Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems
Abstract
:1. Tellurium and Its Occurrence
2. Effects of Tellurium and Its Compounds on Selected Prokaryotic Systems
2.1. Mechanism of Toxicity
2.2. Mechanism of Tellurite Resistance
2.2.1. Resistance via the Modulation of Tellurite Efflux
2.2.2. Resistance via Reduction of Tellurite
2.2.3. Resistance via Formation of Tellurium Organic and Volatile Compounds
2.2.4. Ter-Gene-Mediated Resistance
3. Tellurium Toxicity vs Potential Benefits for Prokaryotes and Eukaryotes
3.1. Impact of Tellurium Compounds on Organisms
3.2. Impact of Tellurium and Selenium on Humans
Chemical Similarity of Tellurium to Selenium Determines Its Biology
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, W.C. Tellurium; Van Nostrand Reinhold Company: New York, NY, USA, 1971; p. 34. [Google Scholar]
- Ba, L.A.; Döring, M.; Jamier, V.; Jacob, C. Tellurium: An element with great biological potency and potential. Org. Biomol. Chem. 2010, 8, 4203–4216. [Google Scholar] [CrossRef]
- Belzile, N.; Chen, Y.-W. Tellurium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Appl. Geochem. 2015, 63, 83–92. [Google Scholar] [CrossRef]
- Jabłońska-Czapla, M.; Grygoyć, K. Speciation and Fractionation of Less-Studied Technology-Critical Elements (Nb, Ta, Ga, In, Ge, Tl, Te): A Review. Pol. J. Environ. Stud. 2021, 30, 1477–1486. [Google Scholar] [CrossRef]
- Filella, M.; Reimann, C.; Biver, M.; Rodushkin, I.; Rodushkina, K. Tellurium in the environment: Current knowledge and identification of gaps. Environ. Chem. 2019, 16, 215–228. [Google Scholar] [CrossRef]
- Jabłońska-Czapla, M.; Grygoyć, K. Development of a Tellurium Speciation Study Using IC-ICP-MS on Soil Samples Taken from an Area Associated with the Storage, Processing, and Recovery of Electrowaste. Molecules 2021, 26, 2651. [Google Scholar] [CrossRef]
- BGS. London Earth Surface Soil G-BASE Dataset. (British Geological Survey: Keyworth). 2011. Available online: www.bgs.ac.uk/gbase/londonearth.html (accessed on 27 May 2021).
- Cunha, R.L.; Gouvea, I.E.; Juliano, L. A glimpse on biological activities of tellurium compounds. An. Acad. Bras. Ciênc. 2009, 81, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Presentato, A.; Turner, R.J.; Vásquez, C.C.; Yurkov, V.; Zannoni, D. Tellurite-dependent blackening of bacteria emerges from the dark ages. Environ. Chem. 2019, 16, 266–288. [Google Scholar] [CrossRef]
- Green, M.A. Estimates of Te and in prices from direct mining of known ores. Prog. Photovolt Res. Appl. 2009, 17, 347–359. [Google Scholar] [CrossRef]
- Wray, D.S. The impact of unconfined mine tailings and anthropogenic pollution on a semi-arid environment—an initial study of the Rodalquilar mine district, south east Spain. Environ. Geochem. Health 1998, 20, 29–38. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Halliday, A.N. Global occurrence of tellurium- rich ferromanganese crusts and a model for the enrichment of tellurium. Geochim. Cosmochim. Acta 2003, 67, 1117–1127. [Google Scholar] [CrossRef]
- Ullal, H.S.; von Roedern, B. Thin film CIGS and CdTe photovoltaic technologies: Commercialization, Critical Issues, and Applications. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference (PVSEC) and Exhibition, Milan, Italy, 3–7 September 2007. [Google Scholar]
- Kraemer, D.; Poudel, B.; Feng, H.P.; Caylor, J.C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A.; et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538. [Google Scholar] [CrossRef]
- Yarema, M.C.; Curry, S.C. Acute tellurium toxicity from ingestion of metal-oxidizing solutions. Pediatrics 2005, 116, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, H.; Fujino, S.; Kajiwara, T. Preparation and characterization of BaO–TeO2 thin films obtained from tellurium(VI) alkoxide by a Sol–Gel method. J. Am. Ceram. Soc. 2009, 92, 2619–2622. [Google Scholar] [CrossRef]
