Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss
Abstract
:1. Introduction
2. Results
2.1. Patient Clinical Characteristics
2.2. Genetic Analysis
2.3. 3′-UTR Target Gene Regulation by the miR-938G>A and miR-604A>G Polymorphisms
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Study Subjects
4.3. Genotyping Analysis
4.4. Clinical Characteristics of RPL Patients and Control Subjects
4.5. Expression Vectors Construction
4.6. Cell Transfection and Luciferase Assay
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coulam, C.B.; Coulam, C.B.; Clark, D.A.; Beer, A.E.; Kutteh, W.H.; Silver, R.; Kwak, J.; Stephenson, M. Clinical guidelines recommendation committee for diagnosis and treatment of recurrent spontaneous abortion. Current clinical options for diagnosis and treatment of recurrent spontaneous abortion. Am. J. Reprod. Immunol. 1997, 38, 57–74. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2013, 99, 63. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, A.J.; Weinberg, C.R.; O’Connor, J.F.; Baird, D.D.; Schlatterer, J.P.; Canfield, R.E.; Armstrong, E.G.; Nisula, B.C. Incidence of early loss of pregnancy. N. Engl. J. Med. 1988, 319, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Sierra, S.; Stephenson, M. Genetics of recurrent pregnancy loss. Semin. Reprod. Med. 2006, 24, 172. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kwon, H.; Kim, J.H.; Shin, J.E.; Choi, Y.; Yoon, T.K.; Choi, D.H.; Kim, N.K. Haplotype-based association of ACE I/D, AT1R 1166A>C, and AGT M235T polymorphisms in renin-angiotensin-aldosterone system genes in Korean women with idiopathic recurrent spontaneous abortions. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 158, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, X.; Taylor, H. MicroRNA and gynecological reproductive diseases. Fertil. Steril. 2014, 101, 1545–1551. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 16, 350–355. [Google Scholar] [CrossRef]
- Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Cuellar, T.L. MicroRNAs and endocrine biology. J. Endocrinol. 2005, 187, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
- Gregory, R.I.; Chendrimada, T.P.; Shiekhattar, R. MicroRNA biogenesis: Isolation and characterization of the microprocessor complex. Methods. Mol. Biol. 2006, 342, 33–47. [Google Scholar] [PubMed]
- Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short Hairpin RNAs. Genes Dev. 2003, 17, 3011–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.S.; Biobel, G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 1993, 365, 661–663. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, A.S.; Miller, S.; Haines, N.; Zink, M.C.; Serra, M.J. Comprehensive thermodynamic analysis of 3’ double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res. 2006, 34, 3338–3344. [Google Scholar] [CrossRef]
