Influence of Alkyl Chain Length on Thermal Properties, Structure, and Self-Diffusion Coefficients of Alkyltriethylammonium-Based Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Properties
2.2. Infrared Spectroscopy
2.3. Small-Angle X-ray Scattering
2.4. Nuclear Magnetic Resonance (NMR) Diffusion
3. Materials and Methods
3.1. Materials
3.2. Preparation of [TEA-R][TFSI] Ionic Liquids
3.3. Differential Scanning Calorimetry
3.4. Infrared Spectroscopy
3.5. Small-Angle X-ray Scattering (SAXS)
3.6. PGSE NMR Diffusion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z.Y.; Yuan, J.; Laaksonen, A.; Fayer, M.D. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem. Rev. 2020, 120, 5798–5877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marullo, S.; D’Anna, F.; Rizzo, C.; Billeci, F. Ionic liquids: “normal” solvents or nanostructured fluids? Org. Biomol. Chem. 2021, 19, 2076–2095. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, D.K.; Gwiazdowska, D.; Juś, K.; Klejdysz, T.; Wojcieszak, M.; Materna, K.; Pernak, J. Glycine betaine-based ionic liquids and their influence on bacteria, fungi, insects and plants. New J. Chem. 2021, 45, 6344–6355. [Google Scholar] [CrossRef]
- Philippi, F.; Welton, T. Targeted modifications in ionic liquids—From understanding to design. Phys. Chem. Chem. Phys. 2021, 23, 6993–7021. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.; Warr, G.G.; Atkin, R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 2015, 115, 6357–6426. [Google Scholar] [CrossRef] [Green Version]
- Paschoal, V.H.; Faria, L.F.O.; Ribeiro, M.C.C. Vibrational Spectroscopy of Ionic Liquids. Chem. Rev. 2017, 117, 7053–7112. [Google Scholar] [CrossRef]
- He, Z.; Alexandridis, P. Nanoparticles in ionic liquids: Interactions and organization. Phys. Chem. Chem. Phys. 2015, 17, 18238–18261. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Wang, H. Multi-Interactions in Ionic Liquids for Natural Product Extraction. Molecules 2020, 26, 98. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mikkola, J.P. Use of Ionic Liquids in Protein and DNA Chemistry. Front. Chem. 2020, 8, 598662. [Google Scholar] [CrossRef]
- Wencka, M.; Apih, T.; Korošec, R.C.; Jenczyk, J.; Jarek, M.; Szutkowski, K.; Jurga, S.; Dolinšek, J. Molecular dynamics of 1-ethyl-3-methylimidazolium triflate ionic liquid studied by 1 H and 19 F nuclear magnetic resonances. Phys. Chem. Chem. Phys. 2017, 19, 15368–15376. [Google Scholar] [CrossRef] [PubMed]
- Rotnicki, K.; Sterczyńska, A.; Fojud, Z.; Jażdżewska, M.; Beskrovnyi, A.; Waliszewski, J.; Śliwińska-Bartkowiak, M. Phase transitions, molecular dynamics and structural properties of 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. J. Mol. Liq. 2020, 313, 113535. [Google Scholar] [CrossRef]
- Selvamani, V.; Suryanarayanan, V.; Velayutham, D.; Gopukumar, S. Asymmetric tetraalkyl ammonium cation-based ionic liquid as an electrolyte for lithium-ion battery applications. J. Solid State Electrochem. 2016, 20, 2283–2293. [Google Scholar] [CrossRef]
- Saravanan, K.; Sathyamoorthi, S.; Velayutham, D.; Suryanarayanan, V. Voltammetric investigations on the relative deactivation of boron-doped diamond, glassy carbon and platinum electrodes during the anodic oxidation of substituted phenols in room temperature ionic liquids. Electrochim. Acta 2012, 69, 71–78. [Google Scholar] [CrossRef]