- Graf, C.; Assoud, A.; Mayasree, O.; Kleinke, H. Solid state polyselenides and polytellurides: A large variety of Se–Se and Te–Te interactions. Molecules 2009, 14, 3115–3131. [Google Scholar] [CrossRef]
- Sandoval, J.M.; Levêque, P.; Gallez, B.; Vasquez, C.C.; Buc Calderon, P. Tellurite-induced oxidative stress leads to cell death of murine hepatocarcinoma cells. Biometals 2010, 23, 623–632. [Google Scholar] [CrossRef]
- Perez-D’Gregorio, R.E.; Miller, R.K. Teratogenicity of tellurium dioxide: Prenatal assessment. Teratology 1988, 37, 307–316. [Google Scholar] [CrossRef]
- Chasteen, T.G.; Fuentes, D.E.; Tantaleán, J.; Vásquez, C.C. Tellurite: History, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol. Rev. 2009, 33, 820–832. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.E. Bacterial tellurite resistance. Trends Microbiol. 1999, 7, 111–115. [Google Scholar] [CrossRef]
- Cox, P. The Elements, 1st ed.; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Carmely, A.; Meirow, D.; Peretz, A.; Albeck, M.; Bartoov, B.; Sredni, B. Protective effect of the immunomodulator AS101 against cyclophosphamide-induced testicular damage in mice. Hum. Reprod. 2009, 24, 1322–1329. [Google Scholar] [CrossRef] [Green Version]
- Giles, G.I.; Tasker, K.M.; Johnson, R.J.K.; Jacob, C.; Peers, C.; Green, K.N. Electrochemistry of chalcogen compounds: Prediction of antioxidant activity. Protective effect of the immunomodulator AS101 against cyclophosphamide-induced testicular damage in mice. Chem. Commun. 2001, 2490–2491. [Google Scholar] [CrossRef]
- Giles, G.I.; Giles, N.M.; Collins, C.A.; Holt, K.; Fry, F.H.; Lowden, P.A.S.; Gutowski, N.J.; Jacob, C. Electrochemical, in vitro and cell culture analysis of integrated redox catalysts: Implications for cancer therapy. Chem. Commun. 2003, 16, 2030–2031. [Google Scholar] [CrossRef]
- Kumar, S.; Johansson, H.; Kanda, T.; Engman, L.; Muller, T.; Bergenudd, H.; Jonsson, M.; Pedulli, G.F.; Amorati, R.; Valgimigli, L. Catalytic chain-breaking pyridinol antioxidants. J. Org. Chem. 2010, 75, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Summers, A.O.; Jacoby, G.A. Plasmid-determined resistance of tellurium compounds. J. Bacteriol. 1977, 129, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.J.; Weiner, J.H.; Taylor, D.E. Tellurite mediated thiol oxidation in Escherichia coli. Microbiology 1999, 145, 2549–2557. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, M.; Winter, J. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: Formation of extracellular SeTe nanospheres. Microb. Cell Fact. 2014, 13, 168. [Google Scholar] [CrossRef]
- Fleming, A. On the specific antibacterial properties of penicillin and potassium tellurite. Incorporating a method of demonstrating some bacterial antagonisms. J. Pathol. Bacteriol. 1932, 35, 831–842. [Google Scholar] [CrossRef]
- Kinraide, T.B.; Yermiyahu, U. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J. Inorg. Biochem. 2007, 101, 1201–1213. [Google Scholar] [CrossRef]
- Moroder, L. Isoteric replacement of sulfur with other chalcogens in peptides and proteins. J. Pept. Sci. 2005, 11, 187–214. [Google Scholar] [CrossRef]
- Lohmeir-Vogel, E.; Ung, S.; Turner, R. In vivo 31P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli. Appl. Environ. Microbiol. 2004, 70, 7324–7347. [Google Scholar] [CrossRef] [Green Version]
- Burkholz, T.; Jacob, C. Tellurium in nature. In Encyclopedia of Metalloproteins, 1st ed.; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer: New York, NY, USA, 2013; pp. 2163–2174. [Google Scholar]
- Maltman, C.; Yurkov, V. The effect of tellurite on highly resistant freshwater aerobic anoxygenic phototrophs and their strategies for reduction. Microorganisms 2015, 3, 826–838. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.D. Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News 1994, 60, 17–23. [Google Scholar]
