The Significance of COVID-19 Immunological Status in Severe Neurological Complications and Multiple Sclerosis—A Literature Review
Abstract
:1. Introduction
2. Immune Response to SARS-CoV-2 Infection: Most Important Facts
3. Serology in SARS-CoV-2 Infection
4. Cerebrospinal Fluid Serology: General Information
5. Serology in Severe Neurological Manifestations of COVID-19
5.1. Meningoencephalitis and Autoimmune Encephalitis
5.2. Acute Myelitis
5.3. Guillain-Barré Syndrome
6. Serology in Multiple Sclerosis in the Course of COVID-19
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus Update (Live): 102,061,812 Cases and 2,201,477 Deaths from COVID-19 Virus Pandemic-Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 30 April 2021).
- Assadiasl, S.; Fatahi, Y.; Zavvar, M.; Nicknam, M.H. COVID-19: Significance of antibodies. Hum. Antibodies 2020, 28, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; et al. Coronavirus infections and immune responses. J. Med. Virol. 2020, 92, 424432. [Google Scholar] [CrossRef]
- Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013, 11, 836–848. [Google Scholar] [CrossRef] [Green Version]
- Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, P.J.; Shiau, S.; Brunetti, L.; Xie, Y.; Solanki, K.; Khalid, S.; Mohayya, S.; Au, P.H.; Pham, C.; Uprety, P.; et al. Risk Factors and Outcomes of Hospitalized Patients with Severe Coronavirus Disease 2019 (COVID-19) and Secondary Bloodstream Infections: A Multicenter Case-Control Study. Clin. Infect Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Rangarajan, E.S.; Izard, T.; Farzan, M.; Choe, H. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Diagnosis and treatment plan of Corona Virus Disease 2019 (tentative sixth edition). Glob. Health J. 2020. [CrossRef]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, X.; Zhu, C.; Song, Y.; Feng, F.; Qiu, Y.; Feng, J.; Jia, Q.; Song, Q.; Zhu, B.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Yachou, Y.; El Idrissi, A.; Belapasov, V.; Ait Benali, S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: Understanding the neurological manifestations in COVID-19 patients. Neurol. Sci. 2020, 41, 2657–2669. [Google Scholar] [CrossRef]
- Zhou, Z.; Kang, H.; Li, S.; Zhao, X. Understanding the neurotropic characteristics of SARS-CoV-2: From neurological manifestations of COVID-19 to potential neurotropic mechanisms. J. Neurol. 2020, 267, 2179–2184. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, T.; Harii, N.; Goto, J.; Harada, D.; Sugawara, H.; Takamino, J.; Ueno, M.; Sakata, H.; Kondo, K.; Myose, N.; et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020, 94, 55–58. [Google Scholar] [CrossRef]
- Alexopoulos, H.; Magira, E.; Bitzogli, K.; Kafasi, N.; Vlachoyiannopoulos, P.; Tzioufas, A.; Kotanidou, A.; Dalakas, M.C. Anti-SARS-CoV-2 antibodies in the CSF, blood-brain barrier dysfunction, and neurological outcome Studies in 8 stuporous and comatose patients. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, 893. [Google Scholar] [CrossRef]
- Kreye, J.; Reincke, S.M.; Prüss, H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat. Rev. Immunol. 2020, 20, 645–646. [Google Scholar] [CrossRef]
