Ultrasonographic and Histological Correlation after Experimental Reconstruction of a Volumetric Muscle Loss Injury with Adipose Tissue
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Volumetric Muscle Loss Injuries and Animal Groups
4.3. Skeletal Muscle Ultrasound Evaluation
4.4. Histology and Histomorphometry
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pillen, S.; Arts, I.M.P.; Zwarts, M.J. Muscle ultrasound in neuromuscular disorders. Muscle Nerve 2008, 37, 679–693. [Google Scholar] [CrossRef]
- Zaidman, C.M.; van Alfen, N. Ultrasound in the Assessment of Myopathic Disorders. J. Clin. Neurophysiol. 2016, 33, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, N.L.; Hobson-Webb, L.D. Neuromuscular ultrasound in clinical practice: A review. Clin. Neurophysiol. Pract. 2019, 4, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Hobson-Webb, L.D.; Simmons, Z. Ultrasound in the diagnosis and monitoring of amyotrophic lateral sclerosis: A review. Muscle Nerve 2019, 60, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Draghi, F.; Zacchino, M.; Canepari, M.; Nucci, P.; Alessandrino, F. Muscle injuries: Ultrasound evaluation in the acute phase. J. Ultrasound. 2013, 16, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strakowski, J.A.; Chiou-Tan, F.Y. Musculoskeletal ultrasound for traumatic and torsional alterations. Muscle Nerve 2020, 62, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Wijntjes, J.; van Alfen, N. Muscle ultrasound: Present state and future opportunities. Muscle Nerve 2021, 63, 455–466. [Google Scholar] [CrossRef]
- Sicari, B.M.; Agrawal, V.; Siu, B.F.; Medberry, C.J.; Dearth, C.L.; Turner, N.J.; Badylak, S.F. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng. Part A 2012, 18, 1941–1948. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Corona, B.T.; Chen, X.; Walters, T.J. A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Biores Open Access. 2012, 1, 280–290. [Google Scholar] [CrossRef]
- Willett, N.J.; Krishnan, L.; Li, M.T.; Guldberg, R.E.; Warren, G.L. Guidelines for Models of Skeletal Muscle Injury and Therapeutic Assessment. Cells Tissues Organs 2016, 202, 214–226. [Google Scholar] [CrossRef]
- Sicari, B.M.; Dearth, C.L.; Badylak, S.F. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury. Anat. Rec. 2014, 297, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Greising, S.M.; Corona, B.T.; McGann, C.; Frankum, J.K.; Warren, G.L. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis. Tissue Eng. Part B Rev. 2019, 25, 510–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sicherer, S.T.; Venkatarama, R.S.; Grasman, J.M. Recent Trends in Injury Models to Study Skeletal Muscle Regeneration and Repair. Bioengineering 2020, 7, 76. [Google Scholar] [CrossRef]
- Dziki, J.; Badylak, S.; Yabroudi, M.; Sicari, B.; Ambrosio, F.; Stearns, K.; Turner, N.; Wyse, A.; Boninger, M.L.; Brown, E.H.P.; et al. An acellular biologic scaffold treatment for volumetric muscle loss: Results of a 13-patient cohort study. NPJ Regen. Med. 2016, 1, 16008. [Google Scholar] [CrossRef] [PubMed]
- Bellas, E.; Rollins, A.; Moreau, J.E.; Lo, T.; Quinn, K.P.; Fourligas, N.; Georgakoudi, I.; Leisk, G.G.; Mazan, M.; Thane, K.E.; et al. Equine model for soft-tissue regeneration. J. Biomed. Mater. Res. Part B 2015, 103B, 1217–1227. [Google Scholar] [CrossRef]