- Iwai, N.; Naraba, H. Polymorphisms in human pre-miRNAs. Biochem. Biophys. Res. Commun. 2005, 331, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hu, Z.; Xu, Z.; Gu, H.; Yi, L.; Cao, H.; Chen, J.; Tian, T.; Liang, J.; Lin, Y.; et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat. 2009, 30, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.M.; Robles, A.I.; Harris, C.C. Genetic variation in microRNA networks: The implications for cancer research. Nat. Rev. Cancer 2010, 10, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Lal, A.; Navarro, F.; Maher, C.A.; Maliszewski, L.E.; Yan, N.; O’Day, E.; Chowdhury, D.; Dykxhoorn, D.M.; Tsai, P.; Hofmann, O.; et al. miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 2009, 35, 610–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.Y.; Chen, J.X.; Zhang, Z.; Li, C.L.; Peng, Q.L.; Peng, H.M. The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J. Cancer Res. Clin. Oncol. 2010, 136, 1023–1028. [Google Scholar] [CrossRef]
- Pan, Q.; Luo, X.; Toloubeydokhti, T.; Chegini, N. The expression profile of microRNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol. Hum. Reprod. 2007, 13, 797–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.R.; Ryu, C.S.; Kim, J.O.; An, H.J.; Cho, S.H.; Ahn, E.H.; Kim, J.H.; Lee, W.S.; Kim, N.K. Association study of AGO1 and AGO2 genes polymorphisms with recurrent pregnancy loss. Sci. Rep. 2019, 9, 15591. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Abtin, M.; Hosseinzadeh, A.; Maleki, M. Association between miR-146a C>G, miR-149 T>C, miR-196a2 T>C, and miR-499 A>G polymorphisms and susceptibility to idiopathic recurrent pregnancy loss. J. Assist. Reprod. Genet. 2019, 36, 2237–2244. [Google Scholar] [CrossRef]
- Du, E.; Cao, Y.; Feng, C.; Lu, J.; Yang, H.; Zhang, Y. The possible involvement of miR-371a-5p regulating XIAP in the pathogenesis of recurrent pregnancy loss. Reprod. Sci. 2019, 26, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- Parveen, F.; Agrawal, S. Recurrent miscarriage and micro-RNA among north Indian women. Reprod. Sci. 2015, 22, 410–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fluhr, H.; Wenig, H.; Spratte, J.; Heidrich, S.; Ehrhardt, J.; Zygmunt, M. Non-apoptotic fas-induced regulation of cytokines in undifferentiated and decidualized human endometrial stromal cells depends on caspase-activity. Mol. Hum. Reprod. 2011, 17, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Ahn, E.H.; An, H.J.; Kim, J.H.; Ko, J.J.; Kim, Y.R.; Lee, W.S.; Kim, N.K. Association of miR-938G>A polymorphisms with primary ovarian insufficiency (POI)-related gene expression. Int. J. Mol. Sci. 2017, 18, 1255. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.A.; Ahn, E.H.; Jang, H.G.; Kim, J.O.; Kim, J.H.; Lee, Y.B.; Lee, W.S.; Kim, N.K. Association Between miR-605A>G, miR-608G>C, miR-631I>D, miR-938C>T, and miR-1302-3C>T Polymorphisms and Risk of Recurrent Implantation Failure. Reprod. Sci. 2019, 26, 469–475. [Google Scholar] [CrossRef]
- Geeleher, P.; Huang, S.R.; Gamazon, E.R.; Golden, A.; Seoighe, C. The regulatory effect of miRNAs is a heritable genetic trait in humans. BMC Genom. 2012, 13, 383. [Google Scholar] [CrossRef] [Green Version]
- Ponsuksili, S.; Oster, M.; Reyer, H.; Hadlich, F.; Trakooljul, N.; Rodehutscord, M.; Camarinha-Silva, A.; Bennewitz, J.; Wimmers, K. Genetic regulation and heritability of miRNA and mRNA expression link to phosphorus utilization and gut microbiome. Open Biol. 2021, 11, 200182. [Google Scholar] [CrossRef] [PubMed]
