mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Results
2.1. Co-Regulatory Network Construction
2.1.1. Identification of Differentially Expressed mRNAs
2.1.2. GO and Pathway Enrichment Analyses of DEGs
2.1.3. Protein-Protein Interaction (PPI) Network Construction and Network Analyses
2.1.4. Key Genes for Co-Regulatory Network
2.1.5. Retrieval of miRNAs and lncRNAs for Co-Regulatory Network
2.2. Laboratory Validation of the Constructed RNA Network in Animal Model
2.2.1. Histopathological Evaluation of Liver Tissue Using Different Special Stains
2.2.2. Validation of the Constructed Network by Quantitative Reverse Transcription PCR (RT qPCR)
- ❖
- mRNAs expression in the experimental animal models:
- ❖
- mi-RNAs expression in the experimental animal models:
- ❖
- lnc-RNAs expression in the experimental animal models:
3. Discussion
4. Material and Methods
4.1. In-Silico Construction of mRNA-ncRNAs Regulatory Network Using Database Analysis
4.1.1. Raw Data Analysis
4.1.2. Identification of Differentially Expressed Genes (DEGs)
4.1.3. Functional Enrichment Analyses of the DEGs
4.1.4. Protein–Protein Interaction Network (PPI) Analysis
4.1.5. Selection of Key Genes for Co-Regulatory Network
4.1.6. Prediction of Upstream Key miRNAs and lncRNAs
4.2. Experimental Validation of the Constructed Network in NAFLD Animal Model
4.2.1. Experimental Animals and Diets
4.2.2. Tissue Preparation for Histopathological Examination:
4.2.3. Extraction of Total RNA (lncRNA, miRNA and mRNA)
4.2.4. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sulaiman, S.A.; Muhsin, N.I.A.; Jamal, R. Regulatory Non-coding RNAs Network in Non-alcoholic Fatty Liver Disease. Front. Physiol. 2019, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Negro, F. Natural history of NASH and HCC. Liver Int. 2020, 40, 72–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegazy, M.A.; Samy, M.A.; Tawfik, A.; Naguib, M.M.; Ezzat, A.; Behiry, M.E. Abdominal subcutaneous fat thickness and homeostasis model assessment of insulin resistance as simple predictors of nonalcoholic steatohepatitis. Diabetes Metab. Syndr. Obesity Targets Ther. 2019, 12, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatol. Commun. 2020, 4, 478–492. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.-F.; Bian, H.; Gao, X. NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front. Pharmacol. 2019, 10, 877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasper, P.; Martin, A.; Lang, S.; Kütting, F.; Goeser, T.; Demir, M.; Steffen, H.-M. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, L.E.; Petta, S.; Fracanzani, A.L.; Nevola, R.; Coppola, C.; Narciso, V.; Rinaldi, L.; Calvaruso, V.; Pafundi, P.C.; Lombardi, R.; et al. Reduced incidence of type 2 diabetes in patients with chronic hepatitis C virus infection cleared by direct-acting antiviral therapy: A prospective study. Diabetes, Obes. Metab. 2020, 22, 2408–2416. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, L.E.; Petta, S.; Fracanzani, A.L.; Coppola, C.; Narciso, V.; Nevola, R.; Rinaldi, L.; Calvaruso, V.; Staiano, L.; Di Marco, V.; et al. Impact of hepatitis C virus clearance by direct-acting antiviral treatment on the incidence of major cardiovascular events: A prospective multicentre study. Atherosclerosis 2020, 296, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, H.; Hu, X.; Huang, Y.; Wang, Y.; He, Y.; Lei, Q. Identification of key genes in non-alcoholic fatty liver disease progression based on bioinformatics analysis. Mol. Med. Rep. 2018, 17, 7708–7720. [Google Scholar] [CrossRef] [Green Version]
- Magee, N.; Zou, A.; Zhang, Y. Pathogenesis of Nonalcoholic Steatohepatitis: Interactions between Liver Parenchymal and Nonparenchymal Cells. BioMed Res. Int. 2016, 2016, 5170402. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.V.; Michelotti, G.A.; Pereira, T.A.; Xie, G.; Premont, R.; Cortez-Pinto, H.; Diehl, A.M. Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J. Hepatol. 2015, 63, 962–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardestani, A.; Lupse, B.; Maedler, K. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism. Trends Endocrinol. Metab. 2018, 29, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Baffy, G. MicroRNAs in Nonalcoholic Fatty Liver Disease. J. Clin. Med. 2015, 4, 1977–1988. [Google Scholar] [CrossRef] [Green Version]
- Gerhard, G.S.; DiStefano, J.K. Micro RNAs in the development of non-alcoholic fatty liver disease. World J. Hepatol. 2015, 7, 226–234. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Hu, C.; Jia, W. miRNAs in non-alcoholic fatty liver disease. Front. Med. 2016, 10, 389–396. [Google Scholar] [CrossRef]
- Otsuka, M.; Kