Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing
Abstract
:1. Introduction
2. SCD
2.1. Epidemiology
2.2. Pathogenesis
2.3. Clinical Features of SCD
2.4. Current Management of SCD
2.4.1. HSCT
2.4.2. SCD Management Approaches Other Than HSCT
2.4.3. GT Approaches for SCD
2.4.4. Engineered Stem Cell Approach for SCD
3. FA
3.1. Epidemiology of FA
3.2. Pathogenesis of FA
3.3. Clinical Features of FA
3.4. Current Management of FA
3.4.1. GT Approaches for FA
3.4.2. Engineered Stem Cell Approach for FA
3.4.3. GT and Engineered Stem Cell Clinical Trials on FA
4. G6PD Deficiency
4.1. Epidemiology
4.2. Pathophysiology
4.3. Clinical Features
4.4. Diagnosis
4.5. Management of G6PD Deficiency
5. Thalassemia
5.1. Epidemiology
5.2. Classification
5.3. Current Management of Thalassemia
5.3.1. Blood Transfusion
5.3.2. ICT
5.3.3. Drugs for Increasing HbF Levels
5.3.4. HSCT
5.3.5. GT Approaches for Thalassemia
5.3.6. Engineered Stem Cell Approaches for Thalassemia
6. Advantages and Disadvantages of GT and Engineered Stem Cell Approaches
7. Future Perspectives
7.1. HSC Generation from iPSCs
7.2. Strategies for Gene Editing of HSCs
7.3. Risk Mitigation of Engineered Cell Therapy
7.4. Clinical Perspective
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adam, M.A.; Adam, N.K.; Mohamed, B.A. Prevalence of sickle cell disease and sickle cell trait among children admitted to Al Fashir Teaching Hospital North Darfur State, Sudan. BMC Res. Notes 2019, 12, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wilson, A.F.; Du, W.; Pang, Q. Cell-cycle-specific function of p53 in Fanconi anemia hematopoietic stem and progenitor cell proliferation. Stem Cell Rep. 2018, 10, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-de-Teresa, B.; Rodríguez, A.; Frias, S. Chromosome instability in Fanconi anemia: From breaks to phenotypic consequences. Genes 2020, 11, 1528. [Google Scholar] [CrossRef] [PubMed]
- Rageul, J.; Kim, H. Fanconi anemia and the underlying causes of genomic instability. Environ. Mol. Mutagen. 2020, 61, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Gregg, X.T.; Prchal, J.T. Chapter 44—Red Blood Cell Enzymopathies. In Hematology, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 616–625. [Google Scholar]
- Jain, S.K.; Parsanathan, R.; Levine, S.N.; Bocchini, J.A.; Holick, M.F.; Vanchiere, J.A. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic. Biol. Med. 2020, 161, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Varghese, M.V.; James, J.; Rafikova, O.; Rafikov, R. Glucose-6-phosphate dehydrogenase deficiency contributes to metabolic abnormality and pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L508–L521. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.M.; Sajjad, M. Review article on thalassemia. Med. Res. Chronicles 2021, 8, 42–46. [Google Scholar]
- Demirci, S.; Leonard, A.; Tisdale, J.F. Hematopoietic stem cells from pluripotent stem cells: Clinical potential, challenges, and future perspectives. Stem Cells Transl. Med. 2020, 9, 1549–1557. [Google Scholar] [CrossRef]
- Pecker, L.H.; Little, J. Clinical manifestations of sickle cell disease across the lifespan. In Sickle Cell Disease and Hematopoietic Stem Cell Transplantation; Meier, E.R., Abraham, A., Fasano, R.M., Eds.; Springer: Berlin, Germany, 2018; pp. 3–39. [Google Scholar]
- Eaton, W.A.; Bunn, H.F. Treating sickle cell disease by targeting HbS polymerization. Blood 2017, 129, 2719–2726. [Google Scholar] [CrossRef] [Green Version]
- Kato, G.J.; Piel, F.B.; Reid, C.D.; Gaston, M.H.; Ohene-Frempong, K.; Krishnamurti, L.; Smith, W.R.; Panepinto, J.A.; Weatherall, D.J.; Costa, F.F.; et al. Sickle cell disease. Nat. Rev. Dis. Primers 2018, 4, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Oron, A.P.; Chao, D.L.; Ezeanolue, E.E.; Ezenwa, L.N.; Piel, F.B.; Ojogun, O.T.; Uyoga, S.; Williams, T.N.; Nnodu, O.E. Caring for Africa’s sickle cell children: Will we rise to the challenge? BMC Med. 2020, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Riley, T.R.; Boss, A.; McClain, D.; Riley, T.T. Review of medication therapy for the prevention of sickle cell crisis. Phys. Ther. 2018, 43, 417–421. [Google Scholar]
- Houwing, M.; de Pagter, P.; van Beers, E.; Biemond, B.; Rettenbacher, E.; Rijneveld, A.; Schols, E.; Philipsen, J.; Tamminga, R.; van Draat, K.F. Sickle cell disease: Clinical presentation and management of a global health challenge. Blood Rev. 2019, 37, 1–19. [Google Scholar] [CrossRef]
- Tluway, F.; Makani, J. Sickle cell disease in Africa: An overview of the integrated approach to health, research, education and advocacy in Tanzania, 2004–2016. Br. J. Haematol. 2017, 177, 919–929. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.O.K.; Elfadul, E.A.A.; Eldour, A.A.A.; Mohammed, O.I.A. The prevalence of leukocyte abnormalities among Sudanese patients with sickle cell disease. WJARR 2021, 9, 262–267. [Google Scholar]
- Platt, O.S.; Brambilla, D.J.; Rosse, W.F.; Milner, P.F.; Castro, O.; Steinberg, M.H.; Klug, P.P. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med. 1994, 330, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Uyoga, S.; Macharia, A.W.; Mochamah, G.; Ndila, C.M.; Nyutu, G.; Makale, J.; Tendwa, M.; Nyatichi, E.; Ojal, J.; Otiende, M. The epidemiology of sickle cell disease in children recruited in infancy in Kilifi, Kenya: A prospective cohort study. Lancet Glob. Health 2019, 7, e1458–e1466. [Google Scholar] [CrossRef] [Green Version]
- Shah, F.; Dwivedi, M. Pathophysiology and recent therapeutic insights of sickle cell disease. Ann. Hematol. 2020, 99, 925–935. [Google Scholar] [CrossRef]
- Ohiagu, F.; Chikezie, P.; Chikezie, C. Sickle hemoglobin polymerization inhibition and antisickling medicinal plants. J. Phytopharmacol. 2021, 10, 126–133. [Google Scholar] [CrossRef]
- Pan, D.; Kalfa, T.A.; Wang, D.; Risinger, M.; Crable, S.; Ottlinger, A.; Chandra, S.; Mount, D.B.; Hübner, C.A.; Franco, R.S. K-Cl cotransporter gene expression during human and murine erythroid differentiation. J. Biol. Chem. 2011, 286, 30492–30503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cytlak, U.; Hannemann, A.; Rees, D.; Gibson, J. Identification of the Ca2+ entry pathway involved in deoxygenation-induced phosphatidylserine exposure in red blood cells from patients with sickle cell disease. Pflugers Arch. Eur. J. Physiol. 2013, 465, 1651–1660. [Google Scholar] [CrossRef] [Green Version]
