23126–23131. [Google Scholar] [CrossRef] [Green Version]
- Sap, J.; D’Eustachio, P.; Givol, D.; Schlessinger, J. Cloning and expression of a widely expressed receptor tyrosine phosphatase. Proc. Natl. Acad. Sci. USA 1990, 87, 6112–6116. [Google Scholar] [CrossRef] [Green Version]
- von Wichert, G.; Jiang, G.; Kostic, A.; De Vos, K.; Sap, J.; Sheetz, M.P. RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages. J. Cell Biol. 2003, 161, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.M.; Wang, Y.; Pallen, C.J. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 1992, 359, 336–339. [Google Scholar] [CrossRef]
- den Hertog, J.; Pals, C.E.; Peppelenbosch, M.P.; Tertoolen, L.G.; de Laat, S.W.; Kruijer, W. Receptor protein tyrosine phosphatase alpha activates pp60c-src and is involved in neuronal differentiation. EMBO J. 1993, 12, 3789–3798. [Google Scholar] [CrossRef]
- Kostic, A.; Sap, J.; Sheetz, M.P. RPTPalpha is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons. J. Cell Sci. 2007, 120, 3895–3904. [Google Scholar] [CrossRef] [Green Version]
- Lammers, R.; Møłler, N.P.; Ullrich, A. The transmembrane protein tyrosine phosphatase alpha dephosphorylates the insulin receptor in intact cells. FEBS Lett. 1997, 404, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Lammers, R.; Møller, N.P.; Ullrich, A. Mutant forms of the protein tyrosine phosphatase alpha show differential activities towards intracellular substrates. Biochem. Biophys. Res. Commun. 1998, 242, 32–38. [Google Scholar] [CrossRef]
- Arnott, C.H.; Sale, E.M.; Miller, J.; Sale, G.J. Use of an antisense strategy to dissect the signaling role of protein-tyrosine phosphatase alpha. J. Biol. Chem. 1999, 274, 26105–26112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, Y.; Aoki, N.; Aoyama, K.; Shimizu, H.; Shimano, H.; Yamada, N.; Miyazaki, H. Receptor-type protein tyrosine phosphatase epsilon (PTPepsilonM) is a negative regulator of insulin signaling in primary hepatocytes and liver. Zool. Sci. 2005, 22, 169–175. [Google Scholar] [CrossRef]
- Shen, X.; Xi, G.; Wai, C.; Clemmons, D.R. The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ). J. Biol. Chem. 2015, 290, 11578–11590. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Xi, G.; Maile, L.A.; Wai, C.; Rosen, C.J.; Clemmons, D.R. Insulin-like growth factor (IGF) binding protein 2 functions coordinately with receptor protein tyrosine phosphatase β and the IGF-I receptor to regulate IGF-I-stimulated signaling. Mol. Cell. Biol. 2012, 32, 4116–4130. [Google Scholar] [CrossRef] [Green Version]
- Herradon, G.; Ramos-Alvarez, M.P.; Gramage, E. Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPβ/ζ Axis: Relevance in Therapeutic Development. Front. Pharmacol. 2019, 10, 377. [Google Scholar] [CrossRef]
- Sevillano, J.; Sánchez-Alonso, M.G.; Zapatería, B.; Calderón, M.; Alcalá, M.; Limones, M.; Pita, J.; Gramage, E.; Vicente-Rodríguez, M.; Horrillo, D.; et al. Pleiotrophin deletion alters glucose homeostasis, energy metabolism and brown fat thermogenic function in mice. Diabetologia 2019, 62, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Brenachot, X.; Ramadori, G.; Ioris, R.M.; Veyrat-Durebex, C.; Altirriba, J.; Aras, E.; Ljubicic, S.; Kohno, D.; Fabbiano, S.; Clement, S.; et al. Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance. Nat. Commun. 2017, 8, 1820. [Google Scholar] [CrossRef]
- Zúñiga, A.; Torres, J.; Ubeda, J.; Pulido, R. Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm. J. Biol. Chem. 1999, 274, 21900–21907. [Google Scholar] [CrossRef] [Green Version]
- Lan, M.S.; Wasserfall, C.; Maclaren, N.K.; Notkins, A.L. IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA 1996, 93, 6367–6370. [Google Scholar] [CrossRef] [Green Version]
- Maclaren, N.; Lan, M.; Coutant, R.; Schatz, D.; Silverstein, J.; Muir, A.; Clare-Salzer, M.; She, J.X.; Malone, J.; Crockett, S.; et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (Type 1) diabetes in relatives. J. Autoimmun. 1999, 12, 279–287. [Google Scholar] [CrossRef]
