Selection of pfcrt K76 and pfmdr1 N86 Coding Alleles after Uncomplicated Malaria Treatment by Artemether-Lumefantrine in Mali
Abstract
:1. Introduction
2. Results
2.1. Trial Profile
2.2. Characteristics of Participants at Inclusion
2.3. Treatment Efficacy for Uncomplicated Falciparum Malaria
2.4. Secondary Outcomes
2.5. Baseline Allele-Prevalence and Treatment Outcome
3. Discussion
4. Methods
4.1. Study Area and Population
4.2. Study Volunteers
4.3. Sample Collection
4.4. Laboratory
4.5. DNA Extraction
4.6. Genotyping of Plasmodium Falciparum Isolates
4.7. Pfcrt Codon 76-Point and Pfmdr1 Codon 86-Point Mutations Analysis
4.8. Data Management and Analysis
4.9. Ethics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ursos, L.M.; Roepe, P.D. Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med. Res. Rev. 2002, 22, 465–491. [Google Scholar] [CrossRef] [PubMed]
- Wongsrichanalai, C.; Pickard, A.L.; Wernsdorfer, W.H.; Meshnick, S.R. Epidemiology of drug-resistant malaria. Lancet Infect. Dis. 2002, 2, 209–218. [Google Scholar] [CrossRef]
- Edeson, J.F.; Field, J.W. Proguanil-resistant falciparum malaria in Malaya. Br. Med. J. 1950, 1, 147–151. [Google Scholar] [CrossRef] [Green Version]
- White, N.J. Antimalarial drug resistance. J. Clin. Investig. 2004, 113, 1084–1092. [Google Scholar] [CrossRef]
- White, N.J. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemother. 1997, 41, 1413–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Guidelines for the Treatment of Malaria, 2nd ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- WHO. Global Technical Strategy for Malaria Control 2016–2030; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Sagara, I.; Dicko, A.; Djimde, A.; Guindo, O.; Kone, M.; Tolo, Y.; Thera, M.A.; Sogoba, M.; Fofana, M.; Ouattara, A.; et al. A randomized trial of artesunate-sulfamethoxypyrazine-pyrimethamine versus artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Mali. Am. J. Trop. Med. Hyg. 2006, 75, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Sagara, I.; Diallo, A.; Kone, M.; Coulibaly, M.; Diawara, S.I.; Guindo, O.; Maiga, H.; Niambele, M.B.; Sissoko, M.; Dicko, A.; et al. A randomized trial of artesunate-mefloquine versus artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Mali. Am. J. Trop. Med. Hyg. 2008, 79, 655–661. [Google Scholar] [CrossRef]
- Diarra, M.; Coulibaly, D.; Tapily, A.; Guindo, B.; Sanogo, K.; Kone, D.; Kone, Y.; Kone, K.; Bathily, A.; Yattara, O.; et al. Monitoring of the Sensitivity In Vivo of Plasmodium falciparum to Artemether-Lumefantrine in Mali. Trop. Med. Infect. Dis. 2021, 6, 13. [Google Scholar] [CrossRef]
- White, N.J.; van Vugt, M.; Ezzet, F. Clinical pharmacokinetics and pharmacodynamics and pharmacodynamics of artemether-lumefantrine. Clin. Pharmacokinet. 1999, 37, 105–125. [Google Scholar] [CrossRef]
- Djimde, A.A.; Fofana, B.; Sagara, I.; Sidibe, B.; Toure, S.; Dembele, D.; Dama, S.; Ouologuem, D.; Dicko, A.; Doumbo, O.K. Efficacy, safety, and selection of molecular markers of drug resistance by two ACTs in Mali. Am. J. Trop. Med. Hyg. 2008, 78, 455–461. [Google Scholar] [CrossRef]
- Djimde, A.; Doumbo, O.K.; Cortese, J.F.; Kayentao, K.; Doumbo, S.; Diourte, Y.; Coulibaly, D.; Dicko, A.; Su, X.Z.; Nomura, T.; et al. A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 2001, 344, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Doumbo, O.K.; Kayentao, K.; Djimde, A.; Cortese, J.F.; Diourte, Y.; Konare, A.; Kublin, J.G.; Plowe, C.V. Rapid selection of Plasmodium falciparum dihydrofolate reductase mutants by pyrimethamine prophylaxis. J. Infect. Dis. 2000, 182, 993–996. [Google Scholar] [CrossRef] [Green Version]