- Sundd, P.; Gladwin, M.T.; Novelli, E.M. Pathophysiology of sickle cell disease. Annu. Rev. Pathol. 2019, 14, 263–292. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dao, M.; Lykotrafitis, G.; Karniadakis, G.E. Biomechanics and biorheology of red blood cells in sickle cell anemia. J. Biomech. 2017, 50, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Barabino, G.A.; Platt, M.O.; Kaul, D.K. Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 2010, 12, 345–367. [Google Scholar] [CrossRef] [PubMed]
- Manwani, D.; Frenette, P.S. Vaso-occlusion in sickle cell disease: Pathophysiology and novel targeted therapies. Blood 2013, 122, 3892–3898. [Google Scholar] [CrossRef]
- Ofori-Acquah, S.F. Sickle cell disease as a vascular disorder. Expert Rev. Hematol. 2020, 13, 645–653. [Google Scholar] [CrossRef]
- Maciaszek, J.L.; Andemariam, B.; Huber, G.; Lykotrafitis, G. Epinephrine modulates BCAM/Lu and ICAM-4 expression on the sickle cell trait red blood cell membrane. Biophys. J. 2012, 102, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion from mechanism to translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Jing, F.; Yi, W.; Mendelson, A.; Shi, P.; Walsh, R.; Friedman, D.F.; Minniti, C.; Manwani, D.; Chou, S.T.; et al. HO-1hi patrolling monocytes protect against vaso-occlusion in sickle cell disease. Blood 2018, 131, 1600–1610. [Google Scholar] [CrossRef]
- Sarray, S.; Saleh, L.R.; Lisa Saldanha, F.; Al-Habboubi, H.H.; Mahdi, N.; Almawi, W.Y. Serum IL-6, IL-10, and TNFα levels in pediatric sickle cell disease patients during vasoocclusive crisis and steady state condition. Cytokine 2015, 72, 43–47. [Google Scholar] [CrossRef]
- Vona, R.; Sposi, N.M.; Mattia, L.; Gambardella, L.; Straface, E.; Pietraforte, D. Sickle cell disease: Role of oxidative stress and antioxidant therapy. Antioxidants 2021, 10, 296. [Google Scholar] [CrossRef] [PubMed]
- Sagi, V.; Mittal, A.; Gupta, M.; Gupta, K. Immune cell neural interactions and their contributions to sickle cell disease. Neurosci. Lett. 2019, 699, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Conran, N.; Belcher, J.D. Inflammation in sickle cell disease. Clin. Hemorheol. Microcirc. 2018, 68, 263–299. [Google Scholar] [CrossRef] [PubMed]
- Darbari, D.S.; Sheehan, V.A.; Ballas, S.K. The vaso-occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management. Eur. J. Haematol. 2020, 105, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-E.; Hod, E.A.; Spitalnik, S.L.; Frenette, P.S. CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions. J. Clin. Investig. 2011, 121, 1397–1401. [Google Scholar] [CrossRef] [PubMed]
- Gurkan, U.A. Biophysical and rheological biomarkers of red blood cell physiology and pathophysiology. Curr. Opin. Hematol. 2021, 28, 138–149. [Google Scholar] [CrossRef]
- Nader, E.; Romana, M.; Connes, P. The red blood cell-inflammation vicious circle in sickle cell disease. Front. Immunol. 2020, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- de Azevedo, J.T.C.; Malmegrim, K.C.R. Immune mechanisms involved in sickle cell disease pathogenesis: Current knowledge and perspectives. Immunol. Lett. 2020, 224, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Silva Filho, I.L.d.; Ribeiro, G.S.; Moura, P.G.; Vechi, M.L.; Cavalcante, A.C.; Andrada-Serpa, M.J.d. Sickle cell disease: Acute clinical manifestations in early childhood and molecular characteristics in a group of children in Rio de Janeiro. Rev. Bras. Hematol. Hemoter. 2012, 34, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.; Tisdale, J.; Abraham, A. Curative options for sickle cell disease: Haploidentical stem cell transplantation or gene therapy? Br. J. Haematol. 2020, 189, 408–423. [Google Scholar] [CrossRef]
- Hsieh, M.M.; Fitzhugh, C.D.; Tisdale, J.F. Allogeneic hematopoietic stem cell transplantation for sickle cell disease: The time is now. Blood 2011, 118, 1197–1207. [Google Scholar] [CrossRef] [Green Version]
- Kharya, G.; Bakane, A.; Agarwal, S.; Rauthan, A. Pre-transplant myeloid and immune suppression, upfront plerixafor mobilization and post-transplant cyclophosphamide: Novel strategy for haploidentical transplant in sickle cell disease. Bone Marrow Transplant. 2021, 56, 492–504. [Google Scholar] [CrossRef]
- Malik, P.; Rees, D.; Pirenne, F.; Taher, A.; Chakravorty, S.; Tshilolo, L.; Osunkwo, I.; James, J.; Colombatti, R. The impact of sickle cell disease: Updates in therapeutics, treatment, management, and future directions. In Proceedings of the The Virtual 25th European Hematology Association (EHA25), Frankfurt, Germany, 11–21 June 2020. [Google Scholar]
- Okam, M.M.; Ebert, B.L. Novel approaches to the treatment of sickle cell disease: The potential of histone deacetylase inhibitors. Expert. Rev. Hematol. 2012, 5, 303–311. [Google Scholar] [CrossRef]
- Osunkwo, I.; Manwani, D.; Kanter, J. Current and novel therapies for the prevention of vaso-occlusive crisis in sickle cell disease. Ther. Adv. Hematol. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Engel, E.R.; Howard, A.L.; Ankus, E.J.; Rico, J.F. Advances in sickle cell disease management. Adv. Pediatr. 2020, 67, 57–71. [Google Scholar] [CrossRef]
- Allali, S.; Maciel, T.T.; Hermine, O.; de Montalembert, M. Innate immune cells, major protagonists of sickle cell disease pathophysiology. Haematologica 2020, 105, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Moerdler, S.; Manwani, D. New insights into the pathophysiology and development of novel therapies for sickle cell disease. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 2018, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Vichinsky, E.; Hoppe, C.C.; Ataga, K.I.; Ware, R.E.; Nduba, V.; El-Beshlawy, A.; Hassab, H.; Achebe, M.M.; Alkindi, S.; Brown, R.C. A phase 3 randomized trial of voxelotor in sickle cell disease. N. Engl. J. Med. 2019, 381, 509–519. [Google Scholar] [CrossRef]
- Uchida, N.; Leonard, A.; Stroncek, D.; Panch, S.R.; West, K.; Molloy, E.; Hughes, T.E.; Hauffe, S.; Taylor, T.; Fitzhugh, C. Safe and efficient peripheral blood stem cell collection in patients with sickle cell disease using plerixafor. Haematologica 2020, 105, e497–e501. [Google Scholar] [CrossRef] [Green Version]