- Csotonyi, J.; Maltman, C.; Swiderski, J.; Stackenbrandt, E.; Yurkov, V. Extremely “vanadiphilic” multiply metal-resistant and halophilic aerobic anoxygenic phototrophs, strains EG13 and EG8, from hypersaline springs in Canada. Extremophiles 2015, 19, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Kaplan, S. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: Characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol. 1992, 174, 1505–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, D.E.; Rooker, M.; Keelan, M.; Ng, L.K.; Martin, I.; Perna, N.T.; Burland, N.T.; Blattner, F.R. Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates. J. Bacteriol. 2002, 184, 4690–4698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, J.D. A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin. Microbiol. Rev. 2017, 30, 449–479. [Google Scholar] [CrossRef] [Green Version]
- Blaskovic, D.; Turna, J. Tellurite-reduction-based assay for screening potential antibiotics. J. Medic. Microbiol. 2012, 61, 160–161. [Google Scholar] [CrossRef] [Green Version]
- Maltman, C.; Yurkov, V. Extreme environments and high-level bacterial tellurite resistance. Microorganisms 2019, 7, 601. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.; Hancock, R.E.W. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar] [CrossRef] [Green Version]
- Baquero, F. Low-level antibacterial resistance: A gateway to clinical resistance. Drug Resist. Update 2001, 4, 93–105. [Google Scholar] [CrossRef]
- Fernández, L.; Breidenstein, E.B.M.; Hancock, R.E.W. Creeping baselines and adaptive resistance to antibiotics. Drug Resist. Update 2011, 14, 1–21. [Google Scholar] [CrossRef]
- Arenas, F.; Pugin, B.; Henríquez, N.; Arenas, M.; Díaz, W.; Pozo, F.; Muñoz, C.M.; Chasteen, T.G.; Pérez-Donoso, J.M.; Vásquez, C.C. Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica. Polar Sci. 2014, 8, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Coombs, J.; Barkay, T. Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl. Environ. Microbiol. 2003, 70, 1698–1707. [Google Scholar] [CrossRef] [Green Version]
- Daubin, V.; Gouy, M.; Perriere, G. A phylogenomic approach to bacterial phylogeny: Evidence of a core of genes sharing a common history. Genom. Res. 2002, 12, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Tomas, J.M.; Kay, W.W. Tellurite susceptibility and non-plasmid-mediated resistance in Escherichia coli. Antimicrob. Agents. Chemother. 1986, 30, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Elias, A.; Abarca, M.; Montes, R.; Chasteen, T.; Perez-Donoso, J.; Vasquez, C. Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. Microbiologyopen 2012, 1, 259–267. [Google Scholar] [CrossRef]
- Foster, T.J. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 1983, 47, 361–409. [Google Scholar] [CrossRef]
- Turner, R.J.; Weiner, J.H.; Taylor, D.E. Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can. J. Microbiol. 1995, 41, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Borghese, R.; Zannoni, D. Acetate permease (ActP) is responsible for tellurite (TeO32−) uptake and resistance in cells of the facultative phototroph Rhodobacter capsulatus. Appl. Environ. Microbiol. 2010, 76, 942–944. [Google Scholar] [CrossRef] [Green Version]
- Borghese, R.; Canducci, L.; Musiani, F.; Cappelletti, M.; Ciurli, S.; Rurner, R.; Zannoni, D. On the role of a specific insert in acetate permease (ActP) for tellurite uptake in bacteria: Functional and structural studies. J. Inorg. Biochem. 2016, 163, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Tremaroli, V.; Fedi, S.; Zannoni, D. Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch. Microbiol. 2007, 187, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Klett, A. Zur Kenntniss der reducirenden Eigenschaften der Bakterien. Z. Hyg. Infectionskrank. 1900, 33, 137–160. [Google Scholar] [CrossRef]
- Scheurlen, Die Verwendung der selenigen und tellurigen Säure in der Bakteriologie. Z. Hyg. Infektionskr. 1900, 33, 135–136. [CrossRef]