- Capasso, N.; Palladino, R.; Montella, E.; Pennino, F.; Lanzillo, R.; Carotenuto, A.; Petracca, M.; Iodice, R.; Iovino, A.; Aruta, F.; et al. Prevalence of SARS-CoV-2 Antibodies in Multiple Sclerosis: The Hidden Part of the Iceberg. J. Clin. Med. 2020, 9, 4066. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, M.A.; Alam, A. Immune response in COVID-19: A review. J. Infect. Public Health 2020, 13, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Melenotte, C.; Silvin, A.; Goubet, A.G.; Lahmar, I.; Dubuisson, A.; Zumla, A.; Raoult, D.; Merad, M.; Gachot, B.; Hénon, C.; et al. Immune responses during COVID-19 infection. Oncoimmunology 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Zarrilli, G.; Angerilli, V.; Businello, G.; Sbaraglia, M.; Traverso, G.; Fortarezza, F.; Rizzo, S.; Gaspari, M.D.; Basso, C.; Calabrese, F.; et al. The Immunopathological and Histological Landscape of COVID-19-Mediated Lung Injury. Int. J. Mol. Sci. 2021, 22, 974. [Google Scholar] [CrossRef] [PubMed]
- Flisiak, R.; Parczewski, M.; Horban, A.; Jaroszewicz, J.; Kozielewicz, D.; Pawłowska, M.; Piekarska, A.; Simon, K.; Tomasiewicz, K.; Zarębska-Michaluk, D. Management of SARS-CoV-2 infection: Recommendations of the polish association of epidemiologists and infectiologists. Annex no. 2 as of October 13, 2020. Polish Arch. Intern Med. 2020, 130, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.A.; Saier, M.H. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int. J. Mol. Sci. 2021, 22, 1308. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target Ther. 2020, 5, 1–3. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Maggi, E.; Walter Canonica, G.; Moretta, L. COVID-19: Unanswered questions on immune response and pathogenesis. J. Allergy Clin. Immunol. 2020. [Google Scholar] [CrossRef]
- WIESŁAW WIKTOR JĘDRZEJCZAK: Limfohistiocytoza Hemofagocytarna–Rzadko Rozpoznawany Uleczalny Stan Bezpośredniego Zagrożenia Życia Występujący Również u Dorosłych. Available online: http://pthit.pl/Acta_Haematologica_Polonica,Choroby_histiocytow_Cytokiny_Wirus_Epsteina_Barr,406.html (accessed on 31 January 2021).
- Tomasiewicz, K.; Piekarska, A.; Stempkowska-Rejek, J.; Serafińska, S.; Gawkowska, A.; Parczewski, M.; Niścigorska-Olsen, J.; Łapiński, T.W.; Zarębska-Michaluk, D.; Kowalska, J.D.; et al. Tocilizumab for patients with severe COVID-19: A retrospective, multi-centre study. Expert Rev. Anti Infect. Ther. 2020, 19. [Google Scholar] [CrossRef]
- Bastos, M.L.; Tavaziva, G.; Abidi, S.K.; Campbell, J.R.; Haraoui, L.P.; Johnston, J.C.; Lan, Z.; Law, S.; MacLean, E.; Trajman, A.; et al. Diagnostic accuracy of serological tests for covid-19: Systematic review and meta-analysis. BMJ 2020, 370, 2516. [Google Scholar] [CrossRef]
- Bond, K.; Williams, E.; Howden, B.P.; Williamson, D.A. Serological tests for COVID-19. Med. J. Aust. 2020, 213, 397–399. [Google Scholar] [CrossRef]
- McAndrews, K.M.; Dowlatshahi, D.P.; Dai, J.; Becker, L.M.; Hensel, J.; Snowden, L.M.; Leveille, J.M.; Brunner, M.R.; Holden, K.W.; Hopkins, N.S.; et al. Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity. JCI Insight 2020, 5. [Google Scholar] [CrossRef]
- Li, K.; Huang, B.; Wu, M.; Zhong, A.; Li, L.; Cai, Y.; Wang, Z.; Wu, L.; Zhu, M.; Li, J.; et al. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Padoan, A.; Sciacovelli, L.; Basso, D.; Negrini, D.; Zuin, S.; Cosma, C.; Faggian, D.; Matricardi, P.; Plebani, M. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal study. Clin. Chim. Acta 2020, 507, 164–166. [Google Scholar] [CrossRef]
- Guo, C.C.; Mi, J.Q.; Nie, H. Seropositivity rate and diagnostic accuracy of serological tests in 2019-nCoV cases: A pooled analysis of individual studies. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10208–10218. [Google Scholar] [CrossRef] [PubMed]
- Diagnostic Performance of COVID-19 Serology Assays-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32342927/ (accessed on 31 January 2021).