- McGann, P.T.; Ware, R.E. Hydroxyurea therapy for sickle cell anemia. Expert. Opin. Drug Saf. 2015, 14, 1749–1758. [Google Scholar] [CrossRef] [Green Version]
- DeBaun, M.R. Hydroxyurea therapy contributes to infertility in adult men with sickle cell disease: A review. Expert. Rev. Hematol. 2014, 7, 767–773. [Google Scholar] [CrossRef]
- Esrick, E.B.; Lehmann, L.E.; Biffi, A.; Achebe, M.; Brendel, C.; Ciuculescu, M.F.; Daley, H.; MacKinnon, B.; Morris, E.; Federico, A.; et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 2020, 384, 205–215. [Google Scholar] [CrossRef]
- Mamrak, N.E.; Shimamura, A.; Howlett, N.G. Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome Fanconi anemia. Blood Rev. 2017, 31, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Lobitz, S.; Velleuer, E. Guido Fanconi (1892–1979): A jack of all trades. Nat. Rev. Cancer 2006, 6, 893–898. [Google Scholar] [CrossRef]
- Bhandari, J.; Thada, P.K.; Puckett, Y. Fanconi anemia. In StatPearls; Treasure Island: London, UK, 2020. [Google Scholar]
- Knies, K.; Inano, S.; Ramírez, M.J.; Ishiai, M.; Surrallés, J.; Takata, M.; Schindler, D. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J. Clin. Investig. 2017, 127, 3013–3027. [Google Scholar] [CrossRef] [Green Version]
- Rogers, C.M.; Simmons III, R.H.; Thornburg, G.E.F.; Buehler, N.J.; Bochman, M.L. Fanconi anemia-independent DNA inter-strand crosslink repair in eukaryotes. Prog. Biophys. Mol. Biol. 2020, 158, 33–46. [Google Scholar] [CrossRef]
- Fang, C.-B.; Wu, H.-T.; Zhang, M.-L.; Liu, J.; Zhang, G.-J. Fanconi anemia pathway: Mechanisms of breast cancer predisposition development and potential therapeutic targets. Front. Cell Dev. Biol. 2020, 8, 160. [Google Scholar] [CrossRef]
- Ceccaldi, R.; Sarangi, P.; D’Andrea, A.D. The Fanconi anaemia pathway: New players and new functions. Nat. Rev. Mol. Cell Biol. 2016, 17, 337. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; D’Andrea, A. Fanconi anemia pathway. Curr. Biol. 2017, 27, R986–R988. [Google Scholar] [CrossRef] [Green Version]
- Milletti, G.; Strocchio, L.; Pagliara, D.; Girardi, K.; Carta, R.; Mastronuzzi, A.; Locatelli, F.; Nazio, F. Canonical and noncanonical roles of fanconi anemia proteins: Implications in cancer predisposition. Cancers 2020, 12, 2684. [Google Scholar] [CrossRef]
- Cheung, R.S.; Taniguchi, T. Recent insights into the molecular basis of Fanconi anemia: Genes, modifiers, and drivers. Int. J. Hematol. 2017, 106, 335–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafqat, S.; Tariq, E.; Parnes, A.D.; Dasouki, M.J.; Ahmed, S.O.; Hashmi, S.K. The role of gene therapy in Fanconi anemia: A systematic and literature review with future directions. Hematol. Oncol. Stem Cell Ther. 2021, S1658-3876, 00026. [Google Scholar]
- Jung, M.; Mehta, P.A.; Jiang, C.S.; Rosti, R.O.; Usleaman, G.; Correa da Rosa, J.M.; Lach, F.P.; Goodridge, E.; Auerbach, A.D.; Davies, S.M. Comparison of the clinical phenotype and haematological course of siblings with Fanconi anaemia. Br. J. Haematol. 2020, 10, 971–975. [Google Scholar]
- Soulier, J. Fanconi anemia. Hematol. Am. Soc. Hematol. Educ. Program. 2011, 2011, 492–497. [Google Scholar] [CrossRef]
- Auerbach, A.D. Fanconi anemia and its diagnosis. Mutat. Res. 2009, 668, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagby, G.C.; Alter, B.P. Fanconi anemia. Semin. Hematol. 2006, 43, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, P.S.; Huang, Y.; Alter, B.P. Individualized risks of first adverse events in patients with Fanconi anemia. Blood 2004, 104, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Bogliolo, M.; Surrallés, J. Fanconi anemia: A model disease for studies on human genetics and advanced therapeutics. Curr. Opin. Genet. Dev. 2015, 33, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xiong, M.; Sun, R.-J.; Zhao, Y.-L.; Zhang, J.-P.; Cao, X.-Y.; Liu, D.-Y.; Wei, Z.-J.; Zhou, J.-R.; Lu, D.-P. Hematopoietic stem cell transplantation for inherited bone marrow failure syndromes: Alternative donor and disease-specific conditioning regimen with unmanipulated grafts. Hematology 2021, 26, 134–143. [Google Scholar] [CrossRef]
- Eyrich, M.; Schulze, H. HLA matching in pediatric stem cell transplantation. Transfus. Med. Hemother. 2019, 46, 348–355. [Google Scholar] [CrossRef]
- Adair, J.E.; Sevilla, J.; Diaz de Heredia, C.; S Becker, P.; Kiem, H.-P.; Bueren, J. Lessons learned from two decades of clinical trial experience in gene therapy for Fanconi anemia. Curr. Gene Ther. 2016, 16, 338–348. [Google Scholar] [CrossRef]
- Verhoeyen, E.; Jose Roman-Rodriguez, F.; Cosset, F.-L.; Levy, C.; Rio, P. Gene therapy in Fanconi anemia: A matter of time, safety and gene transfer tool efficiency. Curr. Gene Ther. 2017, 16, 297–308. [Google Scholar] [CrossRef]
- van de Vrugt, H.J.; Harmsen, T.; Riepsaame, J.; Alexantya, G.; van Mil, S.E.; de Vries, Y.; Ali, R.B.; Huijbers, I.J.; Dorsman, J.C.; Wolthuis, R.M. Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, R.O.; D’Alessandro, A.; Eisenberger, A.; Soffing, M.; Yeh, R.; Coronel, E.; Sheikh, A.; Rapido, F.; La Carpia, F.; Reisz, J.A. Donor glucose-6-phosphate dehydrogenase deficiency decreases blood quality for transfusion. J. Clin. Investig. 2020, 130, 2270–2285. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; Tekwani, B.L. Current investigations on clinical pharmacology and therapeutics of glucose-6-phosphate dehydrogenase deficiency. Pharmacol. Ther. 2020, 107788. [Google Scholar]
- Hassan, M.K.; Saha, A.K.; Kundu, L.C.; Begum, P.; Yousuf, A. Glucose-6-phosphate dehydrogenase deficiency: A case report. Faridpur Med. Coll J. 2017, 12, 47–49. [Google Scholar] [CrossRef] [Green Version]
- Bancone, G.; Chu, C.S. G6PD variants and haemolytic sensitivity to primaquine and other drugs. Front. Pharmacol. 2021, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Carson, P.E.; Flanagan, C.L.; Ickes, C.; Alving, A.S. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 1956, 124, 484–485. [Google Scholar] [CrossRef]
- Kwok, C.J.; Martin, A.C.; Au, S.W.; Lam, V.M. G6PDdb, an integrated database of glucose-6-phosphate dehydrogenase (G6PD) mutations. Hum. Mutat. 2002, 19, 217–224. [Google Scholar] [CrossRef]
