Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models
Abstract
:1. Introduction
2. Clinical Features of Neuropathic Orofacial Pain
3. Potential Molecular Targets for Treating PTNP
3.1. Animal Models of PTNP
3.2. Potential Molecular Targets in the Trigeminal Pathway for Treating PTNP
3.3. Efficacy of Clinically Used Drugs
3.4. Therapeutic Candidates Which Modulate Potential Molecular Targets
4. Potential Molecular Targets for Treating PTN
4.1. Animal Models of PTN
4.2. Molecular Expression and Biological Processes Occurring in the Trigeminal Pathway
4.3. Efficacy of Clinically Used Drugs
4.4. Therapeutic Candidates Which Modulate Potential Molecular Targets for Treating PTN
5. Challenges for Developing Better Therapies for Neuropathic Orofacial Pain
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zakrzewska, J.M.; Hamlyn, P.J. Epidemiology of Pain; Crombie IKCPR, L.S., LeResche, L., Von Korff, M., Eds.; IASP Press: Seattle, WA, USA, 1999; pp. 171–202. [Google Scholar]
- International Classification of Orofacial Pain, 1st edition (ICOP). Cephalalgia 2020, 40, 129–221. [CrossRef] [Green Version]
- Sukenaga, N.; Matsuki, Y.; Maeda, L.; Nagai, T.; Hashimoto, K.; Takao, Y.; Hirose, M. Neuropathic Characteristics In Patients With Persistent Idiopathic Facial Pain. J. Pain Res. 2019, 12, 2801–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benoliel, R.; Gaul, C. Persistent idiopathic facial pain. Cephalalgia 2017, 37, 680–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haviv, Y.; Zadik, Y.; Sharav, Y.; Benoliel, R. Painful Traumatic Trigeminal Neuropathy: An Open Study on the Pharmacotherapeutic Response to Stepped Treatment. J. Oral Facial Pain Headache 2014, 28, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Araya, E.I.; Claudino, R.F.; Piovesan, E.J.; Chichorro, J.G. Trigeminal Neuralgia: Basic and Clinical Aspects. Curr. Neuropharmacol. 2020, 18, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Maarbjerg, S.; Di Stefano, G.; Bendtsen, L.; Cruccu, G. Trigeminal neuralgia—diagnosis and treatment. Cephalalgia 2017, 37, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Sugawara, S.; Watanabe, K.; Hong, C.; Tu, T.T.H.; Watanabe, T.; Sakamoto, J.; Yoshino, N.; Suga, T.; Mikuzuki, L.; et al. Differences in the Clinical Characteristics of Persistent Idiopathic Facial Pain (Atypical Odontalgia) Patients with or Without Neurovascular Compression of the Trigeminal Nerve. Pain Med. 2020, 21, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Araújo-Filho, H.G.; Pereira, E.W.; Campos, A.R.; Quintans-Júnior, L.J.; Quintans, J.S. Chronic orofacial pain animal models—Progress and challenges. Expert Opin. Drug Discov. 2018, 13, 949–964. [Google Scholar] [CrossRef]
- Baad-Hansen, L.; Benoliel, R. Neuropathic orofacial pain: Facts and fiction. Cephalalgia 2017, 37, 670–679. [Google Scholar] [CrossRef] [Green Version]
- Niraj, G.; Simpson, L.; Raithatha, B. Interventional Management of Refractory Trigeminal Neuropathic Pain: A Prospective Audit of a Novel Management Pathway in 70 Patients. Pain Physician 2020, 23, e525–e534. [Google Scholar] [CrossRef]
- Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [CrossRef]
- Gambeta, E.; Chichorro, J.G.; Zamponi, G.W. Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Mol. Pain 2020, 16, 1744806920901890. [Google Scholar] [CrossRef] [Green Version]
- Cruccu, G.; Finnerup, N.; Jensen, T.S.; Scholz, J.; Sindou, M.; Svensson, P.; Treede, R.-D.; Zakrzewska, J.M.; Nurmikko, T. Trigeminal neuralgia: New classification and diagnostic grading for practice and research. Neurology 2016, 87, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Love, S. Trigeminal neuralgia: Pathology and pathogenesis. Brain 2001, 124, 2347–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannetta, P.J. Arterial Compression of the Trigeminal Nerve at the Pons in Patients with Trigeminal Neuralgia. J. Neurosurg. 1967, 26, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Obermann, M. Recent advances in understanding/managing trigeminal neuralgia. F1000Research 2019, 8, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonough, P.; McKenna, J.P.; McCreary, C.; Downer, E.J. Neuropathic orofacial pain: Cannabinoids as a therapeutic avenue. Int. J. Biochem. Cell Biol. 2014, 55, 72–78. [Google Scholar] [CrossRef]