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Shang, J.; Sun, S.; Tai, W.; Chen, J.; Geng, Q.; He, L.; Chen, Y.; Wu, J.; Shi, Z.; et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J. Virol. 2019, 94. [Google Scholar] [CrossRef] [Green Version]
- Song, E.; Zhang, C.; Israelow, B.; Lu-Culligan, A.; Prado, A.V.; Skriabine, S.; Lu, P.; Weizman, O.E.; Liu, F.; Dai, Y.; et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 2021, 218. [Google Scholar] [CrossRef]
- Buzhdygan, T.P.; DeOre, B.J.; Baldwin-Leclair, A.; Bullock, T.A.; McGary, H.M.; Khan, J.A.; Razmpour, R.; Hale, J.F.; Galie, P.A.; Potula, R.; et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol. Dis. 2020, 146, 105131. [Google Scholar] [CrossRef] [PubMed]
- Al Saiegh, F.; Ghosh, R.; Leibold, A.; Avery, M.B.; Schmidt, R.F.; Theofanis, T.; Mouchtouris, N.; Philipp, L.; Peiper, S.C.; Wang, Z.X.; et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J. Neurol. Neurosurg. Psychiatry 2020, 91, 846–848. [Google Scholar] [CrossRef]
- Neumann, B.; Schmidbauer, M.L.; Dimitriadis, K.; Otto, S.; Knier, B.; Niesen, W.D.; Hosp, J.A.; Günther, A.; Lindemann, S.; Nagy, G.; et al. Cerebrospinal fluid findings in COVID-19 patients with neurological symptoms. J. Neurol. Sci. 2020, 418, 117090. [Google Scholar] [CrossRef] [PubMed]
- Destras, G.; Bal, A.; Escuret, V.; Morfin, F.; Lina, B.; Josset, L. Systematic SARS-CoV-2 screening in cerebrospinal fluid during the COVID-19 pandemic. Lancet Microbe 2020, 1, e149. [Google Scholar] [CrossRef]
- Domingues, R.B.; Mendes-Correa, M.C.; de Moura Leite, F.B.V.; Sabino, E.C.; Salarini, D.Z.; Claro, I.; Santos, D.W.; de Jesus, J.G.; Ferreira, N.E.; Romano, C.M.; et al. First case of SARS-COV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J. Neurol. 2020, 267, 3154–3156. [Google Scholar] [CrossRef]
- Andriuta, D.; Roger, P.A.; Thibault, W.; Toublanc, B.; Sauzay, C.; Castelain, S.; Godefroy, O.; Brochot, E. COVID-19 encephalopathy: Detection of antibodies against SARS-CoV-2 in CSF. J. Neurol. 2020, 267, 2810–2811. [Google Scholar] [CrossRef]
- Franke, C.; Ferse, C.; Kreye, J.; Reincke, S.M.; Sanchez-Sendin, E.; Rocco, A.; Steinbrenner, M.; Angermair, S.; Treskatsch, S.; Zickler, D.; et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav. Immun. 2021. [Google Scholar] [CrossRef]
- de Antonio, R.; Suárez, G.; Barriuso, F.; Pérez, R. Para-infectious anti-GD2/GD3 IgM myelitis during the Covid-19 pandemic: Case report and literature review. Mult. Scler. Relat. Disord. 2021, 49, 102783. [Google Scholar] [CrossRef] [PubMed]
- Águila-Gordo, D.; Flores-Barragán, J.M.; Ferragut-Lloret, F.; Portela-Gutierrez, J.; LaRosa-Salas, B.; Porras-Leal, L.; Guzmán, J.C.V. Acute myelitis and SARS-CoV-2 infection. A new etiology of myelitis? J. Clin. Neurosci. 2020, 80, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Armangue, T.; Spatola, M.; Vlagea, A.; Mattozzi, S.; Cárceles-Cordon, M.; Martinez-Heras, E.; Llufriu, S. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: A prospective observational study and retrospective analysis. Lancet Neurol. 2018, 17, 760–772. [Google Scholar] [CrossRef] [Green Version]
- Prüss, H. Postviral autoimmune encephalitis: Manifestations in children and adults. Curr. Opin. Neurol. 2017, 30, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.A.; Vilensky, J.A. Encephalitis lethargica: 100 years after the epidemic. Brain 2017, 140, 2246–2251. [Google Scholar] [CrossRef]
- Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar] [CrossRef]