- Martini, G.; Toniolo, D.; Vulliamy, T.; Luzzatto, L.; Dono, R.; Viglietto, G.; Paonessa, G.; d’Urso, M.; Persico, M. Structural analysis of the X-linked gene encoding human glucose 6-phosphate dehydrogenase. EMBO J. 1986, 5, 1849–1855. [Google Scholar] [CrossRef]
- Ho, H.-Y.; Cheng, M.-L.; Chiu, D.-Y. Glucose-6-phosphate dehydrogenase–beyond the realm of red cell biology. Free Radic. Res. 2014, 48, 1028–1048. [Google Scholar] [CrossRef] [PubMed]
- Tanphaichitr, V.; Pung-Amritt, P.; Yodthong, S.; Soongswang, J.; Mahasandana, C.; Suvatte, V. Glucose-6-phosphate dehydrogenase deficiency in the newborn: Its prevalence and relation to neonatal jaundice. Southeast Asian J. Trop Med. Public Health 1995, 26, 137–141. [Google Scholar] [PubMed]
- Ademowo, O.; Falusi, A. Molecular epidemiology and activity of erythrocyte G6PD variants in a homogenous Nigerian population. East Afr. Med. J. 2002, 79, 42–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, J.E. Diagnosis and management of G6PD deficiency. Am. Fam. Physician 2005, 72, 1277–1282. [Google Scholar] [PubMed]
- Belfield, K.D.; Tichy, E.M. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency. Am. J. Hosp. Pharm. 2018, 75, 97–104. [Google Scholar] [CrossRef]
- Luzzatto, L.; Nannelli, C.; Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Hematol. Oncol. Clin. N. Am. 2016, 30, 373–393. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008, 371, 64–74. [Google Scholar] [CrossRef]
- Gómez-Manzo, S.; Marcial-Quino, J.; Vanoye-Carlo, A.; Serrano-Posada, H.; Ortega-Cuellar, D.; González-Valdez, A.; Castillo-Rodríguez, R.A.; Hernández-Ochoa, B.; Sierra-Palacios, E.; Rodríguez-Bustamante, E. Glucose-6-phosphate dehydrogenase: Update and analysis of new mutations around the world. Int. J. Mol. Sci. 2016, 17, 2069. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xiu, W.; Dong, Y.; Wang, J.; Zhao, H.; Su, Y.; Zhou, J.; Zeng, Y.; Li, H.; Wo, J. Mutation of glucose-6-phosphate dehydrogenase deficiency in Chinese Han children in eastern Fujian. Medicine 2018, 97, e11553. [Google Scholar] [CrossRef]
- Boonyawat, B.; Phetthong, T.; Suksumek, N.; Traivaree, C. Genotype-phenotype correlation of G6PD mutations among central Thai children with G6PD deficiency. Anemia 2021, 2021, 6680925. [Google Scholar] [CrossRef]
- Pfeffer, D.A.; Ley, B.; Howes, R.E.; Adu, P.; Alam, M.S.; Bansil, P.; Boum, Y.; Brito, M.; Charoenkwan, P.; Clements, A. Quantification of glucose-6-phosphate dehydrogenase activity by spectrophotometry: A systematic review and meta-analysis. PLoS Med. 2020, 17, e1003084. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Sarker, S.K.; Talukder, S.; Bhuyan, G.S.; Rahat, A.; Islam, N.N.; Mahmud, H.; Hossain, M.A.; Muraduzzaman, A.; Rahman, J. High resolution melting curve analysis enables rapid and reliable detection of G6PD variants in heterozygous females. BMC Genet. 2018, 19, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.; Mruk, K.; Rahighi, S.; Raub, A.G.; Chen, C.-H.; Dorn, L.E.; Horikoshi, N.; Wakatsuki, S.; Chen, J.K.; Mochly-Rosen, D. Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.; Kane, M. Pegloticase therapy and G6PD genotype. In Medical Genetics Summaries; NCBI: Bethesda, MD, USA, 2012. [Google Scholar]
- Dean, L.; Kane, M. Rasburicase therapy and G6PD and CYB5R genotype. In Medical Genetics Summaries; NCBI: Bethesda, MD, USA, 2012. [Google Scholar]
- Dean, L.; Kane, M. Tafenoquine therapy and G6PD genotype. In Medical Genetics Summaries; NCBI: Bethesda, MD, USA, 2012. [Google Scholar]
- Motta, I.; Bou-Fakhredin, R.; Taher, A.T.; Cappellini, M.D. Beta thalassemia: New therapeutic options beyond transfusion and iron chelation. Drugs 2020, 80, 1053–1063. [Google Scholar] [CrossRef]
- Weatherall, D.J. The evolving spectrum of the epidemiology of thalassemia. Hematol. Oncol. Clin. N. Am. 2018, 32, 165–175. [Google Scholar] [CrossRef]
- Betts, M.; Flight, P.A.; Paramore, L.C.; Tian, L.; Milenković, D.; Sheth, S. Systematic literature review of the burden of disease and treatment for transfusion-dependent β-thalassemia. Clin. Ther. 2020, 42, 322–337.e322. [Google Scholar] [CrossRef] [PubMed]
- Saeed, U.; Piracha, Z.Z. Thalassemia: Impact of consanguineous marriages on most prevalent monogenic disorders of humans. Asian Pac. J. Trop Dis. 2016, 6, 837–840. [Google Scholar] [CrossRef]
- Apidechkul, T.; Yeemard, F.; Chomchoei, C.; Upala, P.; Tamornpark, R. Epidemiology of thalassemia among the hill tribe population in Thailand. PLoS ONE 2021, 16, e0246736. [Google Scholar] [CrossRef]
- Hassan, T.; Zakaria, M. Updates in thalassemia. In Beta Thalassemia; IntechOpen: London, UK, 2020. [Google Scholar]
- Lal, A. Challenges in chronic transfusion for patients with thalassemia. Hematol. Am. Soc. Hematol. Educ. Program. 2020, 2020, 160–166. [Google Scholar] [CrossRef]
- Shah, F.T.; Sayani, F.; Trompeter, S.; Drasar, E.; Piga, A. Challenges of blood transfusions in β-thalassemia. Blood Rev. 2019, 37, 100588. [Google Scholar] [CrossRef]
- Peyam, S.; Bansal, D. Dual oral iron chelation in thalassemia: Need for obust evidence. Indian J. Pediatr. 2021, 88, 319–321. [Google Scholar] [CrossRef]
- Yasara, N.; Premawardhena, A.; Mettananda, S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: The role revisited during COVID-19 pandemic. Orphanet. J. Rare Dis. 2021, 16, 114. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Mohammadi, R.; Haghpanah, S.; Moghadam, M.; Pazhoomand, R.; Karimi, M. Association of exon 14 of the SOX6 gene sequence variations with response to hydroxyurea therapy in patients carrying non transfusion-dependent thalassemia. Hemoglobin 2020, 44, 406–410. [Google Scholar] [CrossRef]
- Xian, Y.; Xie, Y.; Song, B.; Ou, Z.; Ouyang, S.; Xie, Y.; Yang, Y.; Xiong, Z.; Li, H.; Sun, X. The safety and effectiveness of genetically corrected iPSCs derived from β-thalassaemia patients in nonmyeloablative β-thalassaemic mice. Stem Cell Res. Ther. 2020, 11, 288. [Google Scholar] [CrossRef]