- Diourte, Y.; Djimde, A.; Doumbo, O.K.; Sagara, I.; Coulibaly, Y.; Dicko, A.; Diallo, M.; Diakite, M.; Cortese, J.F.; Plowe, C.V. Pyrimethamine-sulfadoxine efficacy and selection for mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase in Mali. Am. J. Trop. Med. Hyg. 1999, 60, 475–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basco, L.K.; Le Bras, J.; Rhoades, Z.; Wilson, C.M. Analysis of pfmdr1 and drug susceptibility in fresh isolates of Plasmodium falciparum from subsaharan Africa. Mol. Biochem. Parasitol. 1995, 74, 157–166. [Google Scholar] [CrossRef]
- Pickard, A.L.; Wongsrichanalai, C.; Purfield, A.; Kamwendo, D.; Emery, K.; Zalewski, C.; Kawamoto, F.; Miller, R.S.; Meshnick, S.R. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob. Agents Chemother. 2003, 47, 2418–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, A.B.; Valderramos, S.G.; Fidock, D.A. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol. Microbiol. 2005, 57, 913–926. [Google Scholar] [CrossRef]
- Bray, P.G.; Martin, R.E.; Tilley, L.; Ward, S.A.; Kirk, K.; Fidock, D.A. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol. Microbiol. 2005, 56, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Sisowath, C.; Stromberg, J.; Martensson, A.; Msellem, M.; Obondo, C.; Bjorkman, A.; Gil, J.P. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). J. Infect. Dis. 2005, 191, 1014–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisowath, C.; Ferreira, P.E.; Bustamante, L.Y.; Dahlstrom, S.; Martensson, A.; Bjorkman, A.; Krishna, S.; Gil, J.P. The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Trop. Med. Int. Health 2007, 12, 736–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisowath, C.; Petersen, I.; Veiga, M.I.; Martensson, A.; Premji, Z.; Bjorkman, A.; Fidock, D.A.; Gil, J.P. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J. Infect. Dis. 2009, 199, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Otienoburu, S.D.; Maiga-Ascofare, O.; Schramm, B.; Jullien, V.; Jones, J.J.; Zolia, Y.M.; Houze, P.; Ashley, E.A.; Kiechel, J.R.; Guerin, P.J.; et al. Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate-amodiaquine fixed dose combination or artemether-lumefantrine in Liberia. Malar. J. 2016, 15, 452. [Google Scholar] [CrossRef] [Green Version]
- Veiga, M.I.; Dhingra, S.K.; Henrich, P.P.; Straimer, J.; Gnadig, N.; Uhlemann, A.C.; Martin, R.E.; Lehane, A.M.; Fidock, D.A. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat. Commun 2016, 7, 11553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastings, I.M.; Ward, S.A. Coartem (artemether-lumefantrine) in Africa: The beginning of the end? J. Infect. Dis. 2005, 192, 1303–1304, author reply 1304–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphreys, G.S.; Merinopoulos, I.; Ahmed, J.; Whitty, C.J.; Mutabingwa, T.K.; Sutherland, C.J.; Hallett, R.L. Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob. Agents Chemother. 2007, 51, 991–997. [Google Scholar] [CrossRef] [Green Version]
- Phyo, A.P.; Nkhoma, S.; Stepniewska, K.; Ashley, E.A.; Nair, S.; McGready, R.; ler Moo, C.; Al-Saai, S.; Dondorp, A.M.; Lwin, K.M.; et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: A longitudinal study. Lancet 2012, 379, 1960–1966. [Google Scholar] [CrossRef] [Green Version]