- Zakrzewska, J.M.; Wu, J.; Mon-Williams, M.; Phillips, N.; Pavitt, S. Evaluating the impact of trigeminal neuralgia. Pain 2017, 158, 1166–1174. [Google Scholar] [CrossRef]
- Bendtsen, L.; Zakrzewska, J.M.; Abbott, J.; Braschinsky, M.; Di Stefano, G.; Donnet, A.; Eide, P.K.; Leal, P.R.L.; Maarbjerg, S.; May, A.; et al. European Academy of Neurology guideline on trigeminal neuralgia. Eur. J. Neurol. 2019, 26, 831–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, B.P.; Strassman, A.M.; Maciewicz, R.J. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J. Neurosci. 1994, 14, 2708–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozza, D.H.; Castro-Lopes, J.M.; Neto, F.L.; Avelino, A. Spared nerve injury model to study orofacial pain. Indian J. Med Res. 2016, 143, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, M.; Kawashima, K.; Ozaki, N.; Asai, H.; Nagamine, K.; Sugiura, Y. P2X3 Receptor Mediates Heat Hyperalgesia in a Rat Model of Trigeminal Neuropathic Pain. J. Pain 2007, 8, 588–597. [Google Scholar] [CrossRef]
- An, J.-X.; He, Y.; Qian, X.-Y.; Wu, J.-P.; Xie, Y.-K.; Guo, Q.-L.; Williams, J.P.; Cope, D.K. A New Animal Model of Trigeminal Neuralgia Produced by Administration of Cobra Venom to the Infraorbital Nerve in the Rat. Anesthesia Analg. 2011, 113, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ding, X.; Wu, Z.; Wang, M.; Tian, M. Curcumin alleviates pain and improves cognitive impairment in a rat model of cobra venom-induced trigeminal neuralgia. J. Pain Res. 2018, 11, 1095–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.-Q.; Qian, X.-Y.; An, J.-X.; Liu, C.-C.; Fang, Q.-W.; Wang, Y.; Jiang, Y.-D.; Cope, D.K.; Williams, J.P. Rat Model of Trigeminal Neuralgia Using Cobra Venom Mimics the Electron Microscopy, Behavioral, and Anticonvulsant Drug Responses Seen in Patients. Pain Physician 2015, 18, 1083–1090. [Google Scholar]
- Han, S.; Yeo, S.; Lee, M.; Bae, Y.; Ahn, D. Early Dexamethasone Relieves Trigeminal Neuropathic Pain. J. Dent. Res. 2010, 89, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, H.; Chiang, C.-Y.; Dostrovsky, J.O.; Sessle, B.J. Pregabalin suppresses nociceptive behavior and central sensitization in a rat trigeminal neuropathic pain model. J. Pain 2013, 14, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; You, Z.; Shen, S.; Yang, J.; Lim, G.; Doheny, J.T.; Chen, L.; Zhu, S.; Mao, J. An Improved Rodent Model of Trigeminal Neuropathic Pain by Unilateral Chronic Constriction Injury of Distal Infraorbital Nerve. J. Pain 2017, 18, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Grelik, C.; Bennett, G.J.; Ribeiro-Da-Silva, A. Autonomic fibre sprouting and changes in nociceptive sensory innervation in the rat lower lip skin following chronic constriction injury. Eur. J. Neurosci. 2005, 21, 2475–2487. [Google Scholar] [CrossRef] [PubMed]
- Horie, K.; Watanabe, M.; Chanbora, C.; Awada, T.; Kunimatsu, R.; Uchida, T.; Takata, T.; Tanimoto, K. Bovine lactoferrin reduces extra-territorial facial allodynia/hyperalgesia following a trigeminal nerve injury in the rat. Brain Res. 2017, 1669, 89–96. [Google Scholar] [CrossRef]
- Krzyzanowska, A.; Pittolo, S.; Cabrerizo, M.; Sánchez-López, J.; Krishnasamy, S.; Venero, C.; Avendaño, C. Assessing nociceptive sensitivity in mouse models of inflammatory and neuropathic trigeminal pain. J. Neurosci. Methods 2011, 201, 46–54. [Google Scholar] [CrossRef]