- Dytrych, P.; Kluson, P.; Slater, M.; Solcova, O. Theoretical interpretation of the role of the ionic liquid phase in the (R)-Ru-BINAP catalyzed hydrogenation of methylacetoacetate. React. Kinet. Mech. Catal. 2014, 111, 475–487. [Google Scholar] [CrossRef]
- Kluson, P.; Stavarek, P.; Penkavova, V.; Vychodilova, H.; Hejda, S.; Vlcek, D.; Bendova, M. Molecular structure effects of [NR,222][Tf2N] ionic liquids on their flow properties in the microfluidic chip reactor—A complete validation study. Chem. Eng. Process. Process Intensif. 2017, 111, 57–66. [Google Scholar] [CrossRef]
- Pontoni, D.; Haddad, J.; di Michiel, M.; Deutsch, M. Self-segregated nanostructure in room temperature ionic liquids. Soft Matter. 2017, 13, 6947–6955. [Google Scholar] [CrossRef] [PubMed]
- Lobo Ferreira, A.I.M.C.; Rodrigues, A.S.M.C.; Villas, M.; Tojo, E.; Rebelo, L.P.N.; Santos, L.M.N.B.F. Crystallization and Glass-Forming Ability of Ionic Liquids: Novel Insights into Their Thermal Behavior. ACS Sustain. Chem. Eng. 2019, 7, 2989–2997. [Google Scholar] [CrossRef]
- Fredlake, C.P.; Crosthwaite, J.M.; Hert, D.G.; Aki, S.N.V.K.; Brennecke, J.F. Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954–964. [Google Scholar] [CrossRef]
- Machanová, K.; Wagner, Z.; Andresová, A.; Rotrekl, J.; Boisset, A.; Jacquemin, J.; Bendová, M. Thermal Properties of Alkyl-triethylammonium bis{ (trifluoromethyl)sulfonyl}imide Ionic Liquids. J. Solution Chem. 2015, 44, 790–810. [Google Scholar] [CrossRef]
- Esperança, J.M.S.S.; Tariq, M.; Pereiro, A.B.; Araújo, J.M.M.; Seddon, K.R.; Rebelo, L.P.N. Anomalous and Not-So-Common Behavior in Common Ionic Liquids and Ionic Liquid-Containing Systems. Front. Chem. 2019, 7, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Wang, Y.; Saielli, G. Metastable State during Melting and Solid-Solid Phase Transition of [CnMim][NO3] (n = 4–12) Ionic Liquids by Molecular Dynamics Simulation. J. Phys. Chem. B 2018, 122, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Hanke, K.; Kaufmann, M.; Schwaab, G.; Havenith, M.; Wolke, C.T.; Gorlova, O.; Johnson, M.A.; Kar, B.P.; Sander, W.; Sanchez-Garcia, E. Understanding the ionic liquid [NC4111][NTf2] from individual building blocks: An IR-spectroscopic study. Phys. Chem. Chem. Phys. 2015, 17, 8518–8529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaga, M.N.; Nayeri, M.; Martinelli, A. Effect of the alkyl chain length in 1-alkyl-3-methylimidazolium ionic liquids on inter-molecular interactions and rotational dynamics: A combined vibrational and NMR spectroscopic study. J. Mol. Liq. 2015, 210, 169–177. [Google Scholar] [CrossRef]
- Burankova, T.; Mora Cardozo, J.F.; Rauber, D.; Wildes, A.; Embs, J.P. Linking Structure to Dynamics in Protic Ionic Liquids: A Neutron Scattering Study of Correlated and Single-Particle Motions. Sci. Rep. 2018, 8, 16400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, M.; Plechkova, N.V.; Seddon, K.R.; Pringle, J.M.; MacFarlane, D.R. Ionic Liquids—Further Progress on the Fundamental Issues. Aust. J. Chem. 2019, 72, 3. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.C.; Brooks, N.J.; Castiglione, F.; Mauri, M.; Simonutti, R.; Mele, A.; Welton, T. On the structural origin of free volume in 1-alkyl-3-methylimidazolium ionic liquid mixtures: A SAXS and 129 Xe NMR study. Phys. Chem. Chem. Phys. 2019, 21, 5999–6010. [Google Scholar] [CrossRef]