- Gadalla, N.B.; Adam, I.; Elzaki, S.E.; Bashir, S.; Mukhtar, I.; Oguike, M.; Gadalla, A.; Mansour, F.; Warhurst, D.; El-Sayed, B.B.; et al. Increased pfmdr1 copy number and sequence polymorphisms in Plasmodium falciparum isolates from Sudanese malaria patients treated with artemether-lumefantrine. Antimicrob. Agents Chemother. 2011, 55, 5408–5411. [Google Scholar] [CrossRef] [Green Version]
- Ngasala, B.E.; Malmberg, M.; Carlsson, A.M.; Ferreira, P.E.; Petzold, M.G.; Blessborn, D.; Bergqvist, Y.; Gil, J.P.; Premji, Z.; Bjorkman, A.; et al. Efficacy and effectiveness of artemether-lumefantrine after initial and repeated treatment in children <5 years of age with acute uncomplicated Plasmodium falciparum malaria in rural Tanzania: A randomized trial. Clin. Infect. Dis. 2011, 52, 873–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngasala, B.E.; Malmberg, M.; Carlsson, A.M.; Ferreira, P.E.; Petzold, M.G.; Blessborn, D.; Bergqvist, Y.; Gil, J.P.; Premji, Z.; Martensson, A. Effectiveness of artemether-lumefantrine provided by community health workers in under-five children with uncomplicated malaria in rural Tanzania: An open label prospective study. Malar. J. 2011, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Kamugisha, E.; Jing, S.; Minde, M.; Kataraihya, J.; Kongola, G.; Kironde, F.; Swedberg, G. Efficacy of artemether-lumefantrine in treatment of malaria among under-fives and prevalence of drug resistance markers in Igombe-Mwanza, north-western Tanzania. Malar. J. 2012, 11, 58. [Google Scholar] [CrossRef]
- Ursing, J.; Kofoed, P.E.; Rodrigues, A.; Blessborn, D.; Thoft-Nielsen, R.; Bjorkman, A.; Rombo, L. Similar efficacy and tolerability of double-dose chloroquine and artemether-lumefantrine for treatment of Plasmodium falciparum infection in Guinea-Bissau: A randomized trial. J. Infect. Dis. 2011, 203, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.M.; Netongo, P.M.; Atogho-Tiedeu, B.; Ngongang, E.O.; Ajua, A.; Achidi, E.A.; Mbacham, W.F. Amodiaquine-Artesunate versus Artemether-Lumefantrine against Uncomplicated Malaria in Children Less Than 14 Years in Ngaoundere, North Cameroon: Efficacy, Safety, and Baseline Drug Resistant Mutations in pfcrt, pfmdr1, and pfdhfr Genes. Malar. Res. Treat. 2013, 2013, 234683. [Google Scholar] [CrossRef]
- Some, A.F.; Sere, Y.Y.; Dokomajilar, C.; Zongo, I.; Rouamba, N.; Greenhouse, B.; Ouedraogo, J.B.; Rosenthal, P.J. Selection of known Plasmodium falciparum resistance-mediating polymorphisms by artemether-lumefantrine and amodiaquine-sulfadoxine-pyrimethamine but not dihydroartemisinin-piperaquine in Burkina Faso. Antimicrob. Agents Chemother. 2010, 54, 1949–1954. [Google Scholar] [CrossRef] [Green Version]
- Lekana-Douki, J.B.; Dinzouna Boutamba, S.D.; Zatra, R.; Zang Edou, S.E.; Ekomy, H.; Bisvigou, U.; Toure-Ndouo, F.S. Increased prevalence of the Plasmodium falciparum Pfmdr1 86N genotype among field isolates from Franceville, Gabon after replacement of chloroquine by artemether-lumefantrine and artesunate-mefloquine. Infect. Genet. Evol. 2011, 11, 512–517. [Google Scholar] [CrossRef]
- Lobo, E.; de Sousa, B.; Rosa, S.; Figueiredo, P.; Lobo, L.; Pateira, S.; Fernandes, N.; Nogueira, F. Prevalence of pfmdr1 alleles associated with artemether-lumefantrine tolerance/resistance in Maputo before and after the implementation of artemisinin-based combination therapy. Malar. J. 2014, 13, 300. [Google Scholar] [CrossRef] [Green Version]