- Xu, M.; Aita, M.; Chavkin, C. Partial Infraorbital Nerve Ligation as a Model of Trigeminal Nerve Injury in the Mouse: Behavioral, Neural, and Glial Reactions. J. Pain 2008, 9, 1036–1048. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, M.; Tsuboi, Y.; Takamiya, K.; Huganir, R.L.; Kondo, M.; Shinoda, M.; Oi, Y.; Iwata, K. Involvement of GluR2 and GluR3 subunit C-termini in the trigeminal spinal subnucleus caudalis and C1–C2 neurons in trigeminal neuropathic pain. Neurosci. Lett. 2011, 491, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Zhang, L.; Lyons, D.; Westlund, K.N. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve. Mol. Brain 2012, 5, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, N.; Dieb, W.; Mauborgne, A.; Bourgoin, S.; Villanueva, L.; Pohl, M.; Boucher, Y. Hedgehog Pathway–Mediated Vascular Alterations Following Trigeminal Nerve Injury. J. Dent. Res. 2016, 96, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.F.; Zhang, P.L.; Westlund, P.K.N. Trigeminal Nerve Injury ErbB3/ErbB2 Promotes Mechanical Hypersensitivity. Anesthesiol. 2012, 117, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.M.F.; De Oliveira, A.P.; Martinelli, P.M.; Camargos, E.R.D.S.; Arantes, R.M.E.; De Almeida-Leite, C.M. Demyelination/remyelination and expression of interleukin-1β, substance P, nerve growth factor, and glial-derived neurotrophic factor during trigeminal neuropathic pain in rats. Neurosci. Lett. 2016, 612, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Michot, B.; Bourgoin, S.; Kayser, V.; Hamon, M. Effects of tapentadol on mechanical hypersensitivity in rats with ligatures of the infraorbital nerve versus the sciatic nerve. Eur. J. Pain 2012, 17, 867–880. [Google Scholar] [CrossRef]
- dos Reis, R.C.; Kopruszinski, C.M.; Nones, C.F.; Chichorro, J. Nerve growth factor induces facial heat hyperalgesia and plays a role in trigeminal neuropathic pain in rats. Behav. Pharmacol. 2016, 27, 528–535. [Google Scholar] [CrossRef]
- Nakai, K.; Nakae, A.; Oba, S.; Mashimo, T.; Ueda, K. P2X4 receptor expression in a rat model of trigeminal neuropathic pain. NeuroReport 2010, 21, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.; Hung, S.-P.; Ribeiro-Da-Silva, A. Novel expression pattern of neuropeptide Y immunoreactivity in the peripheral nervous system in a rat model of neuropathic pain. Mol. Pain 2015, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, G.; Benemei, S.; Materazzi, S.; De Logu, F.; De Siena, G.; Fusi, C.; Rossato, M.F.; Coppi, E.; Marone, I.M.; Ferreira, J.; et al. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 2016, 139, 1361–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michot, B.; Kayser, V.; Hamon, M.; Bourgoin, S. CGRP receptor blockade by MK-8825 alleviates allodynia in infraorbital nerve-ligated rats. Eur. J. Pain 2014, 19, 281–290. [Google Scholar] [CrossRef]
- Liu, L.; He, L.; Yin, C.; Huang, R.; Shen, W.; Ge, H.; Sun, M.; Li, S.; Gao, Y.; Xiong, W. Effects of palmatine on BDNF/TrkB-mediated trigeminal neuralgia. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-Y.; Lu, Z.-Y.; Li, N.; Yu, L.-H.; Zhao, Y.-F.; Ma, B. The role of large-conductance, calcium-activated potassium channels in a rat model of trigeminal neuropathic pain. Cephalalgia 2015, 35, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Wu, R.-P.; Tan, M.-X.; Tong, Z.-J.; He, L.-K.; Guan, S.; Liu, L.-J.; Yin, C.-C.; Shen, Y.-L.; Ge, H.-X.; et al. Emodin inhibits the expression of receptor and calcitonin-gene-related peptide release in trigeminal ganglia of trigeminal neuralgia rats. Int J Clin Exp Pathol 2017, 10, 11317–11325. [Google Scholar]
- DeMartini, C.; Greco, R.; Zanaboni, A.M.; Francesconi, O.; Nativi, C.; Tassorelli, C.; Deseure, K. Antagonism of Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Trigeminal Neuropathic Pain: Study in an Animal Model. Int. J. Mol. Sci. 2018, 19, 3320. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zhong, J.; Xia, L.; Dou, N.; Li, S. The expression of voltage-gated sodium channels in trigeminal nerve following chronic constriction injury in rats. Int. J. Neurosci. 2019, 129, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-H.; Son, J.-Y.; Kim, M.-J.; Kang, S.-H.; Ju, J.-S.; Bae, Y.-C.; Ahn, D.-K. Preemptive application of QX-314 attenuates trigeminal neuropathic mechanical allodynia in rats. Korean J. Physiol. Pharmacol. 2018, 22, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Tan, M.; He, L.; Ou, X.; Jin, Y.; Yang, G.; Huang, L.; Shen, Y.; Guan, S.; Xu, C.; et al. Inhibitory effects of tetramethylpyrazine on pain transmission of trigeminal neuralgia in CCI-ION rats. Brain Res. Bull. 2017, 134, 72–78. [Google Scholar] [CrossRef]