- Nemoto, F.; Kofu, M.; Nagao, M.; Ohishi, K.; Takata, S.I.; Suzuki, J.I.; Yamada, T.; Shibata, K.; Ueki, T.; Kitazawa, Y.; et al. Neutron scattering studies on short- and long-range layer structures and related dynamics in imidazolium-based ionic liquids. J. Chem. Phys. 2018, 149, 054502. [Google Scholar] [CrossRef] [Green Version]
- Brooks, N.J.; Castiglione, F.; Doherty, C.M.; Dolan, A.; Hill, A.J.; Hunt, P.A.; Matthews, R.P.; Mauri, M.; Mele, A.; Simonutti, R.; et al. Linking the structures, free volumes, and properties of ionic liquid mixtures. Chem. Sci. 2017, 8, 6359–6374. [Google Scholar] [CrossRef] [Green Version]
- Giernoth, R. NMR Spectroscopy in Ionic Liquds. In Ionic Liquids. Topics in Current Chemistry; Kirchner, B., Ed.; Spinger: Berlin, Heidelberg, 2008; Volume 290, pp. 263–283. [Google Scholar]
- Structures and Interactions of Ionic Liquids; Zhang, S.; Wang, J.; Lu, X.; Zhou, Q. (Eds.) Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 2014; Volume 151, ISBN 978-3-642-38618-3. [Google Scholar]
- Taher, M.; Shah, F.U.; Filippov, A.; de Baets, P.; Glavatskih, S.; Antzutkin, O.N. Halogen-free pyrrolidinium bis(mandelato)borate ionic liquids: Some physicochemical properties and lubrication performance as additives to polyethylene glycol. RSC Adv. 2014, 4, 30617–30623. [Google Scholar] [CrossRef] [Green Version]
- Damodaran, K. Recent NMR Studies of Ionic Liquids. Annu. Reports NMR Spectrosc. 2016, 88, 215–244. [Google Scholar] [CrossRef]
- Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 2. variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 2005, 109, 6103–6110. [Google Scholar] [CrossRef]
- Frise, A.E.; Ichikawa, T.; Yoshio, M.; Ohno, H.; Dvinskikh, S.V.; Kato, T.; Furó, I. Ion conductive behaviour in a confined nanostructure: NMR observation of self-diffusion in a liquid-crystalline bicontinuous cubic phase. Chem. Commun. 2010, 46, 728–730. [Google Scholar] [CrossRef]
- Filippov, A.; Shah, F.U.; Taher, M.; Glavatskih, S.; Antzutkin, O.N. NMR self-diffusion study of a phosphonium bis(mandelato)borate ionic liquid. Phys. Chem. Chem. Phys. 2013, 15, 9281–9287. [Google Scholar] [CrossRef]
- Judeinstein, P.; Huet, S.; Lesot, P. Multiscale NMR investigation of mesogenic ionic-liquid electrolytes with strong anisotropic orientational and diffusional behaviour. RSC Adv. 2013, 3, 16604–16611. [Google Scholar] [CrossRef]
- Herriot, C.; Khatun, S.; Fox, E.T.; Judeinstein, P.; Armand, M.; Henderson, W.A.; Greenbaum, S. Diffusion coefficients from 13C PGSE NMR measurements-fluorine- free ionic liquids with the DCTA—Anion. J. Phys. Chem. Lett. 2012, 3, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Price, W.S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts Magn. Reson. 1997, 9, 299–336. [Google Scholar] [CrossRef]
- Price, W.S.; Tsuchiya, F.; Arata, Y. Lysozyme aggregation and solution properties studied using PGSE NMR diffusion measurements. J. Am. Chem. Soc. 1999, 121, 11503–11512. [Google Scholar] [CrossRef]
- Merboldt, K.D.; Hanicke, W.; Frahm, J. Self-diffusion NMR imaging using stimulated echoes. J. Magn. Reson. 1985, 64, 479–486. [Google Scholar] [CrossRef]