- Anurathapan, U.; Hongeng, S.; Pakakasama, S.; Songdej, D.; Sirachainan, N.; Pongphitcha, P.; Chuansumrit, A.; Charoenkwan, P.; Jetsrisuparb, A.; Sanpakit, K. Hematopoietic stem cell transplantation for severe thalassemia patients from haploidentical donors using a novel conditioning regimen. Biol. Blood Marrow. Transplant. 2020, 26, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Brendel, C.; Negre, O.; Rothe, M.; Guda, S.; Parsons, G.; Harris, C.; McGuinness, M.; Abriss, D.; Tsytsykova, A.; Klatt, D. Preclinical evaluation of a novel lentiviral vector driving lineage-specific BCL11A knockdown for sickle cell gene therapy. Mol. Ther. Methods Clin. Dev. 2020, 17, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Badawy, S.M.; Beg, U.; Liem, R.I.; Chaudhury, S.; Thompson, A.A. A systematic review of quality of life in sickle cell disease and thalassemia after stem cell transplant or gene therapy. Blood Adv. 2021, 5, 570–583. [Google Scholar] [CrossRef]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.-S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef]
- Amjad, F.; Fatima, T.; Fayyaz, T.; Khan, M.A.; Qadeer, M.I. Novel genetic therapeutic approaches for modulating the severity of β-thalassemia (Review). Biomed. Rep. 2020, 13, 48. [Google Scholar] [CrossRef]
- Mao, D.; Reuter, C.M.; Ruzhnikov, M.R.; Beck, A.E.; Farrow, E.G.; Emrick, L.T.; Rosenfeld, J.A.; Mackenzie, K.M.; Robak, L.; Wheeler, M.T. De novo EIF2AK1 and EIF2AK2 variants are associated with developmental delay, leukoencephalopathy, and neurologic decompensation. Am. J. Hum. Genet. 2020, 106, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Du, R.; Dos Santos, G.R.R.M.; Yefidoff-Freedman, R.; Bohm, A.; Halperin, J.; Chorev, M.; Aktas, B.H. New activators of eIF2α kinase heme-regulated inhibitor (HRI) with improved biophysical properties. Eur. J. Med. Chem. 2020, 187, 111973. [Google Scholar] [CrossRef]
- Ricciardi, A.S.; Bahal, R.; Farrelly, J.S.; Quijano, E.; Bianchi, A.H.; Luks, V.L.; Putman, R.; López-Giráldez, F.; Coşkun, S.; Song, E. In utero nanoparticle delivery for site-specific genome editing. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciardi, A.S.; Quijano, E.; Putman, R.; Saltzman, W.M.; Glazer, P.M. Peptide nucleic acids as a tool for site-specific gene editing. Molecules 2018, 23, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Economos, N.G.; Oyaghire, S.; Quijano, E.; Ricciardi, A.S.; Saltzman, W.M.; Glazer, P.M. Peptide nucleic acids and gene editing: Perspectives on structure and repair. Molecules 2020, 25, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansilla-Soto, J.; Riviere, I.; Boulad, F.; Sadelain, M. Cell and gene therapy for the beta-thalassemias: Advances and prospects. Hum. Gene Ther. 2016, 27, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Karponi, G.; Zogas, N. Gene therapy for beta-thalassemia: Updated perspectives. Appl. Clin. Genet. 2019, 12, 167–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biffi, A. Gene therapy as a curative option for β-thalassemia. N. Engl. J. Med. 2018, 378, 1551–1552. [Google Scholar] [CrossRef]
- Thompson, A.A.; Walters, M.C.; Kwiatkowski, J.; Rasko, J.E.; Ribeil, J.-A.; Hongeng, S.; Magrin, E.; Schiller, G.J.; Payen, E.; Semeraro, M. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 2018, 378, 1479–1493. [Google Scholar] [CrossRef]
- Río, P.; Navarro, S.; Bueren, J.A. Advances in gene therapy for Fanconi anemia. Hum. Gene Ther. 2018, 29, 1114–1123. [Google Scholar] [CrossRef]
- Mu, A.; Hira, A.; Niwa, A.; Osawa, M.; Yoshida, K.; Mori, M.; Okamoto, Y.; Inoue, K.; Kondo, K.; Kanemaki, M.T. Analysis of disease model iPSCs derived from patients with a novel Fanconi anemia-like IBMFS ADH5/ALDH2 deficiency. Blood 2021, 137, 2021–2032. [Google Scholar] [CrossRef]
- Melguizo-Sanchis, D.; Xu, Y.; Taheem, D.; Yu, M.; Tilgner, K.; Barta, T.; Gassner, K.; Anyfantis, G.; Wan, T.; Elango, R. iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell Death Dis. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.F.; Calin, G.A.; Picanço-Castro, V.; Kashima, S.; Covas, D.T.; de Castro, F.A. Hematopoietic stem cells from induced pluripotent stem cells–considering the role of microRNA as a cell differentiation regulator. J. Cell Sci. 2018, 131, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, J.; Wernig, M.; Markoulaki, S.; Sun, C.-W.; Meissner, A.; Cassady, J.P.; Beard, C.; Brambrink, T.; Wu, L.-C.; Townes, T.M. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007, 318, 1920–1923. [Google Scholar] [CrossRef] [PubMed]
- Rideout III, W.M.; Hochedlinger, K.; Kyba, M.; Daley, G.Q.; Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 2002, 109, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Orkin, S.H.; Zon, L.I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell 2008, 132, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Ledran, M.H.; Krassowska, A.; Armstrong, L.; Dimmick, I.; Renström, J.; Lang, R.; Yung, S.; Santibanez-Coref, M.; Dzierzak, E.; Stojkovic, M. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 2008, 3, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-B.; Beard, B.C.; Trobridge, G.D.; Wood, B.L.; Sale, G.E.; Sud, R.; Humphries, R.K.; Kiem, H.-P. High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector. J. Clin. Investig. 2008, 118, 1502–1510. [Google Scholar] [CrossRef]
- Kitajima, K.; Minehata, K.-i.; Sakimura, K.; Nakano, T.; Hara, T. In vitro generation of HSC-like cells from murine ESCs/iPSCs by enforced expression of LIM-homeobox transcription factor Lhx2. Blood 2011, 117, 3748–3758. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.-T.; Ye, L.; Xie, F.; Beyer, A.I.; Muench, M.O.; Wang, J.; Chen, Z.; Liu, H.; Chen, S.-J.; Kan, Y.W. Respecifying human iPSC-derived blood cells into highly engraftable hematopoietic stem and progenitor cells with a single factor. Proc. Natl. Acad. Sci. USA 2018, 115, 2180–2185. [Google Scholar] [CrossRef] [Green Version]