- Torii, S. Expression and function of IA-2 family proteins, unique neuroendocrine-specific protein-tyrosine phosphatases. Endocr. J. 2009, 56, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Henquin, J.C.; Nenquin, M.; Szollosi, A.; Kubosaki, A.; Notkins, A.L. Insulin secretion in islets from mice with a double knockout for the dense core vesicle proteins islet antigen-2 (IA-2) and IA-2beta. J. Endocrinol. 2008, 196, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harashima, S.; Clark, A.; Christie, M.R.; Notkins, A.L. The dense core transmembrane vesicle protein IA-2 is a regulator of vesicle number and insulin secretion. Proc. Natl. Acad. Sci. USA 2005, 102, 8704–8709. [Google Scholar] [CrossRef] [Green Version]
- Kubosaki, A.; Gross, S.; Miura, J.; Saeki, K.; Zhu, M.; Nakamura, S.; Hendriks, W.; Notkins, A.L. Targeted disruption of the IA-2beta gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice. Diabetes 2004, 53, 1684–1691. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Hirai, H.; Zhang, G.; Zhang, M.; Takahashi, N.; Kasai, H.; Satin, L.S.; Leapman, R.D.; Notkins, A.L. Deletion of Ia-2 and/or Ia-2β in mice decreases insulin secretion by reducing the number of dense core vesicles. Diabetologia 2011, 54, 2347–2357. [Google Scholar] [CrossRef] [Green Version]
- Barr, A.J. Protein tyrosine phosphatases as drug targets: Strategies and challenges of inhibitor development. Future Med. Chem. 2010, 2, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Pastor, M.; Fernández-Calle, R.; Di Geronimo, B.; Vicente-Rodríguez, M.; Zapico, J.M.; Gramage, E.; Coderch, C.; Pérez-García, C.; Lasek, A.W.; Puchades-Carrasco, L.; et al. Development of inhibitors of receptor protein tyrosine phosphatase β/ζ (PTPRZ1) as candidates for CNS disorders. Eur. J. Med. Chem. 2018, 144, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calle, R.; Vicente-Rodríguez, M.; Pastor, M.; Gramage, E.; Di Geronimo, B.; Zapico, J.M.; Coderch, C.; Pérez-García, C.; Lasek, A.W.; de Pascual-Teresa, B.; et al. Pharmacological inhibition of Receptor Protein Tyrosine Phosphatase β/ζ (PTPRZ1) modulates behavioral responses to ethanol. Neuropharmacology 2018, 137, 86–95. [Google Scholar] [CrossRef]
- Fernández-Calle, R.; Gramage, E.; Zapico, J.M.; de Pascual-Teresa, B.; Ramos, A.; Herradón, G. Inhibition of RPTPβ/ζ blocks ethanol-induced conditioned place preference in pleiotrophin knockout mice. Behav. Brain Res. 2019, 369, 111933. [Google Scholar] [CrossRef]
- Fujikawa, A.; Nagahira, A.; Sugawara, H.; Ishii, K.; Imajo, S.; Matsumoto, M.; Kuboyama, K.; Suzuki, R.; Tanga, N.; Noda, M.; et al. Small-molecule inhibition of PTPRZ reduces tumor growth in a rat model of glioblastoma. Sci. Rep. 2016, 6, 20473. [Google Scholar] [CrossRef] [Green Version]
- Hermiston, M.L.; Xu, Z.; Weiss, A. CD45: A critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 2003, 21, 107–137. [Google Scholar] [CrossRef]
- Sun, Y.-Z.; Wu, J.-W.; Du, S.; Ma, Y.-C.; Zhou, L.; Ma, Y.; Wang, R.-L. Design, synthesis, biological evaluation and molecular dynamics of LAR inhibitors. Comput. Biol. Chem. 2021, 92, 107481. [Google Scholar] [CrossRef]
Family | Representative Phosphatases | Gene | Described Implication in Insulin Action/Secretion |
---|---|---|---|
R1/R6 | CD45 | Ptprc | Yes |
R2A | LAR | Ptprf | Yes |
R2B | RPTP-κ | Ptprk | No |
R3 | DEP-1 | Ptprj | Yes |
R4 | RPTP-α, RPTP-ε | Ptpra, Ptpre | Yes |
R5 | RPTP-ζ, RPTP-γ | Ptprz, Ptprg | Yes |
R7 | PTPRR | Ptprr | Yes |
R8 | IA2 | Ptprn | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevillano, J.; Sánchez-Alonso, M.G.; Pizarro-Delgado, J.; Ramos-Álvarez, M.d.P. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int. J. Mol. Sci. 2021, 22, 5812. https://doi.org/10.3390/ijms22115812
Sevillano J, Sánchez-Alonso MG, Pizarro-Delgado J, Ramos-Álvarez MdP. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. International Journal of Molecular Sciences. 2021; 22(11):5812. https://doi.org/10.3390/ijms22115812
Chicago/Turabian StyleSevillano, Julio, María Gracia Sánchez-Alonso, Javier Pizarro-Delgado, and María del Pilar Ramos-Álvarez. 2021. "Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion" International Journal of Molecular Sciences 22, no. 11: 5812. https://doi.org/10.3390/ijms22115812
APA StyleSevillano, J., Sánchez-Alonso, M. G., Pizarro-Delgado, J., & Ramos-Álvarez, M. d. P. (2021). Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. International Journal of Molecular Sciences, 22(11), 5812. https://doi.org/10.3390/ijms22115812