- Tuma, R.L.; Guedes, B.F.; Carra, R.; Iepsen, B.; Rodrigues, J.; Camelo-Filho, A.E.; Kubota, G.; Ferrari, M.; Studart-Neto, A.; Oku, M.H.; et al. Clinical, cerebrospinal fluid, and neuroimaging findings in COVID-19 encephalopathy: A case series. Neurol. Sci. 2021, 42. [Google Scholar] [CrossRef]
- Farhadian, S.; Glick, L.R.; Vogels, C.B.F.; Thomas, J.; Chiarella, J.; Casanovas-Massana, A.; Zhou, J.; Odio, C.; Vijayakumar, P.; Geng, B.; et al. Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19. BMC Neurol. 2020, 20, 248. [Google Scholar] [CrossRef] [PubMed]
- Espíndola, O.M.; Brandão, C.O.; Gomes, Y.C.P.; Siqueira, M.; Soares, C.N.; Lima, M.A.S.D.; Leite, A.C.C.B.; Torezani, G.; Araujo, A.Q.C.; Silva, M.T.T. Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. Int. J. Infect. Dis. 2021, 102, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Mondal, R.; Ganguly, U.; Deb, S.; Shome, G.; Pramanik, S.; Bandyopadhyay, D.; Lahiri, D. Meningoencephalitis associated with COVID-19: A systematic review. J. Neurovirol. 2020, 1, 1. [Google Scholar] [CrossRef]
- Ye, M.; Ren, Y.; Lv, T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav. Immun. 2020, 88, 945–946. [Google Scholar] [CrossRef]
- Panariello, A.; Bassetti, R.; Radice, A.; Rossotti, R.; Puoti, M.; Corradin, M.; Moreno, M.; Percudani, M. Anti-NMDA receptor encephalitis in a psychiatric Covid-19 patient: A case report. Brain Behav. Immun. 2020, 87, 179–181. [Google Scholar] [CrossRef]
- Monti, G.; Giovannini, G.; Marudi, A.; Bedin, R.; Melegari, A.; Simone, A.M.; Santangelo, M.; Pignatti, A.; Bertellini, E.; Trenti, T.; et al. Anti-NMDA receptor encephalitis presenting as new onset refractory status epilepticus in COVID-19. Seizure 2020, 81, 18–20. [Google Scholar] [CrossRef]
- Sarma, D.; Bilello, L. A Case Report of Acute Transverse Myelitis Following Novel Coronavirus Infection. Clin. Pract. Cases Emerg. Med. 2020, 4, 321–323. [Google Scholar] [CrossRef]
- Immunopathogenesis of Acute Transverse Myelitis: Current Opinion in Neurology. Available online: https://journals.lww.com/co-neurology/Citation/2002/06000/Immunopathogenesis_of_acute_transverse_myelitis.19.aspx (accessed on 6 February 2021).
- Munz, M.; Wessendorf, S.; Koretsis, G.; Tewald, F.; Baegi, R.; Krämer, S.; Geissler, M.; Reinhard, M. Acute transverse myelitis after COVID-19 pneumonia. J. Neurol. 2020, 267, 2196–2197. [Google Scholar] [CrossRef]
- AlKetbi, R.; AlNuaimi, D.; AlMulla, M.; AlTalai, N.; Samir, M.; Kumar, N.; AlBastaki, U. Acute myelitis as a neurological complication of Covid-19: A case report and MRI findings. Radiol Case Reports. 2020, 15, 1591–1595. [Google Scholar] [CrossRef]
- Abu-Rumeileh, S.; Abdelhak, A.; Foschi, M.; Tumani, H.; Otto, M. Guillain–Barré syndrome spectrum associated with COVID-19: An up-to-date systematic review of 73 cases. J. Neurol. 2020. [Google Scholar] [CrossRef]
- Dufour, C.; Co, T.-K.; Liu, A. GM1 Ganglioside Antibody and COVID-19 related Guillain Barre Syndrome—A Case Report, Systemic Review and Implication for Vaccine Development. Brain, Behav. Immun. Health 2021, 12, 100203. [Google Scholar] [CrossRef] [PubMed]
- Willison, H.J.; Jacobs, B.C.; van Doorn, P.A. Guillain-Barré syndrome. Lancet 2016, 388, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Trujillo Gittermann, L.M.; Valenzuela Feris, S.N.; von Oetinger Giacoman, A. Relation between COVID-19 and Guillain-Barré syndrome in adults. Systematic review. Neurologia 2020, 35, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Hasan, I.; Saif-Ur-Rahman, K.M.; Hayat, S.; Papri, N.; Jahan, I.; Azam, R.; Ara, G.; Islam, Z. Guillain-Barrésyndrome associated with SARS-CoV-2 infection: A systematic review and individual participant data meta-analysis. J. Peripher. Nerv. Syst. 2020, 25, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Llorente Ayuso, L.; Torres Rubio, P.; Beijinho do Rosário, R.F.; Giganto Arroyo, M.L.; Sierra-Hidalgo, F. Bickerstaff encephalitis after COVID-19. J. Neurol. 2020. [Google Scholar] [CrossRef]