- Tsukada, M.; Ota, Y.; Wilkinson, A.C.; Becker, H.J.; Osato, M.; Nakauchi, H.; Yamazaki, S. In vivo generation of engraftable murine hematopoietic stem cells by Gfi1b, c-Fos, and Gata2 overexpression within teratoma. Stem Cell Rep. 2017, 9, 1024–1033. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Yoo, K.H.; Kim, C. Hematopoietic stem cell expansion and generation: The ways to make a breakthrough. Blood Res. 2015, 50, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Gori, J.L.; Butler, J.M.; Chan, Y.-Y.; Chandrasekaran, D.; Poulos, M.G.; Ginsberg, M.; Nolan, D.J.; Elemento, O.; Wood, B.L.; Adair, J.E. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. J. Clin. Investig. 2015, 125, 1243–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Hu, F.; Weng, Q.; Lv, C.; Wu, H.; Liu, L.; Li, Z.; Zeng, Y.; Bai, Z.; Zhang, M. Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res. 2020, 30, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Doulatov, S.; Vo, L.T.; Chou, S.S.; Kim, P.G.; Arora, N.; Li, H.; Hadland, B.K.; Bernstein, I.D.; Collins, J.J.; Zon, L.I. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 2013, 13, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Amabile, G.; Welner, R.S.; Nombela-Arrieta, C.; D’Alise, A.M.; Di Ruscio, A.; Ebralidze, A.K.; Kraytsberg, Y.; Ye, M.; Kocher, O.; Neuberg, D.S. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood 2013, 121, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Yamazaki, S.; Yamaguchi, T.; Okabe, M.; Masaki, H.; Takaki, S.; Otsu, M.; Nakauchi, H. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol. Ther. 2013, 21, 1424–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.-J.; Feng, Q.; Lanza, R. Generation of hemangioblasts from human pluripotent stem cells. In Hematopoietic Differentiation of Human Pluripotent Stem Cells; Springer: Berlin, Germany, 2015. [Google Scholar]
- Lu, S.-J.; Kelley, T.; Feng, Q.; Chen, A.; Reuveny, S.; Lanza, R.; Oh, S.K. 3D microcarrier system for efficient differentiation of human induced pluripotent stem cells into hematopoietic cells without feeders and serum. Regen. Med. 2013, 8, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; David, B.T.; Trawczynski, M.; Fessler, R.G. Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Rev. Rep. 2020, 16, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Robb, G.B. Genome editing with CRISPR-Cas: An overview. Curr. Protoc. Essent. Lab. Tech. 2019, 19, e36. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Wu, Y.; Ren, C.; Bonanno, J.; Shen, A.H.; Shea, D.; Gehrke, J.M.; Clement, K.; Luk, K.; Yao, Q. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 2020, 26, 535–541. [Google Scholar] [CrossRef]
- Benjamin, R.; Berges, B.K.; Solis-Leal, A.; Igbinedion, O.; Strong, C.L.; Schiller, M.R. TALEN gene editing takes aim on HIV. Hum. Genet. 2016, 135, 1059–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal. Transduct. Target. Ther. 2020, 5, 1–23. [Google Scholar] [CrossRef]
- Mussolino, C.; Alzubi, J.; Fine, E.J.; Morbitzer, R.; Cradick, T.J.; Lahaye, T.; Bao, G.; Cathomen, T. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014, 42, 6762–6773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018, 25, 1234–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickar-Oliver, A.; Gersbach, C.A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507. [Google Scholar] [CrossRef]
- Griesbeck, O. CRISPR/Cas9-based directed evolution in mammalian cells. Curr. Opin. Struct. Biol. 2021, 69, 35–40. [Google Scholar] [CrossRef]
- Karimian, A.; Azizian, K.; Parsian, H.; Rafieian, S.; Shafiei-Irannejad, V.; Kheyrollah, M.; Yousefi, M.; Majidinia, M.; Yousefi, B. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J. Cell Physiol. 2019, 234, 12267–12277. [Google Scholar] [CrossRef]
- Chen, F.; Alphonse, M.; Liu, Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1609. [Google Scholar] [CrossRef]
- Li, L.; Hu, S.; Chen, X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018, 171, 207–218. [Google Scholar] [CrossRef]
- Vermersch, E.; Jouve, C.; Hulot, J.-S. CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovasc. Res. 2020, 116, 894–907. [Google Scholar] [CrossRef]
- Akram, F.; Ul Haq, I.; Ahmed, Z.; Khan, H.; Ali, M.S. CRISPR-Cas9, a promising therapeutic tool for cancer therapy: A review. Protein Pept. Lett. 2020, 27, 931–944. [Google Scholar] [CrossRef]
- Vuelta, E.; García-Tuñón, I.; Hernández-Carabias, P.; Méndez, L.; Sánchez-Martín, M. Future approaches for treating chronic myeloid leukemia: CRISPR therapy. Biology 2021, 10, 118. [Google Scholar] [CrossRef]
- Siva, N.; Gupta, S.; Gupta, A.; Shukla, J.N.; Malik, B.; Shukla, N. Genome-editing approaches and applications: A brief review on CRISPR technology and its role in cancer. 3 Biotech 2021, 11, 1–25. [Google Scholar] [CrossRef]
- Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 2011, 188, 773–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef]
- Porteus, M.H.; Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 2005, 23, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Segal, D.J.; Meckler, J.F. Genome engineering at the dawn of the golden age. Annu. Rev. Genom. Hum. Genet. 2013, 14, 135–158. [Google Scholar] [CrossRef] [PubMed]
- Cathomen, T.; Joung, J.K. Zinc-finger nucleases: The next generation emerges. Mol. Ther. 2008, 16, 1200–1207. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas III, C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.; Poirot, L.; Galetto, R.; Smith, J.; Montoya, G.; Duchateau, P.; Pâques, F. Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy. Curr. Gene Ther. 2011, 11, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Pâques, F.; Duchateau, P. Meganucleases and DNA double-strand break-induced recombination: Perspectives for gene therapy. Curr. Gene Ther. 2007, 7, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Tröder, S.E.; Zevnik, B. History of genome editing: From meganucleases to CRISPR. Lab. Anim. 2021, 0023677221994613. [Google Scholar] [CrossRef]
- Munoz, I.G.; Prieto, J.; Subramanian, S.; Coloma, J.; Redondo, P.; Villate, M.; Merino, N.; Marenchino, M.; d’Abramo, M.; Gervasio, F.L. Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res. 2011, 39, 729–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, R.M.; Doherty, A.T. Viral vectors: The road to reducing genotoxicity. Toxicol. Sci. 2017, 155, 315–325. [Google Scholar] [CrossRef] [Green Version]
- McNerney, M.E.; Le Beau, M.M. The harmful consequences of increased fitness in hematopoietic stem cells. Cell Stem Cell 2018, 23, 634–635. [Google Scholar] [CrossRef] [Green Version]