- Yurkov, V.; Jappe, J.; Vermeglio, A. Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl. Environ. Microbiol. 1996, 62, 4195–4198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burian, J.; Tu, N.; Klucar, L.; Guller, L.; Lloyd-Jones, G.; Stuchlik, S.; Fejdi, P.; Siekel, P.; Turna, J. In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli. Folia Microbiol. 1998, 43, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Avazeri, C.; Turner, R.; Pommier, J.; Weiner, J.; Giordana, G.; Vermeglio, A. Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 1997, 143, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S. Whither structural biology? Nat. Struct. Mol. Biol. 2004, 11, 12–15. [Google Scholar] [CrossRef]
- Borsetti, F.; Francia, F.; Turner, R.; Zannoni, D. The thiol:disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO3 2−) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J. Bacteriol. 2007, 189, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Guzzo, J.; Dubow, M. A novel selenite- and tellurite inducible gene in Escherichia coli. Appl. Environ. Microbiol. 2000, 66, 4972–4978. [Google Scholar] [CrossRef] [Green Version]
- Calderon, I.; Arenas, F.; Perez, J.; Fuentes, D.; Araya, M.; Saavedra, C.; Tantalean, J.; Pichuantes, S.; Youderian, P.; Vasquez, C. Catalases are NAD(P)H-dependant tellurite reductases. PLoS ONE 2006, 1, 1–8. [Google Scholar] [CrossRef]
- Sabaty, M.; Avazeri, C.; Pignol, D.; Vermeglio, A. Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl. Environ. Microbiol. 2001, 67, 5122–5126. [Google Scholar] [CrossRef] [Green Version]
- Soudi, M.; Ghazvini, P.; Khajeh, K.; Gharavi, S. Bioprocessing of seleno-oxyanions and tellurite in a novel Bacillus sp. strain STG-83: A solution to removal of toxic oxyanions in the presence of nitrate. J. Hazard. Mater. 2009, 165, 71–77. [Google Scholar] [CrossRef]
- Etezad, S.M.; Khajeh, K.; Soudi, M.; Ghazvini, P.T.M.; Dabirmanesh, B. Evidence on the presence of two distinct enzymes responsible for the reduction of selenate and tellurite in Bacillus sp. STG-83. Enzym. Microb. Technol. 2009, 45, 1–6. [Google Scholar] [CrossRef]
- Maltman, C.; Donald, L.; Yurkov, V. Two distinct periplasmic enzymes are responsible for tellurite/tellurate and selenite reduction by strain ER-Te-48 isolated from a deep sea hydrothermal vent tube worms at the Juan de Fuca Ridge black smokers. Arch. Microbiol. 2017, 199, 1113–1120. [Google Scholar] [CrossRef]
- Maltman, C.; Donald, L.; Yurkov, V. Tellurite and tellurate reduction by the aerobic anoxygenic phototroph Erythromonas ursincola, strain KR99 is carried out by a novel membrane associated enzyme. Microorganisms 2017, 5, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonificio, W.D.; Clarke, D.R. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. J. Appl. Microbiol. 2014, 117, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Chasteen, T.G.; Bentley, R. Biomethylation of selenium and tellurium: Microorganisms and plants. Chem. Rev. 2003, 103, 1–25. [Google Scholar] [CrossRef]
- Ollivier, P.; Bahrou, A.; Marcus, S.; Cox, T.; Church, T.; Hanson, T. Volitization and precipitation of tellurium by aerobic tellurite-resistant marine microbes. Appl. Environ. Microbiol. 2008, 74, 7163–7173. [Google Scholar] [CrossRef] [Green Version]
- Ogra, Y. Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies. Anal. Sci. 2009, 25, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Jobling, M.G.; Ritchie, D.A. Genetic and physical analysis of the plasmid genes expressing inducible resistance to tellurite in Escherichia coli. Mol. Gen. Genet. 1987, 208, 288–293. [Google Scholar] [CrossRef]
- Whelan, K.F.; Colleran, E.; Taylor, D.E. Phage inhibition, colicin resistance and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J. Bacteriol. 1995, 177, 5016–5027. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T.; Chang, H.Y.; Lai, Y.C.; Pan, C.C.; Tsai, S.F.; Peng, H.L. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 2004, 337, 189–198. [Google Scholar] [CrossRef]