- Khoo, A.; McLoughlin, B.; Cheema, S.; Weil, R.S.; Lambert, C.; Manji, H.; Zandi, M.S.; Morrow, J.M. Postinfectious brainstem encephalitis associated with SARS-CoV-2. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1013–1014. [Google Scholar] [CrossRef]
- Baker, D.; Amor, S.; Kang, A.S.; Schmierer, K.; Giovannoni, G. The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Mult. Scler. Relat. Disord. 2020, 43, 102174. [Google Scholar] [CrossRef] [PubMed]
- Salmi, A.; Ziola, B.; Hovi, T.; Reunanen, M. Antibodies to coronaviruses OC43 and 229E in multiple sclerosis patients. Neurology 1982, 32, 292–295. [Google Scholar] [CrossRef]
- Comi, G.; Cook, S.; Giovannoni, G.; Rieckmann, P.; Sørensen, P.S.; Vermersch, P.; Galazka, A.; Nolting, A.; Hicking, C.; Dangond, F. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 29, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Celius, E.G. Normal antibody response after COVID-19 during treatment with cladribine. Mult. Scler. Relat. Disord. 2020, 46, 102476. [Google Scholar] [CrossRef] [PubMed]
- Preziosa, P.; Rocca, M.A.; Nozzolillo, A.; Moiola, L.; Filippi, M. COVID-19 in cladribine-treated relapsing-remitting multiple sclerosis patients: A monocentric experience. J. Neurol. 2020, 1, 3. [Google Scholar] [CrossRef]
- Gelibter, S.; Orrico, M.; Filippi, M.; Moiola, L. COVID-19 with no antibody response in a multiple sclerosis patient treated with cladribine: Implication for vaccination program? Mult. Scler. Relat. Disord. 2021, 49, 102775. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, A.; Calkwood, J.C.; Chognot, C.; Evershed, J.; Fox, E.J.; Herman, A.; Manfrini, M.; McNamara, J.; Robertson, D.S.; Stokmaier, D.; et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: The VELOCE study. Neurology. 2020, 95, e1999–e2008. [Google Scholar] [CrossRef]
- Lucchini, M.; Bianco, A.; Del Giacomo, P.; De Fino, C.; Nociti, V.; Mirabella, M. Is serological response to SARS-CoV-2 preserved in MS patients on ocrelizumab treatment? A case report. Mult. Scler. Relat. Disord. 2020, 44, 102323. [Google Scholar] [CrossRef] [PubMed]
- Boyaka, P.N. Inducing Mucosal IgA: A Challenge for Vaccine Adjuvants and Delivery Systems. J. Immunol. 2017, 199, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Maillart, E.; Papeix, C.; Lubetzki, C.; Roux, T.; Pourcher, V.; Louapre, C. Beyond COVID-19: DO MS/NMO-SD patients treated with anti-CD20 therapies develop SARS-CoV2 antibodies? Mult. Scler. Relat. Disord. 2020, 46. [Google Scholar] [CrossRef]
- Thornton, J.R.; Harel, A. Negative SARS-CoV-2 antibody testing following COVID-19 infection in Two MS patients treated with ocrelizumab. Mult. Scler. Relat. Disord. 2020, 44, 102341. [Google Scholar] [CrossRef] [PubMed]
- Conte, W.L. Attenuation of antibody response to SARS-CoV-2 in a patient on ocrelizumab with hypogammaglobulinemia. Mult. Scler. Relat. Disord. 2020, 44, 102315. [Google Scholar] [CrossRef]
- Zabalza, A.; Cárdenas-Robledo, S.; Tagliani, P.; Arrambide, G.; Otero-Romero, S.; Carbonell-Mirabent, P.; Rodriguez-Barranco, M.; Rodríguez-Acevedo, B.; Restrepo Vera, J.L.; Resina-Salles, M.; et al. COVID-19 in multiple sclerosis patients: Susceptibility, severity risk factors and serological response. Eur. J. Neurol. 2020. [Google Scholar] [CrossRef]
