Next Article in Journal
PML Differentially Regulates Growth and Invasion in Brain Cancer
Previous Article in Journal
TAFRO Syndrome with Renal Thrombotic Microangiopathy: Insights into the Molecular Mechanism and Treatment Opportunities
Previous Article in Special Issue
Immunology and Immunotherapeutic Approaches for Advanced Renal Cell Carcinoma: A Comprehensive Review
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations

1
Department of Pneumology, CHU Rouen, 76000 Rouen, France
2
Department of Pathology, CHU Rouen, 76000 Rouen, France
3
QuantIF Team, LITIS Lab EA4108, UNIROUEN, Normandie University, 76000 Rouen, France
4
Inserm CIC CRB 1404, CHU Rouen, 76000 Rouen, France
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2021, 22(12), 6288; https://doi.org/10.3390/ijms22126288
Submission received: 6 May 2021 / Revised: 4 June 2021 / Accepted: 8 June 2021 / Published: 11 June 2021
(This article belongs to the Special Issue Immune Response to Cancer: From Tumor Onset to Therapeutic Approach)

Abstract

:
Anti-PD1/PD-L1 immunotherapy has emerged as a standard of care for stage III-IV non-small cell lung cancer (NSCLC) over the past decade. Patient selection is usually based on PD-L1 expression by tumor cells and/or tumor mutational burden. However, mutations in oncogenic drivers such as EGFR, ALK, BRAF, or MET modify the immune tumor microenvironment and may promote anti-PD1/PD-L1 resistance. In this review, we discuss the molecular mechanisms associated with these mutations, which shape the immune tumor microenvironment and may impede anti-PD1/PD-L1 efficacy. We provide an overview of the current clinical data on anti-PD1/PD-L1 efficacy in NSCLC with oncogenic driver mutation.

1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide, with an estimated 1.76 million deaths in 2018 (18.4% of total cancer deaths) [1]. Overall lung cancer has a poor prognosis, with 18.6% of patients surviving 5 years [2]. Approximately 80% of lung cancer cases are attributed to cigarette smoking [3], while 10–25% occur in never smokers [4]. Exposure to environmental carcinogens such as asbestos, radon gas, or other forms of pollution are the other main causes [5].
Lung cancer is classified in two major types: small cell lung cancer (SCLC), which accounts for 15–20% of lung cancer patients, and non-small cell lung cancer (NSCLC), comprising the remaining 80–85% [6] and subclassified in three major histological subtypes: adenocarcinoma (40% of all lung cancer cases), squamous cell carcinoma (20% of all lung cancer cases), and large cell carcinoma (LCC) [7]. Adenocarcinoma is the predominant subtype in never smokers [7]. Over the past two decades, genomic studies of large cohorts have unraveled a complex molecular landscape of lung tumors.
Current guidelines for the diagnosis and management of adenocarcinoma include histological subtyping and molecular analysis. In fact, targeted therapies for several oncogenic alterations have been developed and improve patients’ outcomes (Table 1). In stage IV adenocarcinoma patients, EGFR, ALK, ROS1, BRAF, MET, RET, HER2, KRAS, and NTRK are assessed to offer targeted therapy for eligible patients [8,9]. Alterations in these so-called “actionable” oncogenes are usually mutually exclusive, which indicates that these individual genes are capable of driving lung cancer progression.
Since 2015, anti-programmed death 1 (PD1) or anti-programmed death-ligand 1 (PD-L1) immunotherapy has emerged as a gold-standard treatment for first- or second-line treatment of stage IV NSCLC, either in monotherapy or in combination with chemotherapy, after several clinical trials demonstrated their benefits over chemotherapy in second and then first-line treatment (Table 2). In most of these studies, patients whose tumor harbored oncogenic alterations (particularly EGFR mutations and ALK and ROS1 rearrangement) were excluded. In fact, efficacy of anti-PD1/PD-L1 immunotherapy was thought to be scarce in EGFR-mutated NSCLC. As a result, few clinical data are available in this subset of patients.
Anti-PD1/PD-L1 immunotherapy acts by blocking an inhibitory lymphocyte receptor, PD1, though releasing the anti-tumor immune cytotoxicity [53].
Table 2. Results of the main trials evaluating anti-PD1/PD-L1 monotherapy in stage IV NSCLC.
Table 2. Results of the main trials evaluating anti-PD1/PD-L1 monotherapy in stage IV NSCLC.
HistologyPDL1nORR (%) *OS (mo) *Ref.
First-line
NivolumabNSCLC>5%27126 vs. 3313.7 vs. 13.8[54]
PembrolizumabNSCLC>50%15445 vs. 2830 vs. 14.2[55]
NSCLC>1%63827 vs. 2716.7 vs. 12.1[56]
AtezolizumabNSCLC>1%27738.3 vs. 28.620.2 vs. 13.1[57]
DurvalumabNSCLC>25%36935.6 vs. 37.716.3 vs. 12.9[58]
CemiplimabNSCLC>50%28337 vs. 2122.1 [17.5-NR] vs. 14.2[59]
Second- or third-line
NivolumabSquamousAll13520 vs. 99.2 vs. 6[60]
AdenocarcinomaAll29219 vs. 1212.2 vs. 9.4[61]
PembrolizumabNSCLC>1%34418 vs. 9.310.4 vs. 8.5[62]
AtezolizumabNSCLCAll42514 vs. 1313.8 vs. 9.6[63]
n: number of patients in the experimental arm. ORR: objective response rate. OS: overall survival. * comparison of ORR and OS data is given in the following format: experimental arm (anti-PD1/PD-L1) versus standard of care arm (chemotherapy).
Expression of PD-L1 by tumor and immune cells, high tumor mutational burden (TMB), and tumor infiltration by immune cells are key features associated with a better efficacy of anti-PD1/PD-L1 immunotherapy in stage IV NSCLC [64]. By modeling these 3 characteristics, oncogenic driver mutations may impede anti-PD1/PD-L1 efficacy [65]. In this review, we discuss the immune-related parameters associated with actionable oncogenic driver mutations and provide an overview of the current clinical data on anti-PD1/PD-L1 efficacy in NSCLC with such mutations.