- Xiong, W.; Tan, M.; Tong, Z.; Yin, C.; He, L.; Liu, L.; Shen, Y.; Guan, S.; Ge, H.; Li, G.; et al. Effects of long non-coding RNA uc.48+ on pain transmission in trigeminal neuralgia. Brain Res. Bull. 2019, 147, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Urano, H.; Ara, T.; Fujinami, Y.; Hiraoka, B.Y. Aberrant TRPV1 Expression in Heat Hyperalgesia Associated with Trigeminal Neuropathic Pain. Int. J. Med Sci. 2012, 9, 690–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.-W.; Yu, Y.P.; Zhou, C.; Kim, D.-S.; Lin, B.; Sharp, K.; Steward, O.; Luo, Z.D. Calcium Channel α2δ1 Proteins Mediate Trigeminal Neuropathic Pain States Associated with Aberrant Excitatory Synaptogenesis. J. Biol. Chem. 2014, 289, 7025–7037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Kim, M.; Ju, J.; Park, S.; Lee, C.; Kim, S.; Bae, Y.; Ahn, D. Antinociceptive Effects of Botulinum Toxin Type A on Trigeminal Neuropathic Pain. J. Dent. Res. 2016, 95, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Lynds, R.; Lyu, C.; Lyu, G.-W.; Shi, X.-Q.; Rosen, A.; Mustafa, K.; Shi, T.-J.S. Neuronal plasticity of trigeminal ganglia in mice following nerve injury. J. Pain Res. 2017, 10, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, Y.-Y.; Jiang, M.; Xu, F.; Wang, D.; Ding, B.; Ma, L.-J.; Wu, H. CXCL10 and CXCR3 in the Trigeminal Ganglion Contribute to Trigeminal Neuropathic Pain in Mice. J. Pain Res. 2021, 14, 41–51. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, D.-L.; Zhang, Z.-J.; Jiang, B.-C.; Gao, Y.-J. Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice. J. Neuroinflammation 2016, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-X.; Jiang, M.; Bai, X.-Q.; Cao, D.-L.; Wu, X.-B.; Zhang, J.; Guo, J.-S.; Chen, T.-T.; Wang, J.; Wu, H.; et al. TLR8 in the Trigeminal Ganglion Contributes to the Maintenance of Trigeminal Neuropathic Pain in Mice. Neurosci. Bull. 2021, 37, 550–562. [Google Scholar] [CrossRef]
- Kanda, H.; Ling, J.; Chang, Y.-T.; Erol, F.; Viatchenko-Karpinski, V.; Yamada, A.; Noguchi, K.; Gu, J.G. Kv4.3 Channel Dysfunction Contributes to Trigeminal Neuropathic Pain Manifested with Orofacial Cold Hypersensitivity in Rats. J. Neurosci. 2021, 41, 2091–2105. [Google Scholar] [CrossRef]
- Liu, M.-X.; Zhong, J.; Xia, L.; Dou, N.-N.; Li, S.-T. IL-6 contributes to Nav1.3 up-regulation in trigeminal nerve following chronic constriction injury. Neurol. Res. 2020, 42, 504–514. [Google Scholar] [CrossRef]
- Kubíčková, L.; Klusáková, I.; Dubový, P. Bilateral activation of glial cells and cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis of trigeminal neuropathic pain model. Histochem. Cell Biol. 2020, 153, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-J.; Chun-Yi, J.; Xia, Y.-P.; Jiang, C.-Y.; Miao, C.; Yang, C.-Q.; Yuan, M.; Wang, L. Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J. Neuroinflammation 2016, 13, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, J.; Noboru, N.; Imamura, Y.; Eliav, E. Effect of Pregabalin and Diclofenac on tactile allodynia, mechanical hyperalgesia and pro inflammatory cytokine levels (IL-6, IL-1β) induced by chronic constriction injury of the infraorbital nerve in rats. Cytokine 2018, 104, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Dieb, W.; Alvarez, P.; Hafidi, A. PKCγ-Positive Neurons Gate Light Tactile Inputs to Pain Pathway Through pERK1/2 Neuronal Network in Trigeminal Neuropathic Pain Model. J. Oral Facial Pain Headache 2015, 29, 70–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Su, Q.; Lian, Y.; Chen, Y. Botulinum toxin type A reduces the expression of transient receptor potential melastatin 3 and transient receptor potential vanilloid type 4 in the trigeminal subnucleus caudalis of a rat model of trigeminal neuralgia. NeuroReport 2019, 30, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-W.; Kim, O.-S.; Zaucke, F.; Luo, Z.D. Trigeminal nerve injury-induced thrombospondin-4 up-regulation contributes to orofacial neuropathic pain states in a rat model. Eur. J. Pain 2013, 18, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Boucher, Y.; Carstens, M.I.; Sawyer, C.M.; Zanotto, K.L.; Merrill, A.W.; Carstens, E. Capsaicin avoidance as a measure of chemical hyperalgesia in orofacial nerve injury models. Neurosci. Lett. 2013, 543, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Son, J.-Y.; Ju, J.-S.; Ahn, D.-K. Early Blockade of EphA4 Pathway Reduces Trigeminal Neuropathic Pain. J. Pain Res. 2020, 13, 1173–1183. [Google Scholar] [CrossRef]