- Soltys, K.; Vavrova, S.; Budis, J.; Palkova, L.; Minarik, G.; Grones, J. Draft genome sequence of Escherichia coli KL53. Genom. Announc. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Kormutakova, R.; Klucar, L.; Turna, J. DNA sequence analysis of the tellurite-resistance determinant from clinical strain of Escherichia coli and identification of essential genes. Biometals 2000, 13, 135–139. [Google Scholar] [CrossRef]
- Perna, N.T.; Plunket, G.; Burland, V.; Mau, B.; Glasner, J.D.; Rose, D.J.; Mayhew, G.F.; Evans, P.S.; Gregor, J.; Kirkpatrick, H.A.; et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001, 409, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Makino, K.; Ohnishi, M.; Kurokawa, K.; Ishii, K.; Yokoyama, K.; Han, C.G.; Ohtsubo, E.; Nakayama, K.; Murata, T.; et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001, 8, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacker, J.; Carniel, E. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2001, 21, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Zadik, P.M.; Chapman, P.A.; Siddons, C.A. Use of tellurite for the selection of verocytotoxigenic Escherichia coli O157. J. Med. Microbiol. 1993, 39, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Rathgeber, C.; Yurkova, N.; Stackebrandt, E.; Beatty, J.T.; Yurkov, V. Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl. Environ. Microbiol. 2002, 68, 4613–4622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnusamy, D.; Clinkenbeard, K.D. Role of tellurite resistance operon in filamentous growth of Yersinia pestis in macrophages. PLoS ONE 2015, 10, e0141984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Villagrán, C.M.; Mendez, K.N.; Cornejo, F.; Figueroa, M.; Undabarrena, A.; Morales, E.H.; Arenas-Salinas, M.; Arenas, F.A.; Castro-Nallar, E.; Vásquez, C.C. Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. PeerJ 2018, 6, e4402. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Li, T.; Xia, X.; Zhou, Z.; Zheng, S.; Wang, G. Reduction of tellurite in Shinella sp. WSJ-2 and adsorption removal of multiple dyes and metals by biogenic tellurium nanorods. Int. Biodeterior. Biodegrad. 2019, 144, 104751. [Google Scholar] [CrossRef]
- Schneider, A.; Steinberger, I.; Strissel, H.; Kunz, H.H.; Manavski, N.; Meurer, J.; Burkhard, G.; Jarzombski, S.; Schünemann, D.; Geimer, S.; et al. The Arabidopsis tellurite resistance C protein together with ALB3 is involved in photosystem II protein synthesis. Plant J. 2014, 78, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Funes, S.; Kauff, F.; van der Sluis, E.O.; Ott, M.; Herrmann, J.M. Evolution of YidC/Oxa1/Alb3 insertases: Three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biol. Chem. 2011, 392, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.-C.; Cho, M.H. Deletion of the chloroplast-localized AtTerC gene product in Arabidopsis thaliana leads to loss of the thylakoid membrane and to seedling lethality. Plant J. 2008, 55, 428–442. [Google Scholar] [CrossRef]
- Kim, D.H.; Kanaly, R.A.; Hur, H.G. Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1. Biores. Technol. 2012, 125, 127–131. [Google Scholar] [CrossRef]
- Valdivia-González, M.; Perez-Donoso, J.M.; Vásquez, C.C. Effect of tellurite-mediated oxidative stress on the Escherichia coli glycolytic pathway. Biometals 2012, 25, 451–458. [Google Scholar] [CrossRef]
- Kell, D.B. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch. Toxicol. 2010, 84, 825–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubino, F.M. Toxicity of glutathione-binding metals: A review of targets and mechanisms. Toxics 2015, 3, 20–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, R.J.; Aharonowitz, Y.; Weiner, J.H.; Taylor, D.E. Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can. J. Microbiol. 2001, 47, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessi, J.; Hanselmann, K.W. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J. Biol. Chem. 2004, 279, 50662–50669. [Google Scholar] [CrossRef]