- Butz, H.; Likó, I.; Czirják, S.; Igaz, P.; Korbonits, M.; Rácz, K.; Patócs, A. MicroRNA profile indicates downregulation of the TGF pathway in sporadic non-functioning pituitary adenomas. Pituitary 2011, 14, 112–124. [Google Scholar] [CrossRef]
- Knight, P.G.; Glister, C. TGF-beta superfamily members and ovarian follicle development. Reproduction 2006, 132, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Bider, D.; Dulitzky, M.; Goldenberg, M.; Lipitz, S.; Mashiach, S. Intraumbilical vein injection of prostaglandin F2 alpha in retained placenta. Eur. J. Obstet. Gynecol. Reprod. Biol. 1996, 64, 59–61. [Google Scholar] [CrossRef]
- Kang, J.G.; Majerciak, V.; Uldrick, T.S.; Wang, X.; Kruhlak, M.; Yarchoan, R.; Zheng, Z.M. Kaposi’s sarcoma-associated herpes viral IL6 and human IL-6 open reading frames contain miRNA binding sites and are subject to cellular miRNA regulation. J. Pathol. 2011, 225, 378–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, F.; Li, C.H.; Wang, H.; Xu, H.G. Relationship between expression of COX-2, TNF-α, IL-6 and autoimmune-type recurrent miscarriage. Asian. Pac. J. Trop. Med. 2013, 6, 990–994. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Sun, X.; Jiang, D.; Ding, Y.; Lu, Z.; Gong, L.; Liu, H.; Xie, J. Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol. Biol. 2010, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Bjorkman, S.; Taylor, H.S. MicroRNAs in endometriosis: Biological function and emerging biomarker candidates. Biol Reprod. 2019, 100, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Teague, E.M.; Print, C.G.; Hull, M.L. The role of microRNAs in endometriosis and associated reproductive conditions. Hum. Reprod. Update 2010, 16, 142–165. [Google Scholar] [CrossRef] [Green Version]
- Hahn, L.W.; Ritchie, M.D.; Moore, J.H. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, K.H. Aberrant gene expression associated with recurrent pregnancy loss. Mol. Hum. Reprod. 2004, 10, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Krieg, S.A.; Fan, X.; Hong, Y.; Sang, Q.X.; Giaccia, A.; Westphal, L.M.; Lathi, R.B.; Krieg, A.J.; Nayak, N.R. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss. Mol. Hum. Reprod. 2012, 18, 442–450. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, Y.; Xia, F.; Yang, Y.; Xiong, S.; Jin, L.; Zhang, J. Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients. Reproduction 2014, 148, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, B.; Wang, J.; Lei, J.; Liu, C.; Ma, Y.; Zhao, H. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod. Biomed. Online 2012, 25, 415–424. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.M.; Qi, L.; He, T.Z.; Shi-Guo, L.; Hao, C.J.; Cui, Y.; Zhang, N.; Xia, H.F.; Ma, X. Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. RNA Biol. 2011, 8, 861–872. [Google Scholar] [CrossRef]
- Gordon, K.J.; Blobe, G.C. Role of transforming growth factor-superfamily signaling pathways in human disease. Biochim. Biophys. Acta 2008, 1782, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Von Wollf, M.; Thaler, C.J.; Strowitzki, T.; Broome, J.; Stolz, W.; Tabibzadeh, S. Regulated expression of cytokines in human endometrium throughout the menstrual cycle: Dysregulation in habitual abortion. Mol. Hum. Reprod. 2000, 6, 627–634. [Google Scholar]