- Won, K.A.; Kim, M.J.; Yang, K.Y.; Park, J.S.; Lee, M.K.; Park, M.K.; Bae, Y.C.; Ahn, N.K. The Glial–Neuronal GRK2 Pathway Participates in the Development of Trigeminal Neuropathic Pain in Rats. J. Pain 2014, 15, 250–261. [Google Scholar] [CrossRef]
- Li, L.; Yao, L.; Wang, F.; Zhang, Z. Knock-down of JAK2 and PTEN on pain behavior in rat model of trigeminal neuropathic pain. Gene 2019, 719, 144080. [Google Scholar] [CrossRef]
- Lee, M.K.; Han, S.R.; Park, M.K.; Kim, M.J.; Bae, Y.C.; Kim, S.K.; Park, J.S.; Ahn, D.K. Behavioral Evidence for the Differential Regulation of p-p38 MAPK and p-NF-κB in Rats with Trigeminal Neuropathic Pain. Mol. Pain 2011, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.W.; Son, J.Y.; Lee, A.R.; Ju, J.S.; Bae, Y.C.; Ahn, D.K. Central VEGF-A pathway plays a key role in the development of trigeminal neuropathic pain in rats. Mol. Pain 2019, 15, 1744806919872602. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Zhang, L.; Oz, H.S.; Mashni, M.; Westlund, K.N. Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience 2015, 300, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Lyons, D.N.; Zhang, L.; Danaher, R.J.; Miller, C.S.; Westlund, K.N. PPARγ Agonists Attenuate Trigeminal Neuropathic Pain. Clin. J. Pain 2017, 33, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; He, T.; Wang, Y.; Wang, J.-L.; Yan, X.-B.; Zhou, H.-C.; Wang, R.-R.; Du, R.; Wang, X.-L.; Chen, J.; et al. Ceftriaxone Relieves Trigeminal Neuropathic Pain Through Suppression of Spatiotemporal Synaptic Plasticity via Restoration of Glutamate Transporter 1 in the Medullary Dorsal Horn. Front. Cell. Neurosci. 2020, 14, 199. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Li, Y.; Raver, C.; Chandra, R.; Masri, R.; Lobo, M.K.; Keller, A. Neuropathic pain after chronic nerve constriction may not correlate with chloride dysregulation in mouse trigeminal nucleus caudalis neurons. Pain 2017, 158, 1366–1372. [Google Scholar] [CrossRef]
- Martin, Y.; Malmierca, E.; Avendaño, C.; Nuñez, A. Neuronal disinhibition in the trigeminal nucleus caudalis in a model of chronic neuropathic pain. Eur. J. Neurosci. 2010, 32, 399–408. [Google Scholar] [CrossRef]
- Devoizel, L.; Alvarezl, P.; Monconduitl, L.; Dallel, R. Representation of dynamic mechanical allodynia in the ventral medial prefrontal cortex of trigeminal neuropathic rats. Eur. J. Pain 2011, 15, 676–682. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, P.; Mei, L.; Yin, W.; Mao, Y.; Niu, C.; Zhang, Z.; Tao, W. Microglia in the Primary Somatosensory Barrel Cortex Mediate Trigeminal Neuropathic Pain. Neuroscience 2019, 414, 299–310. [Google Scholar] [CrossRef]
- Kopruszinski, C.M.; Reis, R.C.; Chichorro, J.G. B vitamins relieve neuropathic pain behaviors induced by infraorbital nerve constriction in rats. Life Sci. 2012, 91, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Deseure, K.; Koek, W.; Colpaert, F.C.; Adriaensen, H. The 5-HT1A receptor agonist F 13640 attenuates mechanical allodynia in a rat model of trigeminal neuropathic pain. Eur. J. Pharmacol. 2002, 456, 51–57. [Google Scholar] [CrossRef]
- Idänpään-Heikkilä, J.J.; Guilbaud, G. Pharmacological studies on a rat model of trigeminal neuropathic pain: Baclofen, but not carbamazepine, morphine or tricyclic antidepressants, attenuates the allodynia-like behaviour. Pain 1999, 79, 281–290. [Google Scholar] [CrossRef]
- Chichorro, J.; Zampronio, A.; Souza, G.E.P.; Rae, G.A. Orofacial cold hyperalgesia due to infraorbital nerve constriction injury in rats: Reversal by endothelin receptor antagonists but not non-steroidal anti-inflammatory drugs. Pain 2006, 123, 64–74. [Google Scholar] [CrossRef]