- Hopkins, F.G. On glutathione, a reinvestigation. J. Biol. Chem. 1929, 84, 269–320. [Google Scholar] [CrossRef]
- Horowitz, R.I.; Freeman, P.R.; Bruzzese, J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir. Med. Case Rep. 2020, 21, 101063. [Google Scholar] [CrossRef]
- Noctor, G.; Arisi, A.-C.M.; Jouanin, L.; Kunert, K.J.; Rennenberg, H.; Foyer, C.H. Glutathione: Biosynthesis, metabolism, and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 1998, 49, 623–647. [Google Scholar] [CrossRef]
- Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem. 1988, 263, 17205–17208. [Google Scholar] [CrossRef]
- Turner, R.J.; Borghese, R.; Zannoni, D. Microbial processing of tellurium as a tool in biotechnology. Biotechnol. Adv. 2012, 30, 954–963. [Google Scholar] [CrossRef]
- Cerwenka, E.A.J.; Cooper, W.C. Toxicology of selenium and tellurium and their compounds. Arch. Environ. Health. 1961, 3, 189–200. [Google Scholar] [CrossRef]
- Abe, I.; Abe, T.; Lou, W.; Masuoka, T.; Noguchi, H. Site-directed mutagenesis of conserved aromatic residues in rat squalene epoxidase. Biochem. Biophys. Res. Commun. 2007, 352, 259–263. [Google Scholar] [CrossRef]
- Laden, B.P.; Porter, T.D. Inhibition of human squalene monooxygenase by tellurium compounds: Evidence of interaction with vicinal sulfhydryls. J. Lipid. Res. 2001, 42, 235–240. [Google Scholar] [CrossRef]
- Garberg, P.; Engman, L.; Tolmachev, V.; Lundqvist, H.; Gerdes, R.G.; Cotgreave, I.A. Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: Consequences for the activity of selenium-dependent glutathione peroxidase. Int. J. Biochem. Cell. Biol. 1999, 31, 291–301. [Google Scholar] [CrossRef]
- Stangherlin, E.C.; Ardais, A.P.; Rocha, J.B.T.; Nogueira, C.W. Exposure to diphenyl ditelluride, via maternal milk, causes oxidative stress in cerebral cortex, hippocampus and striatum of young rats. Arch. Toxicol. 2009, 83, 485–491. [Google Scholar] [CrossRef]
- McNaughton, M.; Engman, L.; Birmingham, A.; Powis, G.; Cotgreave, I.A. Cyclodextrin-derived diorganyl tellurides as glutathione peroxidase mimics and inhibitors of thioredoxin reductase and cancer cell growth. J. Med. Chem. 2004, 47, 233–239. [Google Scholar] [CrossRef]
- Kobayashi, A.; Ogra, Y. Metabolism of tellurium, antimony and germanium simultaneously administered to rats. J. Toxicol. Sci. 2009, 34, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunde, R.A. Molecular biology of selenoproteins. Annu. Rev. Nutr. 1990, 10, 451–474. [Google Scholar] [CrossRef] [PubMed]
- Kessi, J.; Ramuz, M.; Wehrli, E.; Spycher, M.; Bachofen, R. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl. Environ. Microbiol. 1999, 65, 4734–4740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whanger, P.D. Selenocompounds in plants and animals and their biological significance. J. Am. Coll. Nutr. 2002, 21, 223–232. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Salt, D.E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 2005, 86, 373–389. [Google Scholar] [CrossRef]
- Harada, T.; Takahashi, Y. Origin of the difference in the distribution behavior of tellurium and selenium in a soil-water system. Geochim. Cosmochim. Ac. 2009, 72, 1281–1294. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Huang, J.; Wang, H.; Pan, L.; Wei, X. Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature. J. Mater. Chem. 2010, 20, 2457–2463. [Google Scholar] [CrossRef]
- Deng, Z.; Zhang, Y.; Yue, J.; Tang, F.; Wei, Q. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J. Phys. Chem. B 2007, 111, 12024–12031. [Google Scholar] [CrossRef]
- Monrás, J.P.; Collao, B.; Molina-Quiroz, R.C.; Pradenas, G.A.; Saona, L.A.; Durán-Toro, V.; Ordenes-Aenishanslins, N.; Venegas, F.A.; Loyola, D.E.; Bravo, D.; et al. Microarray analysis of the Escherichia coli response to CdTe-GSH Quantum Dots: Understanding the bacterial toxicity of semiconductor nanoparticles. BMC Genom. 2014, 15, 1099. [Google Scholar] [CrossRef] [Green Version]