- Yu, X.; Dhakal, I.B.; Beggs, M.; Edavana, V.K.; Williams, S.; Zhang, X. Functional genetic variants in the 3’-untranslated region of sulfotransferase isoform 1A1 (SULT1A1) and their effect on enzymatic activity. Toxicol. Sci. 2010, 118, 391–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, S.C.; Gupta, E.D. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 2015, 58, 1–10. [Google Scholar] [CrossRef]
- Shahbazian, N.; Jafari, R.M.; Haghnia, S. The evaluation of serum homocysteine, folic acid, and vitamin B12 in patients complicated with preeclampsia. Electron. Physician 2016, 8, 3057–3061. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Zhou, J.; Wong, P.; Kowalisyn, J.; Strokosch, G. Intermediate homocysteinaemia: A thermolabile variant of methylenetrahydrofolate reductase. Am. J. Hum. Genet. 1988, 43, 414–421. [Google Scholar] [PubMed]
- Cao, Y.; Xu, J.; Zhang, Z.; Huang, X.; Zhang, A.; Wang, J.; Zheng, Q.; Fu, L.; Du, J. Association study between methylenetetrahydrofolate reductase polymorphisms and unexplained recurrent pregnancy loss: A meta-analysis. Gene 2013, 514, 105–111. [Google Scholar] [CrossRef]
- Amin-Beidokhti, M.; Mirfakhraie, R.; Zare-Karizi, S.; Karamoddin, F. The role of parental microRNA alleles in recurrent pregnancy loss: An association study. Reprod. Biomed. Online 2017, 34, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Chung, K.W.; Kim, J.O.; Jang, H.; Yoo, J.K.; Choi, Y.; Ko, J.J.; Kim, J.H.; Nishi, Y.; Yanase, T.; et al. Association of miR-146aC>G, miR-149C>T, miR-196a2T>C, and miR-499A>G polymorphisms with risk of recurrent implantation failure in Korean women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 202, 14–19. [Google Scholar] [CrossRef]
- Pampillo, M.; Pampillo, M.; Savard, M.; Dubuc, C.; McArdle, C.A.; Millar, R.P.; Gobeil, F.J.; Bhattacharya, M.; Babwah, A.V. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane. PLoS ONE 2010, 5, e11489. [Google Scholar]
- Balasubramanian, R.; Dwyer, A.; Seminara, S.B.; Pitteloud, N.; Kaiser, U.B.; Crowley, W.F.J. Human GnRH deficiency: A unique disease model to unravel the ontogeny of GnRH neurons. Neuroendocrinology 2010, 92, 81–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, W.C.; Haddow, J.E.; Palomaki, G.E.; Williams, J.R.; Mitchell, M.L.; Hermos, R.J.; Hermos, R.J.; Faix, J.D.; Klein, R.Z. Maternal thyroid deficiency and pregnancy complications: Implications for population screening. J. Med. Screen 2000, 7, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Pluchino, N.; Drakopoulos, P.; Wenger, J.M.; Petignat, P.; Streuli, I.; Genazzani, A.R. Hormonal causes of recurrent pregnancy loss (RPL). Hormones 2014, 13, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Wakim, A.N.; Polizotto, S.L.; Buffo, M.J.; Marrero, M.A.; Burholt, D.R. Thyroid hormones in human follicular fluid and thyroid hormone receptors in human granulosa cells. Fertil. Steril. 1993, 59, 1187–1190. [Google Scholar] [CrossRef]