- Milo, R. Ofatumumab—A Potential Subcutaneous B-cell Therapy for Relapsing Multiple Sclerosis. Eur. Neurol. Rev. 2020, 15, 27–35. [Google Scholar] [CrossRef]
- Flores-Gonzalez, R.E.; Hernandez, J.; Tornes, L.; Rammohan, K.; Delgado, S. Development of SARS-CoV-2 IgM and IgG antibodies in a relapsing multiple sclerosis patient on ofatumumab. Mult. Scler. Relat. Disord. 2021, 49. [Google Scholar] [CrossRef]
- Chan, A.; De Seze, J.; Comabella, M. Teriflunomide in Patients with Relapsing-Remitting Forms of Multiple Sclerosis. CNS Drugs 2016, 30, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luca, B.; Tommaso, G.; Bavaro, D.F.; Laura, M.; Annalisa, S.; Gioacchino, A.; Damiano, P.; Maria, T.; Pietro, I. Seroconversion and indolent course of COVID-19 in patients with multiple sclerosis treated with fingolimod and teriflunomide. J. Neurol. Sci. 2020, 416, 117011. [Google Scholar] [CrossRef]
- Bar-Or, A.; Freedman, M.S.; Kremenchutzky, M.; Menguy-Vacheron, F.; Bauer, D.; Jodl, S.; Truffinet, P.; Benamor, M.; Chambers, S.; O’Connor, P.W. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology 2013, 81, 552–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okba, N.M.A.; Muller, M.A.; Li, W. SARS-CoV-2 specific antibody responses in COVID-19 patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the Nervous System. Cell 2020, 183, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.R.; Brandstadter, R.; Bar-Or, A. COVID-19 and MS disease-modifying therapies. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, 761. [Google Scholar] [CrossRef] [PubMed]
- Louapre, C.; Collongues, N.; Stankoff, B.; Giannesini, C.; Papeix, C.; Bensa, C.; Deschamps, R.; Créange, A.; Wahab, A.; Pelletier, J.; et al. Clinical Characteristics and Outcomes in Patients with Coronavirus Disease 2019 and Multiple Sclerosis. JAMA Neurol. 2020, 77, 1079–1088. [Google Scholar] [CrossRef]
- Baker, D.; Roberts, C.A.K.; Pryce, G.; Kang, A.S.; Marta, M.; Reyes, S.; Schmierer, K.; Giovannoni, G.; Amor, S. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin. Exp Immunol. 2020, 202, 149–161. [Google Scholar] [CrossRef]
Coronavirus-2019 (COVID-19) and Neurological Disturbances | ||
---|---|---|
Neurological Symptoms | Severe Neurological Complications | COVID-19 Complicates Course of Neurological Diseases |
Headaches Dizziness Seizures Anosmia/hyposmia Ageusia/hypogeusia Hypoesthesia Paresis and paralysis Disturbances of consciousness Urination disorders | Guillain-Barre Syndrome and Miller-Fisher Syndrome Acute Transverse Myelitis Encephalopathy Demyelination Encephalitis/meningoencephalitis Autoimmune encephalitis Necrotizing hemorrhagic Encephalopathy Ischemic stroke Cerebral hemorrhage Cerebral venous sinus thrombosis Subarachnoid hemorrhage | Multiple sclerosis Neuromyelitis optica spectrum disorders Epilepsy Amyotrophic lateral sclerosis, Parkinson disease Dementia |
N | Neurological Complication | PCR | PCR in CSF | Serology | Antibody Class | Time after Infection | Metodology | Ref. |
---|---|---|---|---|---|---|---|---|
2 patients | Ischemic stroke | + | - | Not given | [7] | |||
30 patients | Guillain-Barre syndrome, encephalophaty, seizures, ischaemic stroke and others | + | − | Not given | [8] | |||
555 patients | Headaches, meningitis or no neurological symptoms | + | + (in 2/555) | Not given | [9] | |||
Case report | Meningitis | − | + | Not given | [10] | |||