2. NSCLC Actionable Oncogenic Drivers and the Immune Micro-Environment

2.1. PDL1 Expression in NSCLC with Actionable Oncogenic Driver Mutation

Contradictory results have been reported regarding PD-L1 expression in EGFR-mutated NSCLC (Table 3). Early reports showed upregulation of PD-L1 in EGFR-mutated NSCLC cell lines and animal models [66,67] as well as some patient data [68,69,70]. Noteworthy, PD-L1 assessment in these studies used various non-standardized assays. The most recent studies used clinically validated assays and tested samples from treatment-naïve patients. A pooled analysis of 15 public studies gathering 1050 EGFR-mutated NSCLC patients showed that patients with EGFR mutations had decreased PD-L1 expression (odds ratio: 1.79, 95% CI: 1.10–2.93; p = 0.02) [71]. This was consistent with data from 237 lung adenocarcinomas from The Cancer Genome Atlas [72] and with a recent report on 336 treatment-naïve patients with EGFR-mutated NSCLC [73].
In 319 patients with EGFR-mutant NSCLC, Cho et al. showed that PD-L1 expression is more prevalent in stage II-IV than in stage I tumors, and in exon 19 deletion than in L858R mutation [74].
When a tumor progresses after EGFR targeted therapy, EGFR T790M mutation is found in 50% of cases. Tumors that are T790M negative are more likely to express PD-L1 and patients may have greater benefit from anti-PD1/PD-L1 therapy in this setting [75,76]. In a recent paper, PDL1 expression was found to be higher in EGFR T790M positive after progression on Osimertinib: 5/10 had PD-L1 expression > 1% after progression vs. 0/10 at baseline [77]. Among other EGFR mutations, exon 20 insertions were associated with a higher frequency of PD-L1 expression [78,79].
In 111 NSCLC patients with MET exon 14 skipping mutations, Sabari et al. found a higher PD-L1 expression than expected from the above-mentioned studies, with 22%, and 41% having PD-L1 expression of 1–49%, and ≥ 50%, respectively [80]. This result was confirmed in a recent analysis [81]. Nevertheless, the median TMB of MET exon 14-altered lung cancers was lower than that of unselected NSCLCs. Similar results were recently reported in two series of 14 and 20 NSCLC patients with MET exon 14 skipping mutations [82,83].
Among 122 patients with HER2-mutated NSCLC, PD-L1 expression was found to be low, with 13% of patients having PD-L1 expression over 50% [84]. In another study, 1/9 patient had PDL-1 over 50% [85]. Similarly, no tumors had PD-L1 expression over 50% in two other series of 15 and 13 HER2-mutated NSCLC patients [82,83]. In the latter series, TMB was ≤5 Mut/Mb in all 13 cases. Recently, two more studies reported data on 13 and 21 HER2-mutated NSCLC patients, respectively, showing that 3/13 had a PD-L1 expression > 50% [79] and 4/21 tumors a PD-L1 expression > 1% [78].
A retrospective cohort of 39 patients with BRAF-mutant NSCLC (21 V600E- and 18 non-V600E) was recently reported, showing that 45% of patients had high PDL-1 expression (>50%) [86]. In this study, TMB was ≥20 Mut/Mb in 25% of BRAF V600E tumors but 0% of non-V600E mutant tumors. Similar findings were reported in 18 BRAF-mutant NSCLC (9 V600E and 9 non-V600E) [82].
Data for other oncogenic drivers are scarce. In ALK-rearranged NSCLC, PD-L1 expression over 50% was reported in 5/19, 4/10, 0/11, and 2/9 tumors [83,87,88,89]. NTRK gene fusions in NSCLC may be associated with higher TMB and PD-L1 expression than other molecularly defined subgroups [90]. In KRAS G12C mutation NSCLC, PD-L1 expression was reported to be ≥ 1% in 16/40 tumors [91]. Controversial data have been reported for ROS1 and RET rearranged NSCLC [82,83,85,88,92,93,94].

2.2. Immunogenicity and Lymphocyte Infiltration of NSCLC with Actionable Oncogenic Driver Mutation

The infiltration of CD8+ T lymphocytes has been found to reduce in EGFR-mutated NSCLCs compared to those with EGFR WT [71,73,95].
In a study of 336 treatment-naïve EGFR-mutated NSCLC, authors also provided evidence for a low immunogenicity of EGFR-mutated NSCLC by analyzing the TCGA data and an independent validation cohort of patients [73]. They found that patients with EGFR mutation had lower TMB than those with EGFR wild-type. More importantly, there was a significant difference in TMB between EGFR-sensitive (exon 19Del, L858R, L861Q, G719X, S768I) and EGFR-resistant/unknown mutations: from the TCGA cohort, the EGFR-sensitive mutant group showed a significantly lower TMB than the resistant/unknown group (median: 60 vs. 283; p < 0.001). This was confirmed in a recent study analyzing 153 patients with EGFR-mutant lung cancer [96].
Similar results were found in another study in 100 patients from Japan: 10 NSCLC had a high-TMB (>20 mutations/Mb), among whom 2 harbored a driver mutation (1 ALK rearrangement and 1 HER2 mutation), whereas 57 of the 90 specimens with low-TMB harbored an actionable oncogenic driver mutation (ALK, ROS1, or RET rearrangement or EGFR, HER2, or MET mutation) (p < 0.05) [97].
Table 3. PD-L1 expression in NSCLC with actionable oncogenic driver mutation.
Table 3. PD-L1 expression in NSCLC with actionable oncogenic driver mutation.
GeneStudyPopulationPD-L1 StatusRef.
<1%≥1%≥50%
EGFRLiu, 2018EGFR+, all, n = 34178%22% [73]
  T790M+, n = 3286%14%
  T790M-, n = 30974%26%
Hata, 2017EGFR+, all, n = 6751%49%<1%[76]
  T790M+, n = 2669%31%0%
  T790M-, n = 4139%61%2%
Cho, 2018EGFR+, all, n = 31948%52%8%[74]
  Del19, n = 14548%52%6%
  L858R, n = 12162%38%7%
Yoneshima, 2018EGFR+, all, n = 7057%43%10%[89]
  Del19, n = 4050%50%13%
  L858R, n = 3067%33%7%
Lau, 2020EGFR+, all, n = 1729%71%41%[79]
  Del19/L858R, n = 1323%77%38%
  Ex20ins, n = 450%50%50%
Mazieres, 2019EGFR+, all, n = 4937%63%29%[83]
Gainor, 2016EGFR+, pre-TKI, n = 6276%24%11%[87]
EGFR+, post-TKI, n = 6369%31%14%
Karatrasoglou, 2020EGFR+, n = 1844%56%6%[88]
Rangachari, 2017EGFR+, n = 13 0%[92]
Chen, 2020EGFR Ex20ins, n = 3551%49% [78]
KRAS G12CTao, 2020KRAS G12C, n = 4060%40% [91]
MET exon 14Sabari, 2018MET exon 14, n = 11137%63%41%[80]
Mazieres, 2019MET exon 14, n = 2025%75%46%[83]
Guisier, 2020MET exon 14, n = 148%92%79%[85]
Dudnik, 2018MET exon 14, n:922%78%67%[82]
BRAFDudnik, 2018BRAF, all, n = 2931%69%45%[86]
  V600E, n = 1936%74%42%
  nonV600E, n = 1040%60%50%
Guisier, 2020BRAF+, all, n = 2124%76%57%[85]
  V600E, n = 1421%79%71%
  nonV600E, n = 739%71%29%
Dudnik, 2018BRAF+, all, n = 1331%69%38%[82]
  V600E, n = 825%75%25%
  nonV600E, n = 540%60%60%
Mazieres, 2019BRAF+, n = 1030%70%56%[83]
HER2Lai, 2018HER2+, n = 8777%23% [84]
Chen, 2020HER2+, n = 2181%19% [78]
Mazieres, 2019HER2+, n = 1547%53%0%[83]
Lau, 2020HER2+, n = 1338%62%23%[79]
Guisier, 2020HER2+, n = 850%50%13%[85]
ALKGainor, 2016ALK+, pre-TKI, n = 1937%63%26%[87]
ALK+, post-TKI, n = 1258%42%17%
Mazieres, 2019ALK+, n = 1136%64%40%[83]
Karatrasoglou, 2020ALK+, n = 1155%45%0%[88]
ROS1Dudnik, 2018ROS1+, n = 520%80%40%[82]
Mazieres, 2019ROS1+, n = 50%100%60%[83]
RETMazieres, 2019RET+, n = 825%75%50%[83]
Dudnik, 2018RET+, n = 850%50%13%[82]
Guisier, 2020RET+, n = 862%38%25%[85]
TKI: tyrosine kinase inhibitor.