- Mungthin, M.; Khositnithikul, R.; Sitthichot, N.; Suwandittakul, N.; Wattanaveeradej, V.; Ward, S.A.; Na-Bangchang, K. Association between the pfmdr1 gene and in vitro artemether and lumefantrine sensitivity in Thai isolates of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 2010, 83, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Duah, N.O.; Matrevi, S.A.; de Souza, D.K.; Binnah, D.D.; Tamakloe, M.M.; Opoku, V.S.; Onwona, C.O.; Narh, C.A.; Quashie, N.B.; Abuaku, B.; et al. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy. Malar. J. 2013, 12, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkhoma, S.; Nair, S.; Mukaka, M.; Molyneux, M.E.; Ward, S.A.; Anderson, T.J. Parasites bearing a single copy of the multi-drug resistance gene (pfmdr-1) with wild-type SNPs predominate amongst Plasmodium falciparum isolates from Malawi. Acta Trop. 2009, 111, 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Happi, C.T.; Gbotosho, G.O.; Folarin, O.A.; Sowunmi, A.; Hudson, T.; O’Neil, M.; Milhous, W.; Wirth, D.F.; Oduola, A.M. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria. Antimicrob. Agents Chemother. 2009, 53, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Kavishe, R.A.; Paulo, P.; Kaaya, R.D.; Kalinga, A.; van Zwetselaar, M.; Chilongola, J.; Roper, C.; Alifrangis, M. Surveillance of artemether-lumefantrine associated Plasmodium falciparum multidrug resistance protein-1 gene polymorphisms in Tanzania. Malar. J. 2014, 13, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baliraine, F.N.; Rosenthal, P.J. Prolonged selection of pfmdr1 polymorphisms after treatment of falciparum malaria with artemether-lumefantrine in Uganda. J. Infect. Dis. 2011, 204, 1120–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlstrom, S.; Ferreira, P.E.; Veiga, M.I.; Sedighi, N.; Wiklund, L.; Martensson, A.; Farnert, A.; Sisowath, C.; Osorio, L.; Darban, H.; et al. Plasmodium falciparum multidrug resistance protein 1 and artemisinin-based combination therapy in Africa. J. Infect. Dis. 2009, 200, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, M.; Gadalla, N.B.; Stepniewska, K.; Dahal, P.; Nsanzabana, C.; Moriera, C.; Price, R.N.; Martensson, A.; Rosenthal, P.J.; Dorsey, G.; et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: Parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 2014, 91, 833–843. [Google Scholar] [CrossRef]
- Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014, 505, 50–55. [Google Scholar] [CrossRef]
- Gupta, B.; Xu, S.; Wang, Z.; Sun, L.; Miao, J.; Cui, L.; Yang, Z. Plasmodium falciparum multidrug resistance protein 1 (pfmrp1) gene and its association with in vitro drug susceptibility of parasite isolates from north-east Myanmar. J. Antimicrob. Chemother. 2014, 69, 2110–2117. [Google Scholar] [CrossRef] [Green Version]
- Djimde, A.A.; Makanga, M.; Kuhen, K.; Hamed, K. The emerging threat of artemisinin resistance in malaria: Focus on artemether-lumefantrine. Expert Rev. Anti. Infect. Ther. 2015, 13, 1031–1045. [Google Scholar] [CrossRef] [PubMed]
- Dama, S.; Niangaly, H.; Ouattara, A.; Sagara, I.; Sissoko, S.; Traore, O.B.; Bamadio, A.; Dara, N.; Djimde, M.; Alhousseini, M.L.; et al. Reduced ex vivo susceptibility of Plasmodium falciparum after oral artemether-lumefantrine treatment in Mali. Malar. J. 2017, 16, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dokomajilar, C.; Nsobya, S.L.; Greenhouse, B.; Rosenthal, P.J.; Dorsey, G. Selection of Plasmodium falciparum pfmdr1 alleles following therapy with artemether-lumefantrine in an area of Uganda where malaria is highly endemic. Antimicrob. Agents Chemother. 2006, 50, 1893–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefevre, G.; Carpenter, P.; Souppart, C.; Schmidli, H.; McClean, M.; Stypinski, D. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br. J. Clin. Pharmacol. 