- Fortin, J.; Bassi, C.; Ramachandran, P.; Li, W.Y.; Tian, R.; Zarrabi, I.; Hill, G.; Snow, B.E.; Haight, J.; Tobin, C. Concerted roles of PTEN and ATM in controlling hematopoietic stem cell fitness and dormancy. J. Clin. Investig. 2021, 131, e131698. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Sánchez-Hernández, S.; Gutiérrez-Guerrero, A.; Pinedo-Gomez, J.; Benabdellah, K. Biased and unbiased methods for the detection of off-target cleavage by CRISPR/Cas9: An overview. Int. J. Mol. Sci. 2016, 17, 1507. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Gee, P.; Hotta, A. Minimizing off-target mutagenesis risks caused by programmable nucleases. Int. J. Mol. Sci. 2015, 16, 24751–24771. [Google Scholar] [CrossRef] [Green Version]
- Montiel-Gonzalez, M.F.; Quiroz, J.F.D.; Rosenthal, J.J. Current strategies for site-directed RNA editing using ADARs. Methods 2019, 156, 16–24. [Google Scholar] [CrossRef]
- Babačić, H.; Mehta, A.; Merkel, O.; Schoser, B. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS ONE 2019, 14, e0212198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleditzsch, D.; Pausch, P.; Müller-Esparza, H.; Özcan, A.; Guo, X.; Bange, G.; Randau, L. PAM identification by CRISPR-Cas effector complexes: Diversified mechanisms and structures. RNA Biol. 2019, 16, 504–517. [Google Scholar] [CrossRef]
- Kantor, A.; McClements, M.E.; MacLaren, R.E. CRISPR-Cas9 DNA base-editing and prime-editing. Int. J. Mol. Sci. 2020, 21, 6240. [Google Scholar] [CrossRef]
- Manghwar, H.; Li, B.; Ding, X.; Hussain, A.; Lindsey, K.; Zhang, X.; Jin, S. CRISPR/Cas systems in genome editing: Methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv. Sci. 2020, 7, 1902312. [Google Scholar] [CrossRef]
- Collias, D.; Beisel, C.L. CRISPR technologies and the search for the PAM-free nuclease. Nat. Commun. 2021, 12, 555. [Google Scholar] [CrossRef] [PubMed]
- Ribarits, A.; Eckerstorfer, M.; Simon, S.; Stepanek, W. Genome-edited plants: Opportunities and challenges for an anticipatory detection and identification framework. Foods 2021, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Hoban, M.D.; Cooper, A.R.; Kaufman, M.L.; Kuo, C.Y.; Campo-Fernandez, B.; Lumaquin, D.; Hollis, R.P.; Wang, X.; Kohn, D.B. Characterization of gene alterations following editing of the β-globin gene locus in hematopoietic stem/progenitor cells. Mol. Ther. 2018, 26, 468–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wienert, B.; Wyman, S.K.; Richardson, C.D.; Yeh, C.D.; Akcakaya, P.; Porritt, M.J.; Morlock, M.; Vu, J.T.; Kazane, K.R.; Watry, H.L. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 2019, 364, 286–289. [Google Scholar]
- Akcakaya, P.; Bobbin, M.L.; Guo, J.A.; Malagon-Lopez, J.; Clement, K.; Garcia, S.P.; Fellows, M.D.; Porritt, M.J.; Firth, M.A.; Carreras, A. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 2018, 561, 416–419. [Google Scholar] [CrossRef]
- Richardson, C.D.; Ray, G.J.; Bray, N.; Corn, J. Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Liu, M.; Liu, Y.; Wu, J.; Gan, T.; Zhang, W.; Li, Y.; Zhou, Y.; Hu, J. Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discov. 2019, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Zheng, Y.; Zhao, Z.; Liu, T.; Li, J. Recognition of CRISPR/Cas9 off-target sites through ensemble learning of uneven mismatch distributions. Bioinformatics 2018, 34, i757–i765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, C.; Chen, J.; Miao, Y.; Jinek, M.; Doudna, J.; McCammon, J.; Palermo, G. Deciphering off-target effects in CRISPR-Cas9 through accelerated molecular dynamics. ACS Cent. Sci. 2019, 5, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Shen, J.; Li, D.; Cheng, Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021, 11, 614–648. [Google Scholar] [CrossRef] [PubMed]
- Nardo-Marino, A.; Brousse, V.; Rees, D. Emerging therapies in sickle cell disease. Br. J. Haematol. 2020, 190, 149–172. [Google Scholar] [CrossRef] [PubMed]
- Salinas Cisneros, G.; Thein, S.L. Recent advances in the treatment of sickle cell disease. Front. Physiol. 2020, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.; Tisdale, J.F. Stem cell transplantation in sickle cell disease: Therapeutic potential and challenges faced. Expert. Rev. Hematol. 2018, 11, 547–565. [Google Scholar] [CrossRef] [PubMed]
- Khemani, K.; Katoch, D.; Krishnamurti, L. Curative therapies for sickle cell disease. Ochsner. J. 2019, 19, 131–137. [Google Scholar] [CrossRef] [Green Version]
- El-Cheikh, J.; Crocchiolo, R.; Furst, S.; Bramanti, S.; Sarina, B.; Granata, A.; Vai, A.; Lemarie, C.; Faucher, C.; Mohty, B. Unrelated cord blood compared with haploidentical grafts in patients with hematological malignancies. Cancer 2015, 121, 1809–1816. [Google Scholar] [CrossRef]
- Liu, H.; van Besien, K. Alternative donor transplantation—“Mixing and matching”: The role of combined cord blood and haplo-identical donor transplantation (haplo-cord SCT) as a treatment strategy for patients lacking standard donors? Curr. Hematol. Malig. Rep. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Bertaina, A.; Andreani, M. Major histocompatibility complex and hematopoietic stem cell transplantation: Beyond the classical HLA polymorphism. Int. J. Mol. Sci. 2018, 19, 621. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, S.H.; Rambaldi, B.; Shapiro, R.M.; Romee, R. Key aspects of the immunobiology of haploidentical hematopoietic cell transplantation. Front. Immunol. 2020, 11, 191. [Google Scholar] [CrossRef]
- Frati, G.; Miccio, A. Genome editing for β-hemoglobinopathies: Advances and challenges. J. Clin. Med. 2021, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Gaudelli, N.M.; Lam, D.K.; Rees, H.A.; Solá-Esteves, N.M.; Barrera, L.A.; Born, D.A.; Edwards, A.; Gehrke, J.M.; Lee, S.-J.; Liquori, A.J. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 2020, 38, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, J.M.; Cervantes, O.; Clement, M.K.; Wu, Y.; Zeng, J.; Bauer, D.E.; Pinello, L.; Joung, J.K. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 2018, 36, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Nayerossadat, N.; Maedeh, T.; Ali, P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res. 2012, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wen, R.; Yang, Z.; Chen, Z. Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene Ther. 2021. [Google Scholar] [CrossRef]