3. Clinical Data on Anti-PD1/PD-L1 Efficacy in NSCLC with Actionable Oncogenic Driver Alterations

Few NSCLC patients with actionable oncogenic driver mutations were included in the pivotal clinical trials evaluating anti-PD1 therapy and the only available data concern EGFR (Table 4). A phase 2 trial was initiated to evaluate Pembrolizumab in the EGFR+ population, specifically. Enrollment was ceased for lack of efficacy after the first 11 patients were treated [98]. Only one patient had an objective response, but repeat analysis of this patient’s tumor definitively showed the original report of an EGFR mutation to be erroneous.
In a meta-analysis of three trials that compared an anti-PD1/PD-L1 immunotherapy to a second- or third-line chemotherapy with docetaxel, 185 patients had EGFR-mutated NSCLC. In this subgroup, there was no benefit of immunotherapy over chemotherapy: HR for OS 1.05 (0.70–1.55) [99].
Of note, combination of anti-PD-L1 therapy with chemotherapy demonstrated some efficacy [100,101]. The IMPOWER 150 trial compared a four-drug regimen with Atezolizumab, Bevacizumab, Carboplatin, and Paclitaxel (ABCP) with ACP and BCP as first-line treatment in stage IV NSCLC. Among patients with EGFR-mutated NSCLC (n = 79), overall survival was longer in the ABCP arm (not reached), although the difference was not significant (HR 0.61 (0.29–1.28)). Similar results were found in PFS, with a significant advantage to the ABCP regimen over the BCP regimen in the subgroup of patients that were previously treated with EGFR inhibitors (HR 0.42, IC95 (0.22–0.80)). These results suggest that the combination of immunotherapy plus chemotherapy plus anti-VEGF is a promising regimen for patients failing TKIs [100].
Since 2015 and the advent of anti-PD1 in routine practice, some real-world data have been published (Table 3). The largest study of this kind was the ImmunoTarget multicentric worldwide retrospective study [83], which gathered 125 EGFR, 43 BRAF, 36 MET, 29 HER2, 23 ALK, 16 RET, and 7 ROS1 NSCLC patients treated with anti-PD1 (92%) or anti-PD-L1, mostly in second- (42%), third- (26%) or later treatment lines (27%).
Overall real-world studies show a lack of efficacy of anti-PD1/PD-L1 monotherapy for EGFR, ALK, and HER2 subgroups, and mixed results for RET and ROS1 patients, with a lower number of patients reported so far. On the other hand, BRAF and MET patients had similar benefits of anti-PD1/PD-L1 therapy as compared to patients with no known driver mutation.
Recently, Yamada et al. reported a series of 27 EGFR-mutated NSCLC patients treated with anti-PD1/PD-L1 immunotherapy. They showed that uncommon EGFR mutations were associated with a higher response rate and longer PFS than common activating EGFR mutations and/or T790M mutation [102]. Two other retrospective studies also reported ORR in exon 20 EGFR-mutated NSCLC patients treated with anti-PD1/PD-L1 immunotherapy. In these studies 3/6 and 2/9 EGFR-Ex20ins patients exhibited a tumor response [78,79].
In line with the above-mentioned results of anti-PD1/PD-L1 immunotherapy in EGFR- or HER2-mutated stage IV NSCLC, a recent retrospective analysis of patients with unresectable stage III NSCLC treated with consolidation durvalumab after definitive chemoradiation reported a shorter PFS in the EGFR- or HER2-mutated NSCLC patients subgroup (7.5 mo vs. not reached, p = 0.04) [103].
Table 4. Clinical data on anti-PD1 efficacy in NSCLC with actionable oncogenic driver alterations.
Table 4. Clinical data on anti-PD1 efficacy in NSCLC with actionable oncogenic driver alterations.
Study Main ResultsRef.
Randomized Clinical Trials
CheckMate 057Nivolumab
vs. Docetaxel
EGFR (n = 82): HR 1.38 (0.69–2)[61]
ALK (n = 21): no subgroup analysis
Keynote 010Pembrolizumab
vs. Docetaxel
EGFR (n = 86): HR 0.89 (0.45–1.70)[62]
ALK (n = 8): no subgroup analysis
OAKAtezolizumab
vs. Docetaxel
EGFR (n = 85): HR 1.24 (0.71–2.18)[63]
ALK (n = 2): no subgroup analysis
Atlantic (phase II)DurvalumabEGFR/ALK (n = 107)[104]
ORR: 16%, OS: 12.3, PFS 1.9
IMPOWER 150AtezolizumabBCP
vs. BCP
EGFR (n = 79):[100,101]
HR for OS 0.61 (0.36–1.03)
Subgroup previously treated by TKI (n = 50): HR for OS 0.39 (0.14–1.07); HR for PFS 0.42 (0.22–0.80)
ALK (n = 31): no subgroup analysis
Real-world Studies
Gainor, 201628 EGFR/ALK+
vs. 30 WT
RR 3.6% vs. 23.3%[87]
Dudnik, 201812 BRAF V600ERR 25%, PFS 3.7 (1.6–6.6)[86]
10 other BRAFRR 33% PFS 4.1 (0.1–19.6)
Sabari, 201824 METex14RR 17% (6–36), PFS 1.9 (1.7–2.7)[80]
Rizvi, 201817 EGFR, 7 ROS1, 9 BRAF, 2 ALK, 2 RETDurable clinical benefit in 2 EGFR, 4 BRAF, 2HER2 and 1 ROS1 patients[64]
Liu, 20186 EGFR1 1 ALK1 EGFR with partial response[73]
Garassino, 2018102 EGFR+
vs. 1293 WT
RR 8.8% vs. 19.6% *[105]
OS 8.3 vs. 11.0 *
Wei-Chu, 201826 HER2RR 12%, PFS 1.9, OS 10.4[84]
Mazieres, 2019125 EGFRRR 12%, PFS 2.1[83]
43 BRAFRR 24%, PFS 3.1
36 METRR 16%, PFS 3.4
29 HER2RR 7%, PFS 2.5
23 ALKRR 0%, PFS 2.5
16 RETRR 6%, PFS 2.1
7 ROS1RR 17%
Morita, 2019116 EGFROS 12.1 vs. 14.6 *
PFS 1.5 vs. 2.3 *
RR 8.6% vs. 22.6 *
[106]
Bylicki, 202042 EGFROS 13.9 (8.8–20), PFS 2.2 (1.4–3.2)
8 ALKOS 19.2 (13.1-NR), PFS 2.4 (2.1-NR)
1 ROS1OS 2.8, PFS 1.4
Barlesi, 202044 EGFROS 8.1 vs. 12.2[107]
Guisier, 202026 BRAF V600RR 26%, PFS 5.3, OS 22.5[85]
18 BRAF NV600RR 35%, PFS 5.3, OS 12
30 METRR 36%, PFS 4.9, OS 13.4
23 HER 2 RR 27%, PFS 2.2, OS 20.4
9 RETRR 37%, PFS 7.6, OS NR
Lau, 202128 EGFR SMRR 11%, PFS 1.7,[79]
6 EGFR-Ex20insRR 50%, PFS 4.8,
14 HER 2RR 29%, PFS 3.6
Chen, 20219 EGFR-Ex20insRR 22%[78]
6 HER2-Ex20insRR 0%
Yamada, 202120 common EGFRRR 10%, PFS 1.6[102]
7 uncommon EGFRRR 57%, PFS 8.5
BCP: Bevacizumab + carboplatin + paclitaxel, SM: sensitizing mutations, WT: wild-type, RR: response rate, PFS: progression-free survival, OS: overall survival. PFS and OS are given in months. * comparisons are shown between EGFR-mutated and EGFR wild type NSCLC patients.