- Pugin, B.; Cornejo, F.A.; Muñoz-Díaz, P.; Muñoz-Villagrán, C.M.; Vargas-Pérez, J.I.; Arenas, F.A.; Vásquez, C.C. Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties. Appl. Environ. Microbiol. 2014, 80, 7061–7070. [Google Scholar] [CrossRef] [Green Version]
- Babula, P.; Adam, V.; Opatrilova, R.; Zehnalek, J.; Havel, L.; Kizek, R. Uncommon heavy metals, metalloids and their plant toxicity: A review. Environ. Chem. Lett. 2008, 6, 189–213. [Google Scholar] [CrossRef]
- Ródenas-Torralba, E.; Cava-Montesinos, P.; Morales-Rubio, A.; Cervera, M.L.; De La Guardia, M. Multicommutation as an environmentally friendly analytical tool in the hydride generation atomic fluorescence determination of tellurium in milk. Anal. Bioanal. Chem. 2004, 379, 83–89. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Lens, P.N.L. Selenium biomineralization for biotechnological applications. Trends Biotechnol. 2015, 33, 323–330. [Google Scholar] [CrossRef]
- Yee, N.; Ma, J.; Dalia, A.; Boonfueng, T.; Kobayashi, D. Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl. Environ. Microbiol. 2007, 73, 1914–1920. [Google Scholar] [CrossRef] [Green Version]
- Dhanjal, S.; Cameotra, S.S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb. Cell Fact. 2010, 9, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, M.; Schmidt, S.; Winter, J. Formation of Se(0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of north-east Punjab, India. Microb. Cell Fact. 2012, 13, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampis, S.; Zonaro, E.; Bertolini, C.; Bernardi, P.; Butler, C.S.; Vallini, G. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SelTE01 as a consequence of selenite reduction under aerobic conditions. Microb. Cell Fact. 2014, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Li, D.B.; Cheng, Y.Y.; Wu, C.; Li, W.W.; Li, N.; Yang, Z.C.; Tong, Z.H.; Yu, H.Q. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci. Rep. 2014, 4, 3735. [Google Scholar] [CrossRef] [PubMed]
- Avendaño, R.; Chaves, N.; Fuentes, P.; Sánchez, E.; Jiménez, J.I.; Chavarría, M. Production of selenium nanoparticles in Pseudomonas putida KT2440. Sci. Rep. 2016, 6, 37155. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Llamosas, H.; Castro, L.; Blázquez, M.L.; Díaz, E.; Carmona, M. Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci. Rep. 2017, 7, 16046. [Google Scholar] [CrossRef] [Green Version]
- Geering, H.R.; Cary, E.E.; Jones, L.H.P.; Allaway, W.H. Solubility and redox criteria for the possible forms of selenium in soils. Soil Sci. Soc. Am. Proc. 1968, 32, 35–47. [Google Scholar] [CrossRef]
- Kieliszek, M.; Błazejak, S.; Gientka, I.; Bzducha-Wróbel, A. Accumulation and metabolism of selenium by yeast cells. Appl. Microbiol. Biotechnol. 2015, 99, 5373–5382. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Lamana, J.; Abadálvaro, I.; Bierla, K.; Laborda, F.; Szpunar, J.; Lobinski, R. Detection and characterization of biogenic selenium nanoparticles in selenium-rich yeast by single particle ICPMS. J. Anal. At. Spectrom. 2018, 33, 452–460. [Google Scholar] [CrossRef]
- Grones, J.; Macor, M.; Siekel, P.; Bilska, V. Capability of Escherichia coli and Lactobacillus spp. to accumulate selenium in a biologically utilisable form. Bull. Food Res. 1999, 38, 45–53. [Google Scholar]
- Macor, M.; Grones, J. Genetic basis of selenium incorporation into proteins in bacterial cells. Bull. Food Res. 2001, 40, 101–118. [Google Scholar]
- Macor, M.; Kretova, M.; Korenovska, M.; Siekel, P.; Grones, J. Utilisation of selenium and distribution into bacterial cell structures. Bull. Food Res. 2003, 42, 205–212. [Google Scholar]