- Sicari, B.M.; Rubin, J.P.; Dearth, C.L.; Wolf, M.T.; Ambrosio, F.; Boninger, M.; Turner, N.J.; Weber, D.J.; Simpson, T.W.; Wyse, A.; et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 2014, 6, 234–258. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Bygrave, M.; Chhem, R.; Hoffman, L.; Welch, I.; Grange, R.; Fenster, A.; Hill, D.; Lee, T.Y. High-frequency ultrasound to grade disease progression in murine models of Duchenne muscular dystrophy. J. Ultrasound Med. 2009, 28, 707–716. [Google Scholar] [CrossRef]
- Ahmad, N.; Bygrave, M.; De Zordo, T.; Fenster, A.; Lee, T.Y. Detecting degenerative changes in myotonic murine models of Duchenne muscular dystrophy using high-frequency ultrasound. J. Ultrasound Med. 2010, 29, 367–375. [Google Scholar] [CrossRef]
- Jiménez-Díaz, F.; Jimena, I.; Luque, E.; Mendizábal, S.; Bouffard, A.; Jiménez-Reina, L.; Peña, J. Experimental muscle injury: Correlation between ultrasound and histological findings. Muscle Nerve 2012, 45, 705–712. [Google Scholar] [CrossRef]
- Simon, N.G.; Noto, Y.I.; Zaidman, C.M. Skeletal muscle imaging in neuromuscular disease. J. Clin. Neurosci. 2016, 33, 1–10. [Google Scholar] [CrossRef]
- Rizzi, R.; Bearzi, C.; Mauretti, A.; Bernardini, S.; Cannata, S.; Gargioli, C. Tissue engineering for skeletal muscle regeneration. Muscles Ligaments Tendons J. 2012, 2, 230–234. [Google Scholar] [PubMed]
- Carnes, M.E.; Pins, G.D. Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering 2020, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Langridge, B.; Griffin, M.; Butler, P.E. Regenerative medicine for skeletal muscle loss: A review of current tissue engineering approaches. J. Mater. Sci. Mater. Med. 2021, 32, 15. [Google Scholar] [CrossRef] [PubMed]
- Leiva-Cepas, F.; Jimena, I.; Ruz-Caracuel, I.; Luque, E.; Villalba, R.; Peña-Amaro, J. Histology of skeletal muscle reconstructed by means of the implantation of autologous adipose tissue: An experimental study. Histol. Histopathol. 2020, 35, 457–474. [Google Scholar] [PubMed]
- Kwak, H.S.; Han, Y.M.; Lee, S.Y.; Kim, K.N.; Chung, C.H. Diagnosis and Follow-up US Evaluation of Ruptures of the Medial Head of the Gastrocnemius (“Tennis Leg”). Korean J. Radiol. 2006, 7, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guermazi, A.; Roemer, F.W.; Robinson, P.; Tol, J.L.; Regatte, R.R.; Crema, M.D. Imaging of Muscle Injuries in Sports Medicine: Sports Imaging Series. Radiology 2017, 282, 646–663. [Google Scholar] [CrossRef]
- Kim, H.J.; Ryu, K.N.; Sung, D.W.; Park, Y.K. Correlation between sonographic and pathologic findings in muscle injury: Experimental study in the rabbit. J. Ultrasound Med. 2002, 21, 1113–1119. [Google Scholar] [CrossRef]
- Hu, C.F.; Chen, C.P.; Tsai, W.C.; Hu, L.L.; Hsu, C.C.; Tseng, S.T.; Shau, Y.W. Quantification of skeletal muscle fibrosis at different healing stages using sonography: A morphologic and histologic study in an animal model. J. Ultrasound Med. 2012, 31, 43–48. [Google Scholar] [CrossRef]