4. Future Directions

Use of anti-PD1/PD-L1 monotherapy in NSCLC harboring common EGFR mutation or ALK rearrangement can be ruled out as a standard strategy given the bad outcomes of patients treated in this setting. After EGFR/ALK TKI failure, the combination of chemo-immunotherapy with an antiangiogenic agent is under investigation (NCT04042558) and may improve outcomes over chemotherapy alone or combined with an antiangiogenic agent.
In KRAS or BRAF mutated NSCLC, anti-PD1/PD-L1 immunotherapy exhibits high efficacy. As more targeted therapies are developed in this setting, the question is now to evaluate the best sequence and/or combination of treatments. KRAS G12C inhibitors sotorasib and adagrasib have a favorable safety profile that may allow combination with anti-PD1/PD-L1 treatment, a strategy that is under investigation for first-line treatment (NCTXXX). BRAF V600E inhibition with anti-BRAF and anti-MEK inhibitors is associated with more toxicities, which may preclude their use in combination with anti-PD1/PD-L1 agents. Comparison of first-line treatment with TKIs or chemo-immunotherapy is needed in this setting. The same question is arising for MET and HER2 mutated as new targeted therapies are being developed and reach first- or second-line treatment.
For other rare targetable drivers, data is too scarce to draw definitive conclusions about the place of anti-PD1/PD-L1. Gathering large cohorts of patients in this setting is challenging but collaborative efforts are ongoing such as the RET-MAP study.

5. Conclusions

NSCLC with driver mutations represent a challenging population for the clinician as large clinical trials often do not take into account the particular biology of these subgroups. Preclinical data are useful for evidence-based decisions, but real-world studies are particularly important to assess their relevance. Network efforts to gather large cohort should be encouraged in this perspective.
Anti-PD1/PD-L1 therapy has been a revolution in the field of advanced NSCLC, notably by improving the prognosis of stage IV disease. It gave rise to a whole new population of patients, the long-term survivors, who did not exist in that setting before the immunotherapy era. Nevertheless, here we showed that some subgroups of patients do not derive a benefit from these drugs, particularly patients with EGFR- or HER2-mutated or ALK-rearranged NSCLC. On the other hand, BRAF- and MET-mutated NSCLC seem to be as sensitive to anti-PD1/PD-L1 immunotherapy as unselected NSCLC. Patient selection using validated biomarkers and inclusion in clinical trials are key to improve their outcome. Biomarker studies beyond PDL-1 expression are needed and achievable in EGFR, ALK, BRAF, HER2, RET, NTRK, KRAS G12C, and MET-mutated NSCLC patients.

Author Contributions

Conceptualization, validation and writing—review and editing, all authors; writing—original draft preparation, E.D. and F.G.; supervision, F.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

F.G. reports personal fees from BMS, MSD/MERCK US, ASTRA ZENECA, BOEHRINGER INGELHEIM, Amgen, and ROCHE, and non-financial support from BMS, BOEHRINGER INGELHEIM, CHUGAI, and PFIZER, outside the submitted work.