- Bedecarrats, G.Y.; Kaiser, U.B. Differential regulation of gonadotropin subunit gene promoter activity by pulsatile gonadotropin-releasing hormone (GnRH) in perifused L beta T2 cells: Role of GnRH receptor concentration. Endocrinology 2003, 144, 1802–1811. [Google Scholar] [CrossRef] [Green Version]
- Gougeon, A. Regulation of ovarian follicular development in primates: Facts and hypotheses. Endocrin. Rev. 1996, 17, 121. [Google Scholar] [CrossRef]
- Stilley, J.A.; Christensen, D.E.; Dahlem, K.B.; Guan, R.; Santillan, D.A.; England, S.K.; Al-Hendy, A.; Kirby, P.A.; Segaloff, D.L. FSH receptor (FSHR) expression in human extragonadal reproductive tissues and the developing placenta, and the impact of its deletion on pregnancy in mice. Biol. Reprod. 2014, 91, 74. [Google Scholar] [CrossRef] [Green Version]
- Bergen, N.E.; Jaddoe, V.W.; Timmermans, S.; Hofman, A.; Lindemans, J.; Russcher, H.; Raat, H.; Steegers-Theunissen, R.P.; Steegers, E.A. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: The generation R study. Int. J. Obstet. Gynaecol. 2012, 119, 739–751. [Google Scholar] [CrossRef]
- Barch, M.J.; Knutsen, T.; Spurbeck, J.L. The AGT Cytogenetics Laboratory Manual, 3rd ed.; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1997. [Google Scholar]
- Kim, H.S.; Jin, E.H.; Mo, J.S.; Chae, S.C. Significant association of the GABRP polymorphisms with ulcerative colitis patients. Genes Genom. 2017, 39, 353–358. [Google Scholar] [CrossRef]
- Heibel, S.K.; Lopez, G.Y.; Panglao, M.; Sodha, S.; Mariño-Ramírez, L.; Tuchman, M.; Caldovic, L. Transcriptional regulation of N-acetylglutamate synthase. PLoS ONE 2012, 7, e29527. [Google Scholar] [CrossRef] [Green Version]
- Thorne, N.; Inglese, J.; Auld, D.S. Illuminating Insights into Firefly Luciferase and Other Bioluminescent Reporters Used in Chemical Biology. Chem. Biol. 2010, 6, 646. [Google Scholar] [CrossRef] [Green Version]
- Unal, H. Luciferase reporter assay for unlocking ligand-mediated signaling of GPCRs. Methods Cell Biol. 2019, 149, 19–30. [Google Scholar]
- Müller, K.; Ogris, M.; Sami, H. Firefly Luciferase-based reporter gene assay for investigating nanoparticle-mediated nucleic acid delivery. Methods Mol. Biol. 2019, 1943, 227–239. [Google Scholar] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Ritchie, M.D.; Hahn, L.H.; Roodi, N.L.; Bailey, L.; Dupont, W.D.; Parl, F.F.; Moore, J.H. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 2001, 69, 138–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.H.; Williams, S.M. New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 2002, 34, 88–95. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Controls (n = 227) | RPL Patients (n = 388) | p * |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Age (years) | 33.37 ± 5.74 | 33.21 ± 4.55 | 0.726 |
BMI (kg/m2) | 21.65 ± 3.44 | 21.49 ± 3.84 | 0.533 |
Previous pregnancy losses (n) | None | 3.28 ± 1.84 | |
RPL < 20 weeks (%) | None | 98.90% | |
Live births (n) | 1.79 ± 0.74 | None | |
Mean gestational age (weeks) | 39.29 ± 1.67 | 7.36 ± 1.93 | <0.001 |
Homocysteine (μmol/L) | NA | 6.98 ± 2.10 | |
Folate (mg/mL) | NA | 14.21 ± 11.94 | |
Total cholesterol (mg/dL) | NA | 187.73 ± 49.42 | |
Uric acid (mg/dL) | NA | 3.80 ± 0.84 | |