Case report | Demyelination | − | + | Not given | [11] | |||
8 ICU | Encephalopathy | + | Not given | + | IgG | During hospitalization | ELISA | [1] |
2 patients | Encephalopathy | + + | Not given | + + | Not given | >16 days During hospitalization | ELISA | [12] |
11 ICU patients | Myoclonus, seizures, dystonias, oculomotor disturbances | + | Not given | anti-Yo receptoranti-NMDA receptor antibodies | Not given | During hospitalization | Cell-based assays and indirect immune fluorescence | [13] |
Case report | Hypoaesthesia in the limbs and perineum | + | − | anti-GD2 and GD3 + | IgM | During hospitalization | not given | [14] |
N | PCR Swab | PCR in CSF | Antibodies | References | |
---|---|---|---|---|---|
Meningoencephalitis and autoimmune encephalitis | Case report | − | + | Not tested | [10] |
54 patients | + | + (in 3 patients) | Not tested | [15] | |
2 patients | + | Not tested | Anti-NMDA | [16,17] | |
Acute myelitis | 10 Patients | + | − (in all) | Not tested | [14] |
Case report | + | IgM ant GD2/GD3 | [14] | ||
Case report | + | Not tested | Lupus anticoagulant | [18] | |
Guillain-Barré syndrome | Case report | + | Not tested | Anti-GD1 | [19] |
83 patients | + | Not given | − in 31 out 36 tested + in 5 out of 36 tested (ani-G1b, anti- asialo GM1, anti-GD1a, anti-GM2) | [20] |
Disease-Modifying Therapy | Group of Patients | Serological Response in Plasma | Antibody Class | Time after SARS-CoV-2 Infection | Ref. |
---|---|---|---|---|---|
Cladribine | Case report | + | Not given | 3 months | [23] |
Case report | + | Not given | 4 months | [24] | |
Case report | − | Not given | 4 months | [24] | |
Case report | − +/− (?) | IgM IgG | 2 months | [22] | |
Anti-CD-20 | Case report | + − | IgA IgG | 10 weeks | [25] |
Case report | + +/− (?) | IgM IgG | 3 months | [26] | |
Case report | − | IgG | 3 months | [27] | |
2 patients | − | IgG | 6–12 weeks | [28] | |
5 patients | − | IgG | 23–64 days | [29] | |
Glatiramer | 2 patients | + | IgG | 51–54 days | [29] |
Dimethyl fumarate | 2 patients | + | IgG | 40–71 days | [29] |
Natalizumab | 1 patients | + | IgG | 68 days | [29] |
Teriflunomid | 2 patients | + | IgG | 66 days | [29] |
Case report | + +/− (?) | IgG anti- S1 IgG anti-N | 21 days | [30] | |
Fingolimod | Case report | − + | IgG anti S1 IgG anti N | 35 days | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikowska, J.; Kulczyńska-Przybik, A.; Mroczko, B.; Kułakowska, A. The Significance of COVID-19 Immunological Status in Severe Neurological Complications and Multiple Sclerosis—A Literature Review. Int. J. Mol. Sci. 2021, 22, 5894. https://doi.org/10.3390/ijms22115894
Kulikowska J, Kulczyńska-Przybik A, Mroczko B, Kułakowska A. The Significance of COVID-19 Immunological Status in Severe Neurological Complications and Multiple Sclerosis—A Literature Review. International Journal of Molecular Sciences. 2021; 22(11):5894. https://doi.org/10.3390/ijms22115894
Chicago/Turabian StyleKulikowska, Joanna, Agnieszka Kulczyńska-Przybik, Barbara Mroczko, and Alina Kułakowska. 2021. "The Significance of COVID-19 Immunological Status in Severe Neurological Complications and Multiple Sclerosis—A Literature Review" International Journal of Molecular Sciences 22, no. 11: 5894. https://doi.org/10.3390/ijms22115894
APA StyleKulikowska, J., Kulczyńska-Przybik, A., Mroczko, B., & Kułakowska, A. (2021). The Significance of COVID-19 Immunological Status in Severe Neurological Complications and Multiple Sclerosis—A Literature Review. International Journal of Molecular Sciences, 22(11), 5894. https://doi.org/10.3390/ijms22115894