- Kayserl, V.; Latrémolièrel, A.; Hamonl, M.; Bourgoinl, S. N-methyl-d -aspartate receptor-mediated modulations of the anti-allodynic effects of 5-HT1B/1D receptor stimulation in a rat model of trigeminal neuropathic pain. Eur. J. Pain 2011, 15, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Akintola, T.; Raver, C.; Studlack, P.; Uddin, O.; Masri, R.; Keller, A. The grimace scale reliably assesses chronic pain in a rodent model of trigeminal neuropathic pain. Neurobiol. Pain 2017, 2, 13–17. [Google Scholar] [CrossRef]
- Christensen, D.; Gautron, M.; Guilbaud, G.; Kayser, V. Effect of gabapentin and lamotrigine on mechanical allodynia-like behaviour in a rat model of trigeminal neuropathic pain. Pain 2001, 93, 147–153. [Google Scholar] [CrossRef]
- Nakai, K.; Nakae, A.; Hashimoto, R.; Mashimo, T.; Hosokawa, K. Antinociceptive effects of mirtazapine, pregabalin, and gabapentin after chronic constriction injury of the infraorbital nerve in rats. J. Oral Facial Pain Headache 2014, 28, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Milosevic, N.; Nikolic, N.; Djordjevic, I.; Todorović, A.; Lazić, V.; Milašin, J.; Henry, M.A.; Fairchild, D.D.; Patil, M.J.; Hanania, T.; et al. Association of Functional Polymorphisms in Matrix Metalloproteinase-9 and Glutathione S-Transferase T1 Genes with Temporomandibular Disorders. J. Oral Facial Pain Headache 2015, 29, 286–296. [Google Scholar] [CrossRef]
- Chichorro, J.G.; Zampronio, A.; Rae, G.A. Endothelin ET(B) receptor antagonist reduces mechanical allodynia in rats with trigeminal neuropathic pain. Exp. Biol. Med. 2006, 231, 1136–1140. [Google Scholar]
- Cha, M.; Kohan, K.J.; Zuo, X.; Ling, J.X.; Gu, J.G. Assessment of chronic trigeminal neuropathic pain by the orofacial operant test in rats. Behav. Brain Res. 2012, 234, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Michot, B.; Bourgoin, S.; Viguier, F.; Hamon, M.; Kayser, V. Differential effects of calcitonin gene-related peptide receptor blockade by olcegepant on mechanical allodynia induced by ligation of the infraorbital nerve vs the sciatic nerve in the rat. Pain 2012, 153, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- A Abd-Elsayed, A.; Ikeda, R.; Jia, Z.; Ling, J.; Zuo, X.; Li, M.; Gu, J.G. KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia. Mol. Pain 2015, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deseure, K.; Hans, G. Differential drug effects on spontaneous and evoked pain behavior in a model of trigeminal neuropathic pain. J. Pain Res. 2017, 10, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Hu, M.; A Montera, M.; Westlund, K.N. Sustained relief of trigeminal neuropathic pain by a blood–brain barrier penetrable PPAR gamma agonist. Mol. Pain 2019, 15, 1744806919884498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Ma, Z.; Wu, Z.; Jin, M.; An, L.; Xue, F. Curcumin Improves Chronic Pain Induced Depression Through Regulating Serum Metabolomics in a Rat Model of Trigeminal Neuralgia. J. Pain Res. 2020, 13, 3479–3492. [Google Scholar] [CrossRef]
- Chen, R.-W.; Liu, H.; An, J.-X.; Qian, X.-Y.; Jiang, Y.-D.; Cope, D.K.; Williams, J.P.; Zhang, R.; Sun, L.-N. Cognitive effects of electro-acupuncture and pregabalin in a trigeminal neuralgia rat model induced by cobra venom. J. Pain Res. 2017, 10, 1887–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Trinh, V.N.; Sears-Kraxberger, I.; Li, K.-W.; Steward, O.; Luo, Z.D. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury. J. Comp. Neurol. 2016, 524, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, P.; Brun, A.; Labertrandie, A.; Lopez, J.; Correa, A.; Constandil, L.; Hernández, A.; Pelissier, T. Antihyperalgesic effects of clomipramine and tramadol in a model of posttraumatic trigeminal neuropathic pain in mice. J. Orofac. Pain 2011, 25, 354–363. [Google Scholar]
- Latrémolière, A.; Mauborgne, A.; Masson, J.; Bourgoin, S.; Kayser, V.; Hamon, M.; Pohl, M. Differential Implication of Proinflammatory Cytokine Interleukin-6 in the Development of Cephalic versus Extracephalic Neuropathic Pain in Rats. J. Neurosci. 2008, 28, 8489–8501. [Google Scholar] [CrossRef] [Green Version]