CD56 + NK cells (%) | NA | 18.26 ± 7.99 | |
PAI-1 (ng/mL) | NA | 10.53 ± 5.72 | |
PT (sec) | NA | 11.58 ± 0.86 |
Characteristics | Controls n = 227 | PL ≥ 2 n = 388 | AOR (95% CI) a | pb | FDR-p c | PL ≥ 3 n = 206 | AOR (95% CI) a | pb | FDR-p c |
---|---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | |||||||
miR-604A>G | |||||||||
AA | 73 (32.2) | 171 (44.1) | 1.000 (reference) | 86 (41.7) | 1.000 (reference) | ||||
AG | 115 (50.7) | 173 (44.6) | 0.640 (0.445–0.920) | 0.016 | 0.061 | 95 (46.1) | 0.686 (0.452–1.04) | 0.076 | 0.126 |
GG | 39 (17.2) | 44 (11.3) | 0.496 (0.296–0.832) | 0.008 | 0.024 | 25 (12.1) | 0.532 (0.292–0.970) | 0.04 | 0.12 |
Dominant (AA vs. AG + GG) | 0.606 (0.429–0.856) | 0.005 | 0.025 | 0.650 (0.438–0.965) | 0.033 | 0.055 | |||
Recessive (AA + AG vs. GG) | 0.621 (0.389–0.992) | 0.046 | 0.138 | 0.646 (0.374–1.117) | 0.118 | 0.276 | |||
miR-608C>G | |||||||||
CC | 48 (21.1) | 93 (24.0) | 1.000 (reference) | 51 (24.8) | 1.000 (reference) | ||||
CG | 109 (48.0) | 189 (48.7) | 0.885 (0.581–1.349) | 0.57 | 0.57 | 103 (50.0) | 0.867 (0.536–1.401) | 0.559 | 0.559 |
GG | 70 (30.8) | 106 (27.3) | 0.789 (0.497–1.252) | 0.314 | 0.471 | 52 (25.2) | 0.702 (0.411–1.199) | 0.195 | 0.292 |
Dominant (CC vs. CG + GG) | 0.850 (0.572–1.261) | 0.419 | 0.419 | 0.805 (0.513–1.263) | 0.345 | 0.345 | |||
Recessive (CC + CG vs. GG) | 0.847 (0.591–1.214) | 0.366 | 0.549 | 0.751 (0.492–1.146) | 0.184 | 0.276 | |||
miR-631I/D | |||||||||
II | 204 (89.9) | 357 (92.0) | 1.000 (reference) | 193 (93.7) | 1.000 (reference) | ||||
ID | 23 (10.1) | 31 (8.0) | 0.778 (0.441–1.372) | 0.385 | 0.481 | 13 (6.3) | 0.577 (0.283–1.178) | 0.131 | 0.163 |
DD | 0 (0.0) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
Dominant (II vs. ID + DD) | 0.778 (0.441–1.372) | 0.385 | 0.419 | 0.577 (0.283–1.178) | 0.131 | 0.163 | |||
Recessive (II + ID vs. DD) | N/A | N/A | N/A | N/A | N/A | N/A | |||
miR-938G>A | |||||||||
GG | 215 (94.7) | 380 (97.9) | 1.000 (reference) | 204 (99.0) | 1.000 (reference) | ||||
GA | 12 (5.3) | 8 (2.1) | 0.375 (0.151–0.933) | 0.035 | 0.061 | 2 (1.0) | 0.179 (0.040–0.811) | 0.026 | 0.087 |
AA | 0 (0.0) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | N/A | N/A | N/A |
Dominant (CC vs. CT + TT) | 0.375 (0.151–0.933) | 0.035 | 0.061 | 0.179 (0.040–0.811) | 0.026 | 0.055 | |||
Recessive (CC + CT vs. TT) | N/A | N/A | N/A | N/A | N/A | N/A | |||
miR-1302-3C>T | |||||||||
CC | 212 (84.1) | 349 (89.9) | 1.000 (reference) | 188 (91.3) | 1.000 (reference) | ||||
CT | 14 (15.5) | 37 (9.5) | 0.596 (0366–0.969 ) | 0.037 | 0.061 | 18 (8.7) | 0.517 (0.280–0.955) | 0.035 | 0.087 |
TT | 1 (0.4) | 2 (0.5) | 1.101 (0.099–12.228) | 0.937 | 0.937 | 0 (0.0) | N/A | 0.994 | 0.994 |
Dominant (CC vs. CT + TT) | 0.596 (0.366–0.969) | 0.037 | 0.061 | 0.502 (0.273–0.952) | 0.027 | 0.055 | |||
Recessive (CC + CT vs. TT) | 1.177 (0.106–13.059) | 0.894 | 0.894 | N/A | 0.994 | 0.994 |
Allele Combination | Controls | RPL | AOR (95% CI) a | pb | FDR-p c |
---|---|---|---|---|---|
2n = 454 | 2n = 776 | ||||
n (%) | n (%) | ||||
miR-604, miR-608, miR-631, miR-938, miR-1302-3 | |||||
A-C-I-G-C | 103 (22.7) | 233 (30.1) | 1.000 (reference) | ||