- Sikdar, S.; Diao, G.; Turo, D.; Stanley, C.J.; Sharma, A.; Chambliss, A.; Laughrey, L.; Aralar, A. Quantification of muscle tissue properties by modeling the statistics of ultrasound image intensities using a mixture of gamma distributions in children with and without cerebral palsy. Ultrasound Med. 2018, 37, 2157–2169. [Google Scholar] [CrossRef] [Green Version]
- Sciorati, C.; Clementi, E.; Manfredi, A.A.; Rovere-Querini, P. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: Cellular and molecular players. Cell. Mol. Life Sci. 2015, 72, 2135–2156. [Google Scholar] [CrossRef]
- Chapman, M.A.; Mukund, K.; Subramaniam, S.; Brenner, D.; Lieber, R.L. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis. Am. J. Physiol Cell Physiol. 2017, 312, C131–C143. [Google Scholar] [CrossRef]
- Küllmer, K.; Sievers, K.W.; Reimers, C.D.; Rompe, J.D.; Müller-Felber, W.; Nägele, M.; Harland, U. Changes of sonographic, magnetic resonance tomographic, electromyographic, and histopathologic findings within a 2-month period of examinations after experimental muscle denervation. Arch. Orthop. Trauma Surg. 1998, 117, 228–234. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Phadke, R.; Rawal, J.; McPhail, M.J.; Sidhu, P.S.; Rowlerson, A.; Moxham, J.; Harridge, S.; Hart, N.; Montgomery, H.E. Qualitative Ultrasound in Acute Critical Illness Muscle Wasting. Crit. Care Med. 2015, 43, 1603–1611. [Google Scholar] [CrossRef] [Green Version]
- Aurora, A.; Roe, J.L.; Corona, B.T.; Walters, T.J. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials 2015, 67, 393–407. [Google Scholar] [CrossRef]
- Sarrafian, T.L.; Bodine, S.C.; Murphy, B.; Grayson, J.K.; Stover, S.M. Extracellular matrix scaffolds for treatment of large volume muscle injuries: A review. Vet. Surg. 2018, 47, 524–535. [Google Scholar] [CrossRef] [PubMed]
- Huard, J. Stem cells, blood vessels, and angiogenesis as major determinants for musculoskeletal tissue repair. J. Orthop. Res. 2019, 37, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Schäffler, A.; Büchler, C. Concise review: Adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007, 25, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Borisov, A.B.; Huang, S.K.; Carlson, B.M. Remodeling of the vascular bed and progressive loss of capillaries in denervated skeletal muscle. Anat. Rec. 2000, 258, 292–304. [Google Scholar] [CrossRef] [Green Version]
- Biérinx, A.S.; Sebille, A. Mouse sectioned muscle regenerates following auto-grafting with muscle fragments: A new muscle precursor cells transfer? Neurosci. Lett. 2008, 431, 211–214. [Google Scholar] [CrossRef]
- Gillies, A.R.; Lieber, R.L. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 2011, 44, 318–331. [Google Scholar] [CrossRef] [Green Version]
- Badylak, S.F. The extracellular matrix as a biologic scaffold material. Biomaterials 2007, 28, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Fan, X.; Tian, C.; Luo, J.; Zhang, Y.; Deng, L.; Qin, T.; Lv, Q. Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: A preliminary study. J. Cell. Mol. Med. 2016, 20, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Dubowitz, V.; Sewry, C.A.; Oldfords, A. Muscle Biopsy: A Practical Approach, 5th ed.; Elsevier: London, UK, 2021; pp. 140–182. [Google Scholar]
- Sillau, A.H.; Banchero, N. Visualization of capillaries in skeletal muscle by the ATPase reaction. Pflugers Arch. 1977, 369, 269–271. [Google Scholar] [CrossRef] [PubMed]