- Makrocka-Rydzyk, M.; Wegner, K.; Szutkowski, K.; Kozak, M.; Jurga, S.; Gao, H.; Matyjaszewski, K. Morphology and NMR self-diffusion in PBA/PEO miktoarm star copolymers. Zeitschrift Phys. Chemie 2012, 226, 1271–1291. [Google Scholar] [CrossRef]
- Sangoro, J.R.; Iacob, C.; Naumov, S.; Valiullin, R.; Rexhausen, H.; Hunger, J.; Buchner, R.; Strehmel, V.; Kärger, J.; Kremer, F. Diffusion in ionic liquids: The interplay between molecular structure and dynamics. Soft Matter 2011, 7, 1678. [Google Scholar] [CrossRef] [Green Version]
- Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 2001, 105, 4603–4610. [Google Scholar] [CrossRef]
- Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 2004, 108, 16593–16600. [Google Scholar] [CrossRef]
- Tokuda, H.; Tsuzuki, S.; Susan, M.A.B.H.; Hayamizu, K.; Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 2006, 110, 19593–19600. [Google Scholar] [CrossRef]
- Hayamizu, K.; Tsuzuki, S.; Seki, S.; Umebayashi, Y. Multinuclear NMR studies on translational and rotational motion for two ionic liquids composed of BF4 anion. J. Phys. Chem. B 2012, 116, 11284–11291. [Google Scholar] [CrossRef]
- Hayamizu, K.; Tsuzuki, S.; Seki, S.; Umebayashi, Y. Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including li. J. Chem. Phys. 2011, 135, 084505. [Google Scholar] [CrossRef] [PubMed]
- Menjoge, A.; Dixon, J.N.; Brennecke, J.F.; Maginn, E.J.; Vasenkov, S. Influence of water on diffusion in imidazolium-based ionic liquids: A pulsed field gradient NMR study. J. Phys. Chem. B 2009, 113, 6353–6359. [Google Scholar] [CrossRef]
- Kaintz, A.; Baker, G.; Benesi, A.; Maroncelli, M. Solute diffusion in ionic liquids, NMR measurements and comparisons to conventional solvents. J. Phys. Chem. B 2013, 117, 11697–11708. [Google Scholar] [CrossRef]
- Annat, G.; MacFarlane, D.R.; Forsyth, M. Transport Properties in Ionic Liquids and Ionic Liquid Mixtures: The Challenges of NMR Pulsed Field Gradient Diffusion Measurements. J. Phys. Chem. B 2007, 111, 9018–9024. [Google Scholar] [CrossRef] [PubMed]
- Stacy, E.W.; Gainaru, C.P.; Gobet, M.; Wojnarowska, Z.; Bocharova, V.; Greenbaum, S.G.; Sokolov, A.P. Fundamental Limitations of Ionic Conductivity in Polymerized Ionic Liquids. Macromolecules 2018, 51, 8637–8645. [Google Scholar] [CrossRef]
- Kordala-Markiewicz, R.; Rodak, H.; Markiewicz, B.; Walkiewicz, F.; Sznajdrowska, A.; Materna, K.; Marcinkowska, K.; Praczyk, T.; Pernak, J. Phenoxy herbicidal ammonium ionic liquids. Tetrahedron 2014, 70, 4784–4789. [Google Scholar] [CrossRef]
- Pernak, J.; Borucka, N.; Walkiewicz, F.; Markiewicz, B.; Fochtman, P.; Stolte, S.; Steudte, S.; Stepnowski, P. Synthesis, toxicity, biodegradability and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids. Green Chem. 2011, 13, 2901. [Google Scholar] [CrossRef]
IONIC LIQUID | Tcryst [K], (ΔHcryst [kJ mol−1]) | Tg [K] | Tcc [K], (ΔHcc [kJ mol−1]) | Ts-s [K], (ΔHs-s [kJ mol−1]) | Tm [K], (ΔHm [kJ mol−1]) |
---|---|---|---|---|---|
[TEAC4][TFSI] | 229.89 (−10.27) | – | 208.64 (−2.25) | 236.54 (2.92) | 289.10 (17.36) |
[TEAC6][TFSI] | 228.18 (−1.10) | 185.70 | – – | – – | – – |
[TEAC8][TFSI] | 231.83 (−0.53) | 192.00 | – – | – – | – – |
[TEAC10][TFSI] | – – | 196.44 | – – | – – | 267.54 (0.45) |