A-C-I-G-T | 15 (3.3) | 10 (1.3) | 0.294 (0.128–0.678) | 0.004 | 0.025 |
A-C-I-A-C | 5 (1.2) | 0 (0.0) | 0.040 (0.002–0.736) | 0.003 | 0.025 |
A-C-D-G-C | 6 (1.4) | 7 (1.0) | 0.515 (0.169–1.573) | 0.237 | 0.45 |
A-G-I-G-C | 119 (26.2) | 230 (29.6) | 0.854 (0.620–1.177) | 0.369 | 0.584 |
A-G-I-G-T | 5 (1.1) | 13 (1.7) | 1.149 (0.399–3.309) | 1.000 | 1.000 |
A-G-I-A-C | 0 (0.0) | 5 (0.6) | 4.876 (0.266–89.06) | 0.3278 | 0.566 |
A-G-I-A-T | 0 (0.0) | 1 (0.1) | 1.33 (0.05–32.94) | 1.000 | 1.000 |
A-G-D-G-C | 7 (1.4) | 15 (1.9) | 0.947 (0.374–2.393) | 1.000 | 1.000 |
A-G-D-G-T | 0 (0.0) | 1 (0.1) | 1.33 (0.0536–32.94) | 1.000 | 1.000 |
G-C-I-G-C | 74 (16.3) | 109 (14) | 0.651 (0.447–0.9479) | 0.026 | 0.081 |
G-C-I-G-T | 0 (0.0) | 10 (1.3) | 9.308 (0.540–160.5) | 0.036 | 0.086 |
G-C-I-A-C | 0 (0.0) | 3 (0.3) | 3.103 (0.158–60.66) | 0.556 | 0.704 |
G-G-D-G-C | 0 (0.0) | 3 (0.3) | 3.103 (0.158–60.66) | 0.556 | 0.704 |
G-G-I-G-C | 90 (19.9) | 125 (16.2) | 0.614 (0.429–0.8772) | 0.008 | 0.034 |
G-G-I-G-T | 13 (2.8) | 6 (0.8) | 0.204 (0.075–0.5518) | 0.002 | 0.025 |
G-G-I-A-C | 4 (0.9) | 0 (0.0) | 0.049 (0.002–0.9238) | 0.009 | 0.034 |
G-G-I-A-T | 3 (0.5) | 0 (0.0) | 3.103 (0.158–60.66) | 0.556 | 0.704 |
G-G-D-G-C | 8 (1.9) | 5 (0.7) | 0.276 (0.088–0.8651) | 0.03 | 0.081 |
G-G-D-G-T | 2 (0.4) | 0 (0.0) | 0.088 (0.004–1.864) | 0.095 | 0.2 |
miR-604, miR-631, miR-938, miR-1302-3 | |||||
A-I-G-C | 219 (48.3) | 460 (59.3) | 1.000 (reference) | ||
A-I-G-T | 22 (4.8) | 24 (3.1) | 0.5194 (0.2849–0.9469) | 0.035 | 0.13 |
A-I-A-C | 7 (1.6) | 7 (0.9) | 0.4761 (0.1649–1.374) | 0.247 | 0.388 |
A-I-A-T | 0 (0.0) | 1 (0.1) | 1.43 (0.05797–35.27) | 1.000 | 1.000 |
A-D-G-C | 12 (2.6) | 22 (2.9) | 0.87289 (0.4241–1.796) | 0.71 | 0.867 |
A-D-G-T | 0 (0.0) | 1 (0.1) | 1.43 (0.05797–35.27) | 1.000 | 1.000 |
G-I-G-C | 167 (36.9) | 237 (30.6) | 0.6756 (0.5235–0.8721) | 0.003 | 0.034 |
G-I-G-T | 11 (2.3) | 15 (1.9) | 0.6492 (0.2933–1.437) | 0.291 | 0.401 |
G-I-A-C | 2 (0.5) | 1(0.1) | 0.238 (0.02146–2.641) | 0.246 | 0.388 |
G-I-A-T | 3 (0.6) | 0 (0) | 0.06809 (0.003499–1.3250 | 0.034 | 0.13 |
G-D-G-C | 9 (2.0) | 8 (1.0) | 0.4232 (0.1610–1.112) | 0.112 | 0.247 |
G-D-G-T | 2 (0.4) | 0 (0.0) | 0.09533 (0.004554–1.996) | 0.105 | 0.247 |
miR-604, miR-631, miR-1302-3 | |||||
A-I-C | 228 (50.1) | 467 (60.2) | 1.000 (reference) | ||
A-I-T | 21(4.5) | 25 (3.2) | 0.5812 (0.3185–1.061) | 0.078 | 0.161 |
A-D-C | 12 (2.6) | 22 (2.9) | 0.8951 (0.4352–1.841) | 0.851 | 0.993 |
A-D-T | 0 (0.0) | 1 (0.1) | 1.466 (0.05945–36.16) | 1.000 | 1.000 |
G-I-C | 168 (37.1) | 238 (30.6) | 0.6916 (0.5369–0.8909) | 0.005 | 0.035 |
G-I-T | 14 (3.2) | 15 (2.0) | 0.5231 (0.2482–1.102) | 0.106 | 0.161 |
G-D-C | 9(2.1) | 8 (1.0) | 0.434 (0.1652–1.140) | 0.115 | 0.161 |
G-D-T | 2 (0.4) | 0 (0) | 0.09775 (0.004670–2.04) | 0.108 | 0.161 |
miR-604, miR-1302-3 | |||||
A-C | 239 (52.7) | 489 (63) | 1.000 (reference) | ||
A-T | 21 (4.6) | 26 (3.3) | 0.6051 (0.3336–1.098) | 0.110 | 0.110 |
G-C | 178 (39.1) | 246 (31.7) | 0.6755 (0.5275–0.8650) | 0.002 | 0.007 |
G-T | 16 (3.6) | 15(2.0) | 0.4582 (0.2227–0.9426) | 0.034 | 0.051 |
Combination Genotype | Controls n = 227 n (%) | RPL n = 388 n (%) | AOR (95% CI) a | pb | FDR-p c |