- Vasovic, D.; Divović, B.; Treven, M.; Knutson, D.E.; Steudle, F.; Scholze, P.; Obradović, A.; Fabjan, J.; Brković, B.; Sieghart, W.; et al. Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABA A receptors. Eur. J. Pain 2019, 23, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.-C.; Huang, C.-C.; Hsu, K.-S. The synthetic cannabinoids attenuate allodynia and hyperalgesia in a rat model of trigeminal neuropathic pain. Neuropharmacology 2007, 53, 169–177. [Google Scholar] [CrossRef]
- Nakai, K.; Nakae, A.; Oba, S.; Mashimo, T.; Ueda, K. 5-HT2C receptor agonists attenuate pain-related behaviour in a rat model of trigeminal neuropathic pain. Eur. J. Pain 2010, 14, 999–1006. [Google Scholar] [CrossRef]
- dos Reis, R.C.; Kopruszinski, C.M.; Nones, C.F.M.; Aguiar, D.A.; Chichorro, J.G. The opposing contribution of neurotrophin-3 and nerve growth factor to orofacial heat hyperalgesia in rats. Behav. Pharmacol. 2020, 31, 27–33. [Google Scholar] [CrossRef]
- Lim, E.J.; Jeon, H.J.; Yang, G.Y.; Lee, M.K.; Ju, J.S.; Han, S.R.; Ahn, D.K. Intracisternal administration of mitogen-activated protein kinase inhibitors reduced mechanical allodynia following chronic constriction injury of infraorbital nerve in rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2007, 31, 1322–1329. [Google Scholar] [CrossRef]
- Melo, L.; Panchalingam, V.; Cherkas, P.; Campos, A.; Avivi-Arber, L.; Sessle, B. (−)-α-Bisabolol reduces nociception and trigeminal central sensitisation in acute orofacial neuropathic pain induced by infraorbital nerve injury. Life Sci. 2019, 227, 122–128. [Google Scholar] [CrossRef]
- Constandil, L.; Goich, M.; Hernández, A.; Bourgeais, L.; Cazorla, M.; Hamon, M.; Villanueva, L.; Pelissier, T. Cyclotraxin-B, a New TrkB Antagonist, and Glial Blockade by Propentofylline, Equally Prevent and Reverse Cold Allodynia Induced by BDNF or Partial Infraorbital Nerve Constriction in Mice. J. Pain 2012, 13, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Luiz, A.; Schroeder, S.; Rae, G.; Calixto, J.; Chichorro, J. Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice. Neuroscience 2015, 300, 189–200. [Google Scholar] [CrossRef] [PubMed]
- He, S.-Q.; Li, Z.; Chu, Y.-X.; Han, L.; Xu, Q.; Li, M.; Yang, F.; Liu, Q.; Tang, Z.; Wang, Y.; et al. MrgC agonism at central terminals of primary sensory neurons inhibits neuropathic pain. Pain 2014, 155, 534–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bista, P.; Imlach, W.L. Pathological Mechanisms and Therapeutic Targets for Trigeminal Neuropathic Pain. Medicines 2019, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dib-Hajj, S.D.; Black, J.A.; Waxman, S.G. Voltage-Gated Sodium Channels: Therapeutic Targets for Pain. Pain Med. 2009, 10, 1260–1269. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewska, J.M. Medical management of trigeminal neuropathic pains. Expert Opin. Pharmacother. 2010, 11, 1239–1254. [Google Scholar] [CrossRef]
- Bates, D.; Schultheis, B.C.; Hanes, M.C.; Jolly, S.M.; Chakravarthy, K.V.; Deer, T.R.; Levy, R.M.; Hunter, C.W. A Comprehensive Algorithm for Management of Neuropathic Pain. Pain Med. 2019, 20, S2–S12. [Google Scholar] [CrossRef] [Green Version]
- Fried, K.; Hansson, P.T. Animal models of trigeminal neuralgia: A commentary. Mol. Pain 2020, 16, 1744806920980538. [Google Scholar] [CrossRef] [PubMed]
- Leal, P.R.L.; Hermier, M.; Souza, M.A.; Cristino-Filho, G.; Froment, J.C.; Sindou, M. Visualization of Vascular Compression of the Trigeminal Nerve with High-Resolution 3T MRI: A Prospective Study Comparing Preoperative Imaging Analysis to Surgical Findings in 40 Consecutive Patients Who Underwent Microvascular Decompression for Trigeminal Neuralgia. Neurosurgery 2011, 69, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhang, T.; Zuo, C.-X.; Zuo, Z.-F.; Li, H.; Wu, S.-X.; Wang, W.; Li, Y.-Q. An animal model for trigeminal neuralgia by compression of the trigeminal nerve root. Pain Physician 2012, 15, 187–196. [Google Scholar] [PubMed]
- Jeon, H.J.; Han, S.R.; Lim, K.H.; A Won, K.; Bae, Y.C.; Ahn, D.K. Intracisternal Administration of NR2 Subunit Antagonists Attenuates the Nociceptive Behavior and p-p38 MAPK Expression Produced by Compression of the Trigeminal Nerve Root. Mol. Pain 2011, 7. [Google Scholar] [CrossRef] [Green Version]