- Liu, X.; Silks, L.A.; Liu, C.; Ollivault-Shiflett, M.; Huang, X.; Li, J.; Luo, G.; Hou, Y.M.; Liu, J.; Shen, J. Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew. Chem. Int. Ed. 2009, 48, 2020–2023. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, G.; Goodman, M.M.; Knapp, F.F. Organotellurium compounds of biological interest-unique properties of the N-chlorosuccinimide oxidation product of 9-telluraheptadecanoic acid. Organometallics 1983, 2, 357–363. [Google Scholar] [CrossRef]
- Jacob, C.; Arteel, G.E.; Kanda, T.; Engman, L.; Sies, H. Water-soluble organotellurium compounds: Catalytic protection against peroxynitrite and release of zinc from metallothionein. Chem. Res. Toxicol. 2000, 13, 3–9. [Google Scholar] [CrossRef]
- Schewe, T. Molecular actions of Ebselen-an antiinflammatory antioxidant. Gen. Pharmacol. 1995, 26, 1153–1169. [Google Scholar] [CrossRef]
- Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science 2003, 300, 1763–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briviba, K.; Tamler, R.; Klotz, L.-O.; Engman, L.; Cotgreave, I.A.; Sies, H. Protection by organotellurium compounds against peroxynitrite-mediated oxidation and nitration reactions. Biochem. Pharmacol. 1998, 55, 817–823. [Google Scholar] [CrossRef]
- Malik, A.; Grohmann, E.; Alves, M. Management of Microbial Resources in the Environment, 1st ed.; Springer: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Patel, K.; Amaresan, N. Antimicrobial compounds from extreme environment rhizosphere organisms for plant growth. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 651–664. [Google Scholar]
- Yong, Y.C.; Zhong, J.J. Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem. 2010, 45, 1937–1943. [Google Scholar] [CrossRef]
Description of Considered Mechanism of Resistance | Organism | Reference |
---|---|---|
Inability to transport TeO32− into the cell because of competitive inhibition of TeO32− by phosphate. TeO32− is transported by phosphate transport pathway. | Escherichia coli | [57] |
Oxidation-reduction steady-state mechanism among solid, soluble and volatile gaseous Te species. TeO32− conversion to volatile organic Te compounds. | Rhodotorula spp. Pseudoalteromonas spp. Bacillus spp. | [3] [76] [77] |
Direct efflux of toxicant outside the cell. Acquisition of an efflux mechanism facilitates the prevention of the intracellular accumulation of toxic compounds and pumps molecules out of the cell. | Escherichia coli | [20] [59] |
Decreased influx and increased efflux is not responsible for the K2TeO3 resistance. | Escherichia coli | [65] |
Acetate transport system is responsible for uptake of TeO32− and resistance. | Rhodobacter capsulatus | [60] [38] |
Enzymatic or nonenzymatic reduction of toxic TeO32− (Te4+) to insoluble non/less toxic elemental Te as crystals of Te0. The reduction TeO32− to Te0 can also be carried out by the activity of various types of cytoplasmic, periplasmic and/or membrane-associated reductases. | Staphylococcus aureus Staphylococcus epidermidis Pseudomonas aeruginosa Escherichia coli Rhodobacter sphaeroides Bacillus spp. Shewanella fridigimarina Erythromonas ursincola | [68] [69] [72] [44] [73] [74] [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vávrová, S.; Struhárňanská, E.; Turňa, J.; Stuchlík, S. Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. Int. J. Mol. Sci. 2021, 22, 5924. https://doi.org/10.3390/ijms22115924
Vávrová S, Struhárňanská E, Turňa J, Stuchlík S. Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. International Journal of Molecular Sciences. 2021; 22(11):5924. https://doi.org/10.3390/ijms22115924
Chicago/Turabian StyleVávrová, Silvia, Eva Struhárňanská, Ján Turňa, and Stanislav Stuchlík. 2021. "Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems" International Journal of Molecular Sciences 22, no. 11: 5924. https://doi.org/10.3390/ijms22115924
APA StyleVávrová, S., Struhárňanská, E., Turňa, J., & Stuchlík, S. (2021). Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. International Journal of Molecular Sciences, 22(11), 5924. https://doi.org/10.3390/ijms22115924