---|---|---|---|---|---|
miR-604A>G, miR-608C>G | |||||
AA/CC | 15 (6.6) | 39 (10.1) | 1.000 (reference) | ||
AA/CG + GG | 58 (25.6) | 132 (34.0) | 0.870 (0.445–1.702) | 0.684 | 0.846 |
AG + GG/CC | 33 (14.5) | 54 (13.9) | 0.624 (0.298–1.305) | 0.210 | 0.315 |
AG + GG/CG + GG | 121 (53.3) | 163 (42.0) | 0.521 (0.275–0.990) | 0.047 | 0.141 |
miR-604A>G, miR-631I>D | |||||
AA/II | 65 (28.6) | 155 (39.9) | 1.000 (reference) | ||
AA/ID + DD | 8 (3.5) | 16 (4.1) | 0.841 (0.343–2.064) | 0.705 | 0.846 |
AG + GG/II | 139 (61.2) | 202 (52.1) | 0.611 (0.425–0.879) | 0.008 | 0.024 |
AG + GG/ID + DD | 15 (6.6) | 15 (3.9) | 0.432 (0.197–0.950) | 0.037 | 0.056 |
miR-604A>G, miR-938G>A | |||||
AA/GG | 71 (31.3) | 167 (43) | 1.000 (reference) | ||
AA/GA + GA | 2 (0.9) | 4 (1.0) | 0.852 (0.153–4.763) | 0.856 | 0.856 |
AG + GG/GG | 144 (63.4) | 213 (54.9) | 0.637 (0.448–0.905) | 0.012 | 0.018 |
AG + GG/GA + GA | 10 (4.4) | 4 (1.0) | 0.171 (0.052–0.565) | 0.004 | 0.012 |
miR-604A>G, miR-1302-3C>T | |||||
AA/CC | 61 (26.8) | 154 (39.6) | 1.000 (reference) | ||
AA/CT + TT | 11 (4.9) | 17 (4.4) | 0.617 (0.273–1.394) | 0.506 | 0.846 |
AG + GG/CC | 130 (57.3) | 195 (50.3) | 0.599 (0.412–0.864) | 0.022 | 0.044 |
AG + GG/CT + TT | 25 (11.0) | 22 (5.7) | 0.351 (0.182–0.673) | 0.006 | 0.018 |
miR-608C>G, miR-938G>A | |||||
CC/GG | 48 (21.1) | 91 (23.5) | 1.000 (reference) | ||
CG + GG/GG | 167 (73.6) | 289 (74.5) | 0.914 (0.613–1.361) | 0.657 | 0.657 |
CG + GG/GA + AA | 12 (5.3) | 6 (1.5) | 0.268 (0.095–0.762) | 0.014 | 0.021 |
miR-631I>D, miR-938G>A | |||||
II/GG | 192 (84.6) | 349 (89.9) | 1.000 (reference) | ||
II/GA + AA | 12 (5.3) | 8 (2.1) | 0.367 (0.147–0.914) | 0.031 | 0.186 |
ID + DD/GG | 23 (10.1) | 31 (8) | 0.752 (0.426–1.329) | 0.327 | 0.382 |
miR-938G>A, miR-1302-3C>T | |||||
GG/CC | 182 (80.2) | 342 (88.1) | 1.000 (reference) | ||
GG/CT + TT | 33 (14.5) | 38 (9.8) | 0.617 (0.374–1.017) | 0.135 | 0.444 |
GA + AA/CC | 9 (4.0) | 7 (1.8) | 0.371 (0.141–0.974) | 0.210 | 0.077 |
GA + AA/CT + TT | 3 (1.3) | 1 (0.3) | 0.351 (0.058–0.127) | 0.481 | 0.694 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-H.; Kim, J.-H.; An, H.-J.; Kim, Y.-R.; Ahn, E.-H.; Lee, J.-R.; Kim, J.-O.; Ko, J.-J.; Kim, N.-K. Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2021, 22, 6127. https://doi.org/10.3390/ijms22116127
Cho S-H, Kim J-H, An H-J, Kim Y-R, Ahn E-H, Lee J-R, Kim J-O, Ko J-J, Kim N-K. Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss. International Journal of Molecular Sciences. 2021; 22(11):6127. https://doi.org/10.3390/ijms22116127
Chicago/Turabian StyleCho, Sung-Hwan, Ji-Hyang Kim, Hui-Jeong An, Young-Ran Kim, Eun-Hee Ahn, Jung-Ryeol Lee, Jung-Oh Kim, Jung-Jae Ko, and Nam-Keun Kim. 2021. "Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss" International Journal of Molecular Sciences 22, no. 11: 6127. https://doi.org/10.3390/ijms22116127
APA StyleCho, S.-H., Kim, J.-H., An, H.-J., Kim, Y.-R., Ahn, E.-H., Lee, J.-R., Kim, J.-O., Ko, J.-J., & Kim, N.-K. (2021). Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss. International Journal of Molecular Sciences, 22(11), 6127. https://doi.org/10.3390/ijms22116127