2002, 54, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwai, L.; Kiara, S.M.; Abdirahman, A.; Pole, L.; Rippert, A.; Diriye, A.; Bull, P.; Marsh, K.; Borrmann, S.; Nzila, A. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1. Antimicrob. Agents Chemother. 2009, 53, 5069–5073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmberg, M.; Ferreira, P.E.; Tarning, J.; Ursing, J.; Ngasala, B.; Bjorkman, A.; Martensson, A.; Gil, J.P. Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and its association with pfmdr1 polymorphisms. J. Infect. Dis. 2013, 207, 842–847. [Google Scholar] [CrossRef] [Green Version]
- Zeile, I.; Gahutu, J.B.; Shyirambere, C.; Steininger, C.; Musemakweri, A.; Sebahungu, F.; Karema, C.; Harms, G.; Eggelte, T.A.; Mockenhaupt, F.P. Molecular markers of Plasmodium falciparum drug resistance in southern highland Rwanda. Acta Trop. 2012, 121, 50–54. [Google Scholar] [CrossRef]
- Ochong, E.O.; van den Broek, I.V.; Keus, K.; Nzila, A. Short report: Association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the upper Nile in southern Sudan. Am. J. Trop. Med. Hyg. 2003, 69, 184–187. [Google Scholar] [CrossRef]
- Tinto, H.; Guekoun, L.; Zongo, I.; Guiguemde, R.T.; D’Alessandro, U.; Ouedraogo, J.B. Chloroquine-resistance molecular markers (Pfcrt T76 and Pfmdr-1 Y86) and amodiaquine resistance in Burkina Faso. Trop. Med. Int. Health 2008, 13, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Plowe, C.V.; Djimde, A.; Wellems, T.E.; Diop, S.; Kouriba, B.; Doumbo, O.K. Community pyrimethamine-sulfadoxine use and prevalence of resistant Plasmodium falciparum genotypes in Mali: A model for deterring resistance. Am. J. Trop. Med. Hyg. 1996, 55, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Djimde, A.A.; Barger, B.; Kone, A.; Beavogui, A.H.; Tekete, M.; Fofana, B.; Dara, A.; Maiga, H.; Dembele, D.; Toure, S.; et al. A molecular map of chloroquine resistance in Mali. FEMS Immunol. Med. Microbiol. 2010, 58, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Djimde, A.A.; Doumbo, O.K.; Traore, O.; Guindo, A.B.; Kayentao, K.; Diourte, Y.; Niare-Doumbo, S.; Coulibaly, D.; Kone, A.K.; Cissoko, Y.; et al. Clearance of drug-resistant parasites as a model for protective immunity in Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 2003, 69, 558–563. [Google Scholar] [CrossRef] [PubMed]
- PNLP: PNDLclP. Manuel du Participant. BG VF: Formation Pour la Prise en Charge du Paludisme Dans les Structures Sanitaires; PNLP: Bamako, Mali, 2009. [Google Scholar]
- Plowe, C.V.; Djimde, A.; Bouare, M.; Doumbo, O.; Wellems, T.E. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: Polymerase chain reaction methods for surveillance in Africa. Am. J. Trop. Med. Hyg. 1995, 52, 565–568. [Google Scholar] [CrossRef]
- Snounou, G.; Zhu, X.; Siripoon, N.; Jarra, W.; Thaithong, S.; Brown, K.N.; Viriyakosol, S. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans. R. Soc. Trop. Med. Hyg. 1999, 93, 369–374. [Google Scholar] [CrossRef]
- Ranford-Cartwright, L.C.; Taylor, J.; Umasunthar, T.; Taylor, L.H.; Babiker, H.A.; Lell, B.; Schmidt-Ott, J.R.; Lehman, L.G.; Walliker, D.; Kremsner, P.G. Molecular analysis of recrudescent parasites in a Plasmodium falciparum drug efficacy trial in Gabon. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 719–724. [Google Scholar] [CrossRef]
- Su, X.; Ferdig, M.T.; Huang, Y.; Huynh, C.Q.; Liu, A.; You, J.; Wootton, J.C.; Wellems, T.E. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 1999, 286, 1351–1353. [Google Scholar] [CrossRef] [Green Version]