Group | Identification of the Lesion | Edges of Lesion | Morphology of the Lesion | Increased Echogenicity | Echotexture Distortion | Vascularization |
---|---|---|---|---|---|---|
NC | — | — | — | Grade 0 | Grade 0 | Grade 0 |
RC | Yes | poorly delimited | imprecise | Grade 1 | Grade 1 | Perilesional Grade 2 |
FC | Yes | well delimited | angulated | Grade 3 | Grade 3 | Intralesional Grade 2 |
AT | Yes | poorly delimited | imprecise | Grade 2 | Grade 1 | Intralesional Grade 1 |
OS | Yes | well delimited | Variable (rounded, angled, or patchy) | Grade 3 | Grade 3 | Perilesional Grade 1 |
DM | Yes | well delimited | Variable (rounded, angled, or patchy) | Grade 2 | Grade 3 | Intralesional Grade 1 |
Group | Fibrosis (%) | Number of Muscle Fibers/Area | Cross-Sectional Area of Muscle Fibers (µm2) | Minor Diameter of Muscle Fibers (µm) | Muscle Fibers with Internal Nuclei (%) | Desorientated Muscle Fibers (%) |
---|---|---|---|---|---|---|
NC | 2.89 ± 0.25 | 14.8 ± 0.7 | 3400.6 ± 184.4 | 50.4 ± 2.0 | 4.2 ± 1.63 | 0.0 ± 0.0 |
RC | 5.80 ± 0.52 * | 14.8 ± 0.4 | 3514.8 ± 153.8 | 49.08 ± 1.8 | 68.8 ± 3.4 * | 0.9 ± 0.1 * |
FC | 74.33 ± 3.49 * † | 7.0 ± 0.6 * † | 1505.7 ± 207.4 * † | 31.4 ± 1.3 * † | 39.6 ± 3.3 * † | 3.2 ± 0.9 * † |
AT | 19.57 ± 3.47 * † § | 16.8 ± 0.7 § | 2385.0 ± 241.0 * † § | 29.8 ± 1.2 * † | 62.3 ± 5.1 * § | 23.9 ± 3.0 * † § |
OS | 30.65 ± 2.58 * † § # | 71.0 ± 19.0 * † § | 536.2 ± 41.0 * † § # | 17.4 ± 2.2 * † § # | 42.8 ± 4.7 * † # | 20.5 ± 4.8 * † § |
DM | 67.7 ± 5.78 * † # ‡ | 10.1 ± 1.2 * † # ‡ | 1536.8 ± 159.8 * † # ‡ | 27.5 ± 1.9 * † ‡ | 48.7 ± 5.1 * † # | 39.2 ± 7.23 * † § # ‡ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva-Cepas, F.; Benito-Ysamat, A.; Jimena, I.; Jimenez-Diaz, F.; Gil-Belmonte, M.J.; Ruz-Caracuel, I.; Villalba, R.; Peña-Amaro, J. Ultrasonographic and Histological Correlation after Experimental Reconstruction of a Volumetric Muscle Loss Injury with Adipose Tissue. Int. J. Mol. Sci. 2021, 22, 6689. https://doi.org/10.3390/ijms22136689
Leiva-Cepas F, Benito-Ysamat A, Jimena I, Jimenez-Diaz F, Gil-Belmonte MJ, Ruz-Caracuel I, Villalba R, Peña-Amaro J. Ultrasonographic and Histological Correlation after Experimental Reconstruction of a Volumetric Muscle Loss Injury with Adipose Tissue. International Journal of Molecular Sciences. 2021; 22(13):6689. https://doi.org/10.3390/ijms22136689
Chicago/Turabian StyleLeiva-Cepas, Fernando, Alberto Benito-Ysamat, Ignacio Jimena, Fernando Jimenez-Diaz, Maria Jesus Gil-Belmonte, Ignacio Ruz-Caracuel, Rafael Villalba, and Jose Peña-Amaro. 2021. "Ultrasonographic and Histological Correlation after Experimental Reconstruction of a Volumetric Muscle Loss Injury with Adipose Tissue" International Journal of Molecular Sciences 22, no. 13: 6689. https://doi.org/10.3390/ijms22136689
APA StyleLeiva-Cepas, F., Benito-Ysamat, A., Jimena, I., Jimenez-Diaz, F., Gil-Belmonte, M. J., Ruz-Caracuel, I., Villalba, R., & Peña-Amaro, J. (2021). Ultrasonographic and Histological Correlation after Experimental Reconstruction of a Volumetric Muscle Loss Injury with Adipose Tissue. International Journal of Molecular Sciences, 22(13), 6689. https://doi.org/10.3390/ijms22136689