- Río, P.; Navarro, S.; Wang, W.; Sánchez-Domínguez, R.; Pujol, R.M.; Segovia, J.C.; Bogliolo, M.; Merino, E.; Wu, N.; Salgado, R. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat. Med. 2019, 25, 1396–1401. [Google Scholar] [CrossRef]
- Luzzatto, L.; Ally, M.; Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood J. Am. Soc. Hematol. 2020, 136, 1225–1240. [Google Scholar]
- Origa, R. β-Thalassemia. Genet. Med. 2017, 19, 609–619. [Google Scholar] [CrossRef] [Green Version]
Trial Phase(s) | Drug Compounds (and Explanation) |
---|---|
Phase I RCT | Metformin, Aes-103, SCD-101 (NCT02380079), and NKTT120 (NCT01783691) |
Phase I | Ambrisentan (NCT02712346) Decitabine + tetrahydrouridine or THU (NCT01685515) Plerixafor mobilization and apheresis (NCT03226691–multicenter study) Citrulline * (NCT02314689, NCT02697240) Zileuton (NCT01136941–SAOL) Panobinostat or LBH589 (NCT01245179) INCB059872 (NCT03132324) |
Phase I/II RCT | Voxelotor or GBT440 (NCT02850406) |
Phase I/II | Arginine (NCT02447874–open-label randomized crossover design), rivipansel or GMI-1070 (NCT00911495–SAOL, NCT01119833–RDBPC, and NCT02187003–RDBPC), omega-3 fatty acids (NCT02947100–SAOL), N-acetylcysteine (NCT01800526–SAOL), and Simvastatin (NCT0050802–SAOL, NCT01702246–SAOL) |
Phase II RCT | Crizanlizumab, rivipansel, intravenous Ig, or IVIG (NCT01757418–RDBPC), dalteparin, sevuparin, eptifibatide, prasugrel, haptoglobin, oral or intravenous nitrite, inhaled nitric oxide, hemopexin/haptoglobin, MP4CO, various antioxidants, canakinumab, montelukast, and simvastatin. |
Phase II | Atorvastatin (NCT01732718), Arginine (NCT01796678–RDBPC, NCT02536170–RDBPC, and NCT00004412–open-label randomized design), Mometasone (NCT02061202), Montelukast (NCT01960413), Omega-3 fatty acids (NCT02973360–RDBPC), AMD 3100 or Mozobil (plerixafor) (NCT00075335), Riociguat (NCT02633397–RDBPC), and IW-1701 (NCT03285178–RDBPC). |
Phase III RCT | Arginine, senicapoc, tinzaparin, ticagrelor, rivipansel (GMI-1070), crizanlizumab (NCT03814746), and antioxidants. |
Phase III | Glutamine (NCT01179217–RDBPC), Omega-3 fatty acids (NCT02525107, NCT02604368), and N-acetylcysteine (NCT01849016–RDBPC). |
FDA-approved | l-glutamine, hydroxyurea, crizanlizumab, or SEG101 (NCT1895361–RDBPC, NCT03264989–SAOL, and NCT03474965–SAOL). |
Under investigation | TLR4 inhibition, DNAse-1, anakinra, and vitamin D. |
Classification | Types | Transfusions | Explanation | |
---|---|---|---|---|
Thalassemia minor | α-thalassemia trait β-thalassemia trait Homozygous HbE/C HbE or C trait | Seldom required | ||
Thalassemia intermedia | β-thalassemia intermedia HbC/β-thalassemia | Mild HbE/β-thalassemia, HbH with β-thalassemia trait | Occasionally required | Non-transfusion-dependent thalassemia: (NTDT) |
Deletional HbH, nondeletional HbH, moderate HbE/β-thalassemia EF Bart’s disease, AE Bart’s disease | Intermittently required | |||
Thalassemia major | Nondeletional HbH Survived Hb Bart’s hydrops β-thalassemia major Severe HbE/β-thalassemia | Regular, lifelong transfusion required | Transfusion-dependent thalassemia (TDT) |
Cell Source(s) | Differentiated into | Methods | Engraftment Assay Result | References |
---|---|---|---|---|
Human iPSCs | HSPCs | Monolayer method to generate HPSCs and transduction of HPSCs using MLL-AF4 | B and T cells and myeloid engraftment at the 8th week | [9,137] |
Mouse iPSCs | HSPCs | Transduction of iPSCs using Gfi1b, c-Fos, and Gata2 followed by teratoma formation in vivo in mice. HSPCs were taken from bone marrow | B and T cells and myeloid engraftment at the 16th week | [9,138,139] |
Human iPSCs | HSPCs | Teratoma formation in vivo by subcutaneous transplantation with or without OP9 feeder cells and cytokines. HSPCs were taken from the bone marrow | B and T cells and myeloid engraftment at the 4th and 12th weeks | [9,139] |
Monkey iPSCs | CD34+ HSCs | Embryoid body formation followed by culture on E4ORF1-transduced HUC–derived primary endothelial cells, and sorting of CD34+ HSCs | Myeloid, lymphoid, and erythroid engraftment at the 12th and 16th weeks | [9,139,140] |
Mouse iPSCs | T cells | Transduction using Runx1 and Hoxa9 followed by embryoid body formation, sorting of hemogenic endothelial cells, and culture on OP9-DL1 cells | T-cell engraftment at the 4th and 6th weeks | [9,139,141] |
Human iPSCs | CD34+ CD45+ HSCs | Embryoid body formation using BMP4 and cytokines followed by sorting of CD34+ and CD45+ cells, and transduction using HOXA9, ERG, RORA, SOX4, and MYB to increase engraftment capacity | Erythroid and myeloid engraftment at the 4th and 5th weeks | [9,139,142] |
Human iPSCs | CD34+ CD45+ HPSCs | iPSC alone or co injection with OP9, OP9W3a, or OP9D to induce teratoma in mice followed by HPSC isolation from teratoma | Human HPSC engraftment in the spleen and lymph node at the 8th week | [9,139,143] |
Mouse and human iPSCs | HSCs | iPSCs co injected with OP9 stromal cells into mice to form teratomas. HSCs were taken from the bone marrow | From mouse iPSCs blood cells engraftment at the 4th and 12th weeks From Human iPSCs erythrocytes and CD3+ T cells engraftment at 8 weeks | [9,139,144] |
Human iPSCs | Hemangioblasts | Culture on the MEF feeder layer | Not assayed | [9,139,145] |
Human iPSCs | Hemangioblasts | 3D culture using Matrigel-coated microcarrier. | Not assayed | [9,146,147] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anurogo, D.; Yuli Prasetyo Budi, N.; Thi Ngo, M.-H.; Huang, Y.-H.; Pawitan, J.A. Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. Int. J. Mol. Sci. 2021, 22, 6275. https://doi.org/10.3390/ijms22126275
Anurogo D, Yuli Prasetyo Budi N, Thi Ngo M-H, Huang Y-H, Pawitan JA. Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. International Journal of Molecular Sciences. 2021; 22(12):6275. https://doi.org/10.3390/ijms22126275
Chicago/Turabian StyleAnurogo, Dito, Nova Yuli Prasetyo Budi, Mai-Huong Thi Ngo, Yen-Hua Huang, and Jeanne Adiwinata Pawitan. 2021. "Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing" International Journal of Molecular Sciences 22, no. 12: 6275. https://doi.org/10.3390/ijms22126275
APA StyleAnurogo, D., Yuli Prasetyo Budi, N., Thi Ngo, M. -H., Huang, Y. -H., & Pawitan, J. A. (2021). Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. International Journal of Molecular Sciences, 22(12), 6275. https://doi.org/10.3390/ijms22126275