[TEAC12][TFSI] | – – | 201.77 | 233.65 (−17.93) | 264.42 (2.46) | 278.20 (21.06) |
[TEAC14][TFSI] | 240.03 (−21.05) | – – | 253.44 (−3.46) | 278.61 (3.37) | 294.50 (30.34) |
[TEAC16][TFSI] | 261.69 (−30.42) | – – | – – | 276.66 (2.77) | 289.41 (27.70) |
Transition, [K] | Heating Rate, [K min−1] | ||
---|---|---|---|
2 | 5 | 10 | |
Tg | 100.13 | 100.54 | 101.77 |
Tcc | 129.37 | 128.01 | 133.65 |
Ts-s | 165.75 | 164.11 | 167.02 |
Tm | 178.75 | 178.86 | 178.20 |
IL | Frequency Values [cm−1] | |||
---|---|---|---|---|
νsymCH2 | νsymCH3 | νasymCH2 | νasymCH3 | |
[TEAC4][TFSI] | 2881 | 2949 | 2968 | 2989 |
[TEAC6][TFSI] | 2863 | 2935 | 2959 | 2992 |
[TEAC8][TFSI] | 2858 | 2930 | 2956 | 2990 |
[TEAC10][TFSI] | 2857 | 2927 | 2946 | 2993 |
[TEAC12][TFSI] | 2855 | 2925 | 2946 | 2993 |
[TEAC14][TFSI] | 2854 | 2923 | 2946 | 2994 |
[TEAC16][TFSI] | 2854 | 2923 | 2946 | 2991 |
Peak I [Å−1] (d [Å]) | Peak I [arb.u.] | Peak II [Å−1] (d [Å]) | Peak II [arb.u.] | Peak III [Å−1] (d [Å]) | Peak III [arb.u.] | |
---|---|---|---|---|---|---|
[TEAC4][TFSI] | - | - | 0.84 (7.5) | 48.20 | 1.25 (5.0) | 30.74 |
[TEAC6][TFSI] | 0.43 (14.6) | 11.87 | 0.82 (7.7) | 43.47 | 1.26 (5.0) | 37.14 |
[TEAC8][TFSI] | 0.40 (15.7) | 22.79 | 0.82 (7.7) | 42.74 | 1.24 (5.1) | 40.60 |
[TEAC10][TFSI] | 0.31 (20.3) | 39.61 | 0.82 (7.7) | 42.78 | 1.28 (4.9) | 44.89 |
[TEAC12][TFSI] | 0.26 (24.2) | 71.78 | 0.82 (7.7) | 42.47 | 1.29 (4.9) | 48.23 |
[TEAC14][TFSI] | 0.22 (28.6) | 131.99 | 0.82 (7.7) | 37.66 | 1.31 (4.8) | 46.97 |
[TEAC16][TFSI] | 0.22 (28.6) | 131.19 | 0.81 (7.8) | 38.84 | 1.31 (4.8) | 48.15 |
Cation: | [TEAC4] | [TEAC6] | [TEAC8] | [TEAC10] | [TEAC12] | [TEAC14] | [TEAC16] |
---|---|---|---|---|---|---|---|
Ea [kJ mol−1] | 8.65 | 9.09 | 9.00 | 1 Please check if the original meaning is retained 1.17 | 9.47 | 5.28 | 7.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markiewicz, R.; Klimaszyk, A.; Jarek, M.; Taube, M.; Florczak, P.; Kempka, M.; Fojud, Z.; Jurga, S. Influence of Alkyl Chain Length on Thermal Properties, Structure, and Self-Diffusion Coefficients of Alkyltriethylammonium-Based Ionic Liquids. Int. J. Mol. Sci. 2021, 22, 5935. https://doi.org/10.3390/ijms22115935
Markiewicz R, Klimaszyk A, Jarek M, Taube M, Florczak P, Kempka M, Fojud Z, Jurga S. Influence of Alkyl Chain Length on Thermal Properties, Structure, and Self-Diffusion Coefficients of Alkyltriethylammonium-Based Ionic Liquids. International Journal of Molecular Sciences. 2021; 22(11):5935. https://doi.org/10.3390/ijms22115935
Chicago/Turabian StyleMarkiewicz, Roksana, Adam Klimaszyk, Marcin Jarek, Michał Taube, Patryk Florczak, Marek Kempka, Zbigniew Fojud, and Stefan Jurga. 2021. "Influence of Alkyl Chain Length on Thermal Properties, Structure, and Self-Diffusion Coefficients of Alkyltriethylammonium-Based Ionic Liquids" International Journal of Molecular Sciences 22, no. 11: 5935. https://doi.org/10.3390/ijms22115935
APA StyleMarkiewicz, R., Klimaszyk, A., Jarek, M., Taube, M., Florczak, P., Kempka, M., Fojud, Z., & Jurga, S. (2021). Influence of Alkyl Chain Length on Thermal Properties, Structure, and Self-Diffusion Coefficients of Alkyltriethylammonium-Based Ionic Liquids. International Journal of Molecular Sciences, 22(11), 5935. https://doi.org/10.3390/ijms22115935