References

  1. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Noone, A.-M.; Cronin, K.A.; Altekruse, S.F.; Howlader, N.; Lewis, D.R.; Petkov, V.I.; Penberthy, L. Cancer Incidence and Survival Trends by Subtype Using Data from the Surveillance Epidemiology and End Results Program, 1992–2013. Cancer Epidemiol. Prev. Biomark. 2017, 26, 632–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Ridge, C.A.; McErlean, A.M.; Ginsberg, M.S. Epidemiology of lung cancer. In Seminars in Interventional Radiology; Thieme Medical Publishers: New York, NY, USA, 2013; Volume 30, pp. 93–98. [Google Scholar]
  4. Thun, M.J.; Hannan, L.M.; Adams-Campbell, L.L.; Boffetta, P.; Buring, J.E.; Feskanich, D.; Flanders, W.D.; Jee, S.H.; Katanoda, K.; Kolonel, L.N.; et al. Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies. PLoS Med. 2008, 5, e185. [Google Scholar] [CrossRef] [PubMed]
  5. Cruz, C.S.D.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med. 2011, 32, 605–644. [Google Scholar] [CrossRef] [Green Version]
  6. Pikor, L.A.; Ramnarine, V.R.; Lam, S.; Lam, W.L. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 2013, 82, 179–189. [Google Scholar] [CrossRef] [Green Version]
  7. Chen, Z.; Fillmore, C.M.; Hammerman, P.S.; Kim, C.F.; Wong, K.-K. Non-small-cell lung cancers: A heterogeneous set of diseases. Nat. Rev. Cancer 2014, 14, 535–546. [Google Scholar] [CrossRef]
  8. Barlesi, F.; Mazieres, J.; Merlio, J.-P.; Debieuvre, D.; Mosser, J.; Lena, H.; Ouafik, L.H.; Besse, B.; Rouquette, I.; Westeel, V.; et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 2016, 387, 1415–1426. [Google Scholar] [CrossRef]
  9. Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. 2021, 157, 103194. [Google Scholar] [CrossRef]
  10. Zhou, C.; Wu, Y.-L.; Chen, G.; Feng, J.; Liu, X.-Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011, 12, 735–742. [Google Scholar] [CrossRef]
  11. Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef]
  12. Park, K.; Tan, E.-H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.-H.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016, 17, 577–589. [Google Scholar] [CrossRef]
  13. Wu, Y.-L.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Tsuji, F.; Linke, R.; Rosell, R.; Corral, J.; et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 1454–1466. [Google Scholar] [CrossRef]
  14. Shi, Y.; Zhang, L.; Liu, X.; Zhou, C.; Zhang, S.; Wang, D.; Li, Q.; Qin, S.; Hu, C.; Zhang, Y.; et al. Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): A randomised, double-blind phase 3 non-inferiority trial. Lancet Oncol. 2013, 14, 953–961. [Google Scholar] [CrossRef]
  15. Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in UntreatedEGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
  16. Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.I.; Piotrowska, Z.; Costa, D.B.; Tsao, A.S.; Patel, J.D.; Gadgeel, S.M.; Bazhenova, L.; et al. Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase 1/2 Trial. Cancer Discov. 2021. [Google Scholar] [CrossRef]
  17. Le, X.; Goldman, J.W.; Clarke, J.M.; Tchekmedyian, N.; Piotrowska, Z.; Chu, D.; Bhat, G.; Lebel, F.M.; Socinski, M.A. Poziotinib shows activity and durability of responses in subgroups of previously treated EGFR exon 20 NSCLC patients. J. Clin. Oncol. 2020, 38 (Suppl. 15), 9514. [Google Scholar] [CrossRef]
  18. Solomon, B.J.; Mok, T.; Kim, D.-W.; Wu, Y.-L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef] [Green Version]
  19. Soria, J.-C.; Tan, D.S.W.; Chiari, R.; Wu, Y.-L.; Paz-Ares, L.; Wolf, J.; Geater, S.L.; Orlov, S.; Cortinovis, D.; Yu, C.-J.; et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK -rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet 2017, 389, 917–929. [Google Scholar] [CrossRef]
  20. Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Coudert, B.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef]
  21. Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M.J.; Li, J.Y.-C.; Chang, G.-C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef]
  22. Solomon, B.J.; Besse, B.; Bauer, T.M.; Felip, E.; Soo, R.A.; Camidge, D.R.; Chiari, R.; Bearz, A.; Lin, C.-C.; Gadgeel, S.M.; et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: Results from a global phase 2 study. Lancet Oncol. 2018, 19, 1654–1667. [Google Scholar] [CrossRef]
  23. Paik, P.K.; Drilon, A.; Fan, P.D.; Yu, H.; Rekhtman, N.; Ginsberg, M.S. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015, 5, 842–849. [Google Scholar] [CrossRef] [Green Version]
  24. Drilon, A.; Clark, J.; Weiss, J.; Ou, S.; Camidge, D.; Solomon, B.; Otterson, G.; Villaruz, L.; Riely, G.; Heist, R.; et al. OA12.02 Updated Antitumor Activity of Crizotinib in Patients with MET Exon 14-Altered Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, S348. [Google Scholar] [CrossRef] [Green Version]
  25. Wang, S.X.; Zhang, B.M.; Wakelee, H.A.; Koontz, M.Z.; Pan, M.; Diehn, M.; Kunder, C.A.; Neal, J.W. Case series of MET exon 14 skipping mutation-positive non-small-cell lung cancers with response to crizotinib and cabozantinib. Anti Cancer Drugs 2019, 30, 537–541. [Google Scholar] [CrossRef]
  26. Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef]
  27. Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
  28. Lu, S.; Fang, J.; Li, X.; Cao, L.; Zhou, J.; Guo, Q.; Liang, Z.; Cheng, Y.; Jiang, L.; Yang, N.; et al. Phase II study of savolitinib in patients (pts) with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations (METex14+). J. Clin. Oncol. 2020, 38 (Suppl. 15), 9519. [Google Scholar] [CrossRef]
  29. Hyman, D.M.; Puzanov, I.; Subbiah, V.; Faris, J.E.; Chau, I.; Blay, J.-Y.; Wolf, J.L.; Raje, N.S.; Diamond, E.L.; Hollebecque, A.; et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N. Engl. J. Med. 2015, 373, 726–736. [Google Scholar] [CrossRef]
  30. Planchard, D.; Kim, T.M.; Mazieres, J.; Quoix, E.; Riely, G.; Barlesi, F. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: A single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 642–650. [Google Scholar] [CrossRef] [Green Version]
  31. Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, A. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef]
  32. Mazieres, J.; Peters, S.; Lepage, B.; Cortot, A.B.; Barlesi, F.; Beau-Faller, M. Lung cancer that harbors an HER2 mutation: Epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol. 2013, 31, 1997–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Mazières, J.; Barlesi, F.; Filleron, T.; Besse, B.; Monnet, I.; Beau-Faller, M.; Peters, S.; Dansin, E.; Früh, M.; Pless, M.; et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: Results from the European EUHER2 cohort. Ann. Oncol. 2016, 27, 281–286. [Google Scholar] [CrossRef] [PubMed]