- Yeomans, D.C.; Klukinov, M. A Rodent Model of Trigeminal Neuralgia. Adv. Struct. Safety Stud. 2012, 851, 121–131. [Google Scholar] [CrossRef]
- Luo, D.; Luo, L.; Lin, R.; Lin, L.; Lin, Q. Brain-derived neurotrophic factor and Glial cell line-derived neurotrophic factor expressions in the trigeminal root entry zone and trigeminal ganglion neurons of a trigeminal neuralgia rat model. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2020, 303, 3014–3023. [Google Scholar] [CrossRef]
- Lin, R.; Luo, L.; Gong, Y.; Zheng, J.; Wang, S.; Du, J.; Luo, D. Immunohistochemical analysis of histone H3 acetylation in the trigeminal root entry zone in an animal model of trigeminal neuralgia. J. Neurosurg. 2019, 131, 828–838. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Lin, R.; Luo, L.; Li, Q.; Chen, T.; Qiu, R.; Li, Y. Glial Plasticity in the Trigeminal Root Entry Zone of a Rat Trigeminal Neuralgia Animal Model. Neurochem. Res. 2019, 44, 1893–1902. [Google Scholar] [CrossRef]
- Jeon, H.J.; Han, S.R.; Park, M.K.; Yang, K.Y.; Bae, Y.C.; Ahn, D.K. A novel trigeminal neuropathic pain model: Compression of the trigeminal nerve root produces prolonged nociception in rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 38, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Cruccu, G.; Gronseth, G.; Alksne, J.; Argoff, C.; Brainin, M.; Burchiel, K.; Nurmikko, T.; Zakrzewska, J.M. AAN-EFNS guidelines on trigeminal neuralgia management. Eur. J. Neurol. 2008, 15, 1013–1028. [Google Scholar] [CrossRef] [PubMed]
- Do, T.M.; Unis, G.D.; Ba, N.K.; Ananth, A.; McCoul, E.D. Neuromodulators for Atypical Facial Pain and Neuralgias: A Systematic Review and Meta-Analysis. Laryngoscope 2021, 131, 1235–1253. [Google Scholar] [CrossRef] [PubMed]
Animal models of PTNP Species/Procedure to injure trigeminal nerve branch/ Year of original report |
|
Potential molecular targets Alteration of molecular expressions or biological process occurring in the trigeminal pathway | Trigeminal neuron (axon) |
Upregulation: | |
| |
Downregulation: | |
| |
Trigeminal ganglion | |
Upregulation: | |
| |
Downregulation: | |
| |
Trigeminal nucleus | |
Upregulation: | |
Downregulation: | |
Upper central nervous system | |
Upregulation: | |
Efficacy of clinically used drugs Name/Administration route/Pain measurement methodology | Positive effect:
|
Negative effect:
| |
Therapeutic candidates which modulate potential molecular targets Name/Administration route/Pain measurement methodology | Positive effect: |
|
Animal models of PTN Species/Methods for trigeminal nerve injury/ Year of original report | |
Potential molecular targets Alteration of molecular expressions or biological process occurring in the trigeminal pathway | Trigeminal ganglion |
Upregulation:
| |
Downregulation: | |
| |
Trigeminal root entry zone (TREZ) | |
Upregulation: | |
| |
Downregulation: | |
| |
Trigeminal nucleus | |
Upregulation: | |
| |
Downregulation: | |
| |
Efficacy of clinically used drugs Name/Administration route/Pain measurement methodology | Positive effect
|
Therapeutic candidates which modulate potential molecular targets Name/Administration route/Pain measurement methodology | Positive effect
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagakura, Y.; Nagaoka, S.; Kurose, T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int. J. Mol. Sci. 2021, 22, 6406. https://doi.org/10.3390/ijms22126406
Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. International Journal of Molecular Sciences. 2021; 22(12):6406. https://doi.org/10.3390/ijms22126406
Chicago/Turabian StyleNagakura, Yukinori, Shogo Nagaoka, and Takahiro Kurose. 2021. "Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models" International Journal of Molecular Sciences 22, no. 12: 6406. https://doi.org/10.3390/ijms22126406
APA StyleNagakura, Y., Nagaoka, S., & Kurose, T. (2021). Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. International Journal of Molecular Sciences, 22(12), 6406. https://doi.org/10.3390/ijms22126406