- Duraisingh, M.T.; Jones, P.; Sambou, I.; von Seidlein, L.; Pinder, M.; Warhurst, D.C. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol. Biochem. Parasitol. 2000, 108, 13–23. [Google Scholar] [CrossRef]
Kolle | Faladje | Bandiagara | Pongonon | |
---|---|---|---|---|
Female (%) | 42 (54.6%) | 41 (46.6%) | 49 (49.0%) | 41 (56.9%) |
Age in years (% under 5) * | 6 (4–7) (41.6%) | 6 (4–7) (35.2%) | 7 (5–11) (20.0%) | 5 (4–7) (36.1%) |
Axillary Temperature (°C) * | 38.4 (37.3–38.9) | 38.4 (37.6–39.2) | 38.2 (37.0–39.2) | 38.2 (27.6–39.0) |
Parasite density (per uL) * | 48,325 (27,075–71,475) | 48,075 (30,525–86,975) | 38,000 (16,200–80,250) | 23,813 (12,363–35,425) |
Gametocyte carriage (%) | 1 (1.3%) | 3 (3.4%) | 0 (0.0%) | 18 (25.0%) |
Hemoglobin (mg/dL) † | 10.0 (1.8) | 10.8 (1.9) | 11.2 (2.1) | 10.3 (1.9) |
Antimalarial used in previous 2 weeks (%) | 1 (1.3%) | 1 (1.1%) | 9 (9.0%) | 0 (0.0%) |
Kolle N = 70 n (%) | Faladje N = 88 n (%) | Bandiagara N = 99 n (%) | Pongonon N = 70 n (%) | p-Value | |
---|---|---|---|---|---|
Early treatment failure (ETF) | 1 (1.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
Late clinical failure (LCF) | 9 (13.0) | 5 (5.7) | 15 (15.2) | 3 (4.3) | 0.044 |
Late parasitological failure (LPF) | 17 (24.6) | 22 (25.0) | 12 (12.1) | 2 (2.8) | 0.0001 |
Crude Adequate clinical and parasitological response (ACPR) | 43 (62.3) | 61 (69.3) | 72 (72.7) | 65 (92.8) | 0.0001 |
Reinfection † | 25 (35.7) | 24 (27.3) | 23 (23.2) | 4 (5.7) | 0.0001 |
ACPRc ‡ | 68 (97.1) | 85 (96.6) | 95 (96.1) | 69 (98.6) | 0.85 |
Prevalence (%) in Patient Samples (No. of Patients With Allele/Total No. in Group) | |||||
---|---|---|---|---|---|
Baseline | Recurrence | χ2 | p-Value | Selection | |
Pfcrt K76T | |||||
K | 43.5 (37/85) | 61.2 (52/85) | 6.08 | 0.02 | K allele |
T | 56.5 (48/85) | 38.8 (33/85) | |||
Pfmdr1 N86Y | |||||
N | 84.7 (72/85) | 100 (85/85) | 13.00 | 0.0002 | N allele |
Y | 15.3 (13/85) | 0 (0/85) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiga, H.; Grivoyannis, A.; Sagara, I.; Traore, K.; Traore, O.B.; Tolo, Y.; Traore, A.; Bamadio, A.; Traore, Z.I.; Sanogo, K.; et al. Selection of pfcrt K76 and pfmdr1 N86 Coding Alleles after Uncomplicated Malaria Treatment by Artemether-Lumefantrine in Mali. Int. J. Mol. Sci. 2021, 22, 6057. https://doi.org/10.3390/ijms22116057
Maiga H, Grivoyannis A, Sagara I, Traore K, Traore OB, Tolo Y, Traore A, Bamadio A, Traore ZI, Sanogo K, et al. Selection of pfcrt K76 and pfmdr1 N86 Coding Alleles after Uncomplicated Malaria Treatment by Artemether-Lumefantrine in Mali. International Journal of Molecular Sciences. 2021; 22(11):6057. https://doi.org/10.3390/ijms22116057
Chicago/Turabian StyleMaiga, Hamma, Anastasia Grivoyannis, Issaka Sagara, Karim Traore, Oumar B. Traore, Youssouf Tolo, Aliou Traore, Amadou Bamadio, Zoumana I. Traore, Kassim Sanogo, and et al. 2021. "Selection of pfcrt K76 and pfmdr1 N86 Coding Alleles after Uncomplicated Malaria Treatment by Artemether-Lumefantrine in Mali" International Journal of Molecular Sciences 22, no. 11: 6057. https://doi.org/10.3390/ijms22116057
APA StyleMaiga, H., Grivoyannis, A., Sagara, I., Traore, K., Traore, O. B., Tolo, Y., Traore, A., Bamadio, A., Traore, Z. I., Sanogo, K., Doumbo, O. K., Plowe, C. V., & Djimde, A. A. (2021). Selection of pfcrt K76 and pfmdr1 N86 Coding Alleles after Uncomplicated Malaria Treatment by Artemether-Lumefantrine in Mali. International Journal of Molecular Sciences, 22(11), 6057. https://doi.org/10.3390/ijms22116057