  34. Hyman, D.M.; Piha-Paul, S.A.; Won, H.; Rodon, J.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nat. Cell Biol. 2018, 554, 189–194. [Google Scholar] [CrossRef] [PubMed]
  35. Lai, W.V.; Lebas, L.; Barnes, T.A.; Milia, J.; Ni, A.; Gautschi, O.; Peters, S.; Ferrara, R.; Plodkowski, A.J.; Kavanagh, J.; et al. Afatinib in patients with metastatic or recurrent HER2-mutant lung cancers: A retrospective international multicentre study. Eur. J. Cancer 2019, 109, 28–35. [Google Scholar] [CrossRef]
  36. Lung Cancer Patients with HER2 Mutations Treated with Chemotherapy and HER2-Targeted Drugs: Results from the European EUHER2 Cohort—Annals of Oncology [Internet]. Available online: https://www.annalsofoncology.org/article/S0923-7534(19)35565-6/fulltext (accessed on 10 June 2021).
  37. Shaw, A.T.; Ou, S.-H.I.; Bang, Y.-J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef] [Green Version]
  38. Lim, S.M.; Kim, H.R.; Lee, J.S.; Lee, K.H.; Lee, Y.G.; Min, Y.J. Phase II Study of Ceritinib in Patients With Non-Small-Cell Lung Cancer Harboring ROS1 Rearrangement. J. Clin. Oncol. 2017, 35, 2613–2618. [Google Scholar] [CrossRef]
  39. Shaw, A.T.; Felip, E.; Bauer, T.M.; Besse, B.; Navarro, A.; Postel-Vinay, S.; Gainor, J.F.; Johnson, M.; Dietrich, J.; James, L.P.; et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: An international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017, 18, 1590–1599. [Google Scholar] [CrossRef]
  40. Guisier, F.; Piton, N.; Salaun, M.; Thiberville, L. ROS1-rearranged NSCLC With Secondary Resistance Mutation: Case Report and Current Perspectives. Clin. Lung Cancer 2019, 20, e593–e596. [Google Scholar] [CrossRef]
  41. Drilon, A.; Siena, S.; Dziadziuszko, R.; Barlesi, F.; Krebs, M.G.; Shaw, A.T.; de Braud, F.; Rolfo, C.; Ahn, M.-J.; Wolf, J.; et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 261–270. [Google Scholar] [CrossRef]
  42. Lee, S.-H.; Lee, J.-K.; Ahn, M.-J.; Kim, D.-W.; Sun, J.-M.; Keam, B.; Kim, T.M.; Heo, D.S.; Ahn, J.S.; Choi, Y.-L.; et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: A phase II clinical trial. Ann. Oncol. 2017, 28, 292–297. [Google Scholar] [CrossRef]
  43. Drilon, A.; Rekhtman, N.; Arcila, M.; Wang, L.; Ni, A.; Albano, M.; Van Voorthuysen, M.; Somwar, R.; Smith, R.S.; Montecalvo, J.; et al. Cabozantinib in patients with advanced RET -rearranged non-small-cell lung cancer: An open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016, 17, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
  44. Oxnard, G.; Subbiah, V.; Park, K.; Bauer, T.; Wirth, L.; Velcheti, V.; Shah, M.; Besse, B.; Boni, V.; Reckamp, K.; et al. OA12.07 Clinical Activity of LOXO-292, a Highly Selective RET Inhibitor, in Patients with RET Fusion+ Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, S349–S350. [Google Scholar] [CrossRef]
  45. Gainor, J.F.; Lee, D.H.; Curigliano, G.; Doebele, R.C.; Kim, D.-W.; Baik, C.S.; Tan, D.S.-W.; Lopes, G.; Gadgeel, S.M.; Cassier, P.A.; et al. Clinical activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients (pts) with advanced RET-fusion+ non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2019, 37 (Suppl. 15), 9008. [Google Scholar] [CrossRef]
  46. Drilon, A.; Oxnard, G.R.; Tan, D.S.; Loong, H.H.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
  47. Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
  48. Roth, J.A.; Carlson, J.J.; Xia, F.; Williamson, T.; Sullivan, S.D. The Potential Long-Term Comparative Effectiveness of Larotrectinib and Entrectinib for Second-Line Treatment of TRK Fusion-Positive Metastatic Lung Cancer. J. Manag. Care Spéc. Pharm. 2020, 26, 981–986. [Google Scholar] [CrossRef]
  49. Hyman, D.; Kummar, S.; Farago, A.; Geoerger, B.; Mau-Sorensen, M.; Taylor, M.; Garralda, E.; Nagasubramanian, R.; Natheson, M.; Song, L.; et al. Abstract CT127: Phase I and expanded access experience of LOXO-195 (BAY 2731954), a selective next-generation TRK inhibitor (TRKi). Cancer Res. 2019, 79 (Suppl. 13), CT127. [Google Scholar]
  50. Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef]
  51. Riely, G.J.; Ou, S.I.; Rybkin, I.; Spira, A.; Papadopoulos, K.; Sabari, J.K.; Johnson, M.; Heist, R.S.; Bazhenova, L.; Barve, M.; et al. 99O_PR KRYSTAL-1: Activity and preliminary pharmacodynamic (PD) analysis of adagrasib (MRTX849) in patients (Pts) with advanced non–small cell lung cancer (NSCLC) harboring KRASG12C mutation. J. Thorac. Oncol. 2021, 16, S751–S752. [Google Scholar] [CrossRef]
  52. Shi, Y.; Au, J.S.; Thongprasert, S.; Srinivasan, S.; Tsai, C.M.; Khoa, M.T. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J. Thorac. Oncol. 2014, 9, 154–162. [Google Scholar] [CrossRef] [Green Version]
  53. Ribas, A. Tumor Immunotherapy Directed at PD-1. N. Engl. J. Med. 2012, 366, 2517–2519. [Google Scholar] [CrossRef] [Green Version]
  54. Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef]
  55. Reck, M.; Rodríguez–Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
  56. Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
  57. Herbst, R.S.; Giaccone, G.; De Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
  58. Rizvi, N.A.; Cho, B.C.; Reinmuth, N.; Lee, K.H.; Luft, A.; Ahn, M.-J.; van den Heuvel, M.M.; Cobo, M.; Vicente, D.; Smolin, A.; et al. Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-line Treatment of Metastatic Non-Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 661–674. [Google Scholar] [CrossRef] [Green Version]
  59. Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
  60. Brahmer, J.; Reckamp, K.L.; Baas, P.; Crino, L.; Eberhardt, W.E.; Poddubskaya, E. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
  61. Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
  62. Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Perez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
  63. Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
  64. Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; et al. Molecular Determinants of Response to Anti–Programmed Cell Death (PD)-1 and Anti–Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non–Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J. Clin. Oncol. 2018, 36, 633–641. [Google Scholar] [CrossRef] [PubMed]
  65. Bylicki, O.; Paleiron, N.; Margery, J.; Guisier, F.; Vergnenegre, A.; Robinet, G.; Auliac, J.-B.; Gervais, R.; Chouaid, C. Targeting the PD-1/PD-L1 Immune Checkpoint in EGFR-Mutated or ALK-Translocated Non-Small-Cell Lung Cancer. Target. Oncol. 2017, 12, 563–569. [Google Scholar] [CrossRef] [PubMed]
  66. Rech, A.J.; Vonderheide, R.H. Dynamic Interplay of Oncogenes and T Cells Induces PD-L1 in the Tumor Microenvironment. Cancer Discov. 2013, 3, 1330–1332. [Google Scholar] [CrossRef] [Green Version]
  67. Chen, N.; Fang, W.; Zhan, J.; Hong, S.; Tang, Y.; Kang, S.; Zhang, Y.; He, X.; Zhou, T.; Qin, T.; et al. Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. J. Thorac. Oncol. 2015, 10, 910–923. [Google Scholar] [CrossRef] [Green Version]
  68. Azuma, K.; Ota, K.; Kawahara, A.; Hattori, S.; Iwama, E.; Harada, T.; Matsumoto, K.; Takayama, K.; Takamori, S.; Kage, M.; et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann. Oncol. 2014, 25, 1935–1940. [Google Scholar] [CrossRef]
  69. D’Incecco, A.; Andreozzi, M.; Ludovini, V.; Rossi, E.; Capodanno, A.; Landi, L.; Tibaldi, C.; Minuti, G.; Salvini, J.; Coppi, E.; et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br. J. Cancer 2015, 112, 95–102. [Google Scholar] [CrossRef] [Green Version]
  70. Tang, Y.; Fang, W.; Zhang, Y.; Hong, S.; Kang, S.; Yan, Y.; Chen, N.; Zhan, J.; He, X.; Qin, T.; et al. The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget 2015, 6, 14209–14219. [Google Scholar] [CrossRef] [Green Version]
  71. Dong, Z.Y.; Zhang, J.T.; Liu, S.Y.; Su, J.; Zhang, C.; Xie, Z. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology 2017, 6, 1356145. [Google Scholar] [CrossRef] [Green Version]
  72. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef]
  73. Liu, S.-Y.; Dong, Z.-Y.; Wu, S.-P.; Xie, Z.; Yan, L.-X.; Li, Y.-F.; Yan, H.-H.; Su, J.; Yang, J.-J.; Zhou, Q.; et al. Clinical relevance of PD-L1 expression and CD8+ T cells infiltration in patients with EGFR-mutated and ALK-rearranged lung cancer. Lung Cancer 2018, 125, 86–92. [Google Scholar] [CrossRef]
  74. Cho, J.H.; Zhou, W.; Choi, Y.-L.; Sun, J.-M.; Choi, H.; Kim, T.-E.; Dolled-Filhart, M.; Emancipator, K.; Rutkowski, M.A.; Kim, J. Retrospective Molecular Epidemiology Study of PD-L1 Expression in Patients with EGFR-Mutant Non-small Cell Lung Cancer. Cancer Res. Treat. 2018, 50, 95–102. [Google Scholar] [CrossRef]
  75. Haratani, K.; Hayashi, H.; Tanaka, T.; Kaneda, H.; Togashi, Y.; Sakai, K.; Hayashi, K.; Tomida, S.; Chiba, Y.; Yonesaka, K.; et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann. Oncol. 2017, 28, 1532–1539. [Google Scholar] [CrossRef]
  76. Programmed Death-Ligand 1 Expression and T790M Status in EGFR-Mutant Non-Small Cell Lung Cancer—ScienceDirect [Internet]. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0169500217304014 (accessed on 10 June 2021).
  77. Yu, Y.; Xia, L.; Zhou, J.; Wang, K.; Zhang, Y.; Zhang, C.; Liu, A.; Fan, Y.; Chang, J.; Wang, L.; et al. 147P PD-L1 expression influenced by osimertinib treatment in advanced EGFR T790M-positive non-small cell lung cancer patients. J. Thorac. Oncol. 2021, 16, S778. [Google Scholar] [CrossRef]
  78. Immune Microenvironment Features and Efficacy of PD-1/PD-L1 Blockade in Non-Small Cell Lung Cancer Patients with EGFR or HER2 Exon 20 Insertions—PubMed [Internet]. Available online: https://pubmed.ncbi.nlm.nih.gov/33210451/ (accessed on 10 June 2021).
  79. Lau, S.C.; Fares, A.F.; Le, L.W.; Mackay, K.M.; Soberano, S.; Chan, S.W.; Smith, E.; Ryan, M.; Tsao, M.S.; Bradbury, P.A.; et al. Subtypes of EGFR- and HER2-Mutant Metastatic NSCLC Influence Response to Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021. [Google Scholar] [CrossRef]
  80. Sabari, J.K.; Leonardi, G.C.; Shu, C.A.; Umeton, R.; Montecalvo, J.; Ni, A.; Chen, R.; Dienstag, J.; Mrad, C.; Bergagnini, I.; et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann. Oncol. 2018, 29, 2085–2091. [Google Scholar] [CrossRef]
  81. Schoenfeld, A.J.; Rizvi, H.; Bandlamudi, C.; Sauter, J.L.; Travis, W.D.; Rekhtman, N.; Plodkowski, A.J.; Perez-Johnston, R.; Sawan, P.; Beras, A.; et al. Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas. Ann. Oncol. 2020, 31, 599–608. [Google Scholar] [CrossRef]
  82. Dudnik, E.; Bshara, E.; Grubstein, A.; Fridel, L.; Shochat, T.; Roisman, L.C.; Ilouze, M.; Rozenblum, A.B.; Geva, S.; Zer, A.; et al. Rare targetable drivers (RTDs) in non-small cell lung cancer (NSCLC): Outcomes with immune check-point inhibitors (ICPi). Lung Cancer 2018, 124, 117–124. [Google Scholar] [CrossRef]
  83. Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.; Mezquita, L.; Thai, A.; Mascaux, C.; Couraud, S.; Veillon, R.; et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the immunotarget registry. Ann. Oncol. 2019, 30, 1321–1328. [Google Scholar] [CrossRef]
  84. Lai, W.-C.V.; Feldman, D.L.; Buonocore, D.J.; Brzostowski, E.B.; Rizvi, H.; Plodkowski, A.J.; Ni, A.; Sabari, J.K.; Offin, M.D.; Kris, M.G.; et al. PD-L1 expression, tumor mutation burden and response to immune checkpoint blockade in patients with HER2-mutant lung cancers. J. Clin. Oncol. 2018, 36, 9060. [Google Scholar] [CrossRef]
  85. Guisier, F.; Dubos-Arvis, C.; Viñas, F.; Doubre, H.; Ricordel, C.; Ropert, S.; Janicot, H.; Bernardi, M.; Fournel, P.; Lamy, R.; et al. Efficacy and Safety of Anti-PD-1 Immunotherapy in Patients With Advanced NSCLC With BRAF, HER2, or MET Mutations or RET Translocation: GFPC 01-2018. J. Thorac. Oncol. 2020, 15, 628–636. [Google Scholar] [CrossRef] [PubMed]
  86. Dudnik, E.; Peled, N.; Nechushtan, H.; Wollner, M.; Onn, A.; Agbarya, A.; Moskovitz, M.; Keren, S.; Popovits-Hadari, N.; Urban, D.; et al. BRAF Mutant Lung Cancer: Programmed Death Ligand 1 Expression, Tumor Mutational Burden, Microsatellite Instability Status, and Response to Immune Check-Point Inhibitors. J. Thorac. Oncol. 2018, 13, 1128–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Gainor, J.F.; Shaw, A.T.; Sequist, L.V.; Fu, X.; Azzoli, C.G.; Piotrowska, Z.; Huynh, T.G.; Zhao, L.; Fulton, L.; Schultz, K.R.; et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non–Small Cell Lung Cancer: A Retrospective Analysis. Clin. Cancer Res. 2016, 22, 4585–4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. Karatrasoglou, E.A.; Chatziandreou, I.; Sakellariou, S.; Stamopoulos, K.; Kavantzas, N.; Lazaris, A.C.; Korkolopoulou, P.; Saetta, A.A. Association between PD-L1 expression and driver gene mutations in non-small cell lung cancer patients: Correlation with clinical data. Virchows Arch. 2020, 477, 207–217. [Google Scholar] [CrossRef]
  89. Yoneshima, Y.; Ijichi, K.; Anai, S.; Ota, K.; Otsubo, K.; Iwama, E. PD-L1 expression in lung adenocarcinoma harboring EGFR mutations or ALK rearrangements. Lung Cancer 2018, 118, 36–40. [Google Scholar] [CrossRef]
  90. Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef] [Green Version]
  91. Tao, L.; Miao, R.; Mekhail, T.; Sun, J.; Meng, L.; Fang, C.; Guan, J.; Jain, A.; Du, Y.; Allen, A.; et al. Prognostic Value of KRAS Mutation Subtypes and PD-L1 Expression in Patients With Lung Adenocarcinoma. Clin. Lung Cancer 2020. [Google Scholar] [CrossRef]
  92. Rangachari, D.; VanderLaan, P.A.; Shea, M.; Le, X.; Huberman, M.S.; Kobayashi, S.S. Correlation between Classic Driver Oncogene Mutations in EGFR, ALK, or ROS1 and 22C3-PD-L1 >/=50% Expression in Lung Adenocarcinoma. J. Thorac. Oncol. 2017, 12, 878–883. [Google Scholar] [CrossRef] [Green Version]
  93. Remon, J.; Hendriks, L.; Cabrera, C.; Reguart, N.; Besse, B. Immunotherapy for oncogenic-driven advanced non-small cell lung cancers: Is the time ripe for a change? Cancer Treat. Rev. 2018, 71, 47–58. [Google Scholar] [CrossRef]
  94. Cai, L.; Duan, J.; Qian, L.; Wang, Z.; Wang, S.; Li, S.; Wang, C.; Zhao, J.; Zhang, X.; Bai, H.; et al. ROS1 Fusion Mediates Immunogenicity by Upregulation of PD-L1 After the Activation of ROS1–SHP2 Signaling Pathway in Non-Small Cell Lung Cancer. Front. Immunol. 2020, 11, 527750. [Google Scholar] [CrossRef]
  95. Chen, X.; Xiaoxia, C.; Likun, H.; Jun, Q.; Tao, J.; Caicun, Z.; Maciej, C.; Yuchen, B.; Bai, Y.; Hou, L.; et al. PD-L1 expression and its effect on clinical outcomes of EGFR-mutant NSCLC patients treated with EGFR-TKIs. Cancer Biol. Med. 2018, 15, 434–442. [Google Scholar]
  96. Offin, M.; Rizvi, H.; Tenet, M.; Ni, A.; Sanchez-Vega, F.; Li, B.T.; Drilon, A.; Kris, M.G.; Rudin, C.M.; Schultz, N.; et al. Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Lung Cancers. Clin. Cancer Res. 2019, 25, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
  97. Nagahashi, M.; Sato, S.; Yuza, K.; Shimada, Y.; Ichikawa, H.; Watanabe, S.; Takada, K.; Okamoto, T.; Okuda, S.; Lyle, S.; et al. Common driver mutations and smoking history affect tumor mutation burden in lung adenocarcinoma. J. Surg. Res. 2018, 230, 181–185. [Google Scholar] [CrossRef] [Green Version]
  98. Lisberg, A.; Cummings, A.; Goldman, J.W.; Bornazyan, K.; Reese, N.; Wang, T. A Phase II Study of Pembrolizumab in EGFR-Mutant, PD-L1+, Tyrosine Kinase Inhibitor Naive Patients With Advanced NSCLC. Lung Cancer 2018, 13, 1138–1145. [Google Scholar]
  99. Lee, C.K.; Man, J.; Lord, S.; Links, M.; Gebski, V.; Mok, T.; Yang, J.C.-H. Checkpoint Inhibitors in Metastatic EGFR- Mutated Non–Small Cell Lung Cancer—A Meta-Analysis. J. Thorac. Oncol. 2017, 12, 403–407. [Google Scholar] [CrossRef] [Green Version]
  100. Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
  101. Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
  102. Yamada, T.; Hirai, S.; Katayama, Y.; Yoshimura, A.; Shiotsu, S.; Watanabe, S.; Kikuchi, T.; Hirose, K.; Kubota, Y.; Chihara, Y.; et al. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR-mutated non-small cell lung cancer. Cancer Med. 2019, 8, 1521–1529. [Google Scholar] [CrossRef]
  103. Hellyer, J.A.; Aredo, J.V.; Das, M.; Ramchandran, K.; Padda, S.K.; Neal, J.W.; Wakelee, H.A. Role of Consolidation Durvalumab in Patients With EGFR- and HER2-Mutant Unresectable Stage III NSCLC. J. Thorac. Oncol. 2021, 16, 868–872. [Google Scholar] [CrossRef]
  104. Garassino, M.C.; Cho, B.-C.; Kim, J.-H.; Mazières, J.; Vansteenkiste, J.; Lena, H.; Jaime, J.C.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 521–536. [Google Scholar] [CrossRef]
  105. Garassino, M.C.; Gelibter, A.J.; Grossi, F.; Chiari, R.; Parra, H.S.; Cascinu, S.; Cognetti, F.; Turci, D.; Blasi, L.; Bengala, C.; et al. Italian Nivolumab Expanded Access Program in Nonsquamous Non–Small Cell Lung Cancer Patients: Results in Never-Smokers and EGFR-Mutant Patients. J. Thorac. Oncol. 2018, 13, 1146–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Morita, R.; Okishio, K.; Shimizu, J.; Saito, H.; Sakai, H.; Kim, Y.H.; Hataji, O.; Yomota, M.; Nishio, M.; Aoe, K.; et al. Real-world effectiveness and safety of nivolumab in patients with non-small cell lung cancer: A multicenter retrospective observational study in Japan. Lung Cancer 2020, 140, 8–18. [Google Scholar] [CrossRef] [Green Version]
  107. Barlesi, F.; Dixmier, A.; Debieuvre, D.; Raspaud, C.; Auliac, J.B.; Benoit, N.; Bombaron, P.; Moro-Sibilot, D.; Audigier-Valette, C.; Asselain, B.; et al. Effectiveness and safety of nivolumab in the treatment of lung cancer patients in France: Preliminary results from the real-world EVIDENS study. Oncoimmunology 2020, 9, 174489. [Google Scholar] [CrossRef] [Green Version]
Table 1. Actionable oncogene alterations in NSCLC and corresponding targeted therapies.
Table 1. Actionable oncogene alterations in NSCLC and corresponding targeted therapies.
Gene AlterationFreq.Targeted TherapyRef.
EGFR activating mutations15–50%Erlotinib[10]
Gefitinib[11]
Afatinib[12]
Dacominib[13]
Icotinib[14]
Osimertinib[15]
Mobocertinib[16]
Poziotinib[17]
ALK rearrangement4%Crizotinib[18]
Ceritinib[19]
Alectinib[20]
Brigatinib[21]
Lorlatinib[22]
MET exon 14 skipping mutations4%Crizotinib[23,24]
Cabozantinib[25]
Capmatinib[26]
Tepotinib[27]
Savolitinib[28]
BRAF mutations3%Vemurafenib[29]
Dabrafenib[30]
Dabrafenib + Trametinib[31]
HER2 mutations3%Trastuzumab[32]
Neratinib[33,34]
Afatinib[35]
Lapatinib[36]
ROS1 rearrangement1–2%Crizotinib[37]
Ceritinib[38]
Lorlatinib[39,40]
Entrectinib[41]
RET rearrangement1–2%Vandetanib[42]
Cabozantinib[43,44]
Pralsetinib[45]
Selpercatinib[46]
NTRK fusion<1%Entrectinib[47,48]
Larotrectinib[48]
Selitrectinib[49]
Kras G12C mutation13%Sotorasib[50]
Adagrasib[51]
Adagrasib
Freq.: percentage among non-squamous NSCLC [8,9,52].
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Dantoing, E.; Piton, N.; Salaün, M.; Thiberville, L.; Guisier, F. Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations. Int. J. Mol. Sci. 2021, 22, 6288. https://doi.org/10.3390/ijms22126288

AMA Style

Dantoing E, Piton N, Salaün M, Thiberville L, Guisier F. Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations. International Journal of Molecular Sciences. 2021; 22(12):6288. https://doi.org/10.3390/ijms22126288

Chicago/Turabian Style

Dantoing, Edouard, Nicolas Piton, Mathieu Salaün, Luc Thiberville, and Florian Guisier. 2021. "Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations" International Journal of Molecular Sciences 22, no. 12: 6288. https://doi.org/10.3390/ijms22126288

APA Style

Dantoing, E., Piton, N., Salaün, M., Thiberville, L., & Guisier, F. (2021). Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations. International Journal of Molecular Sciences, 22(12), 6288. https://doi.org/10.3390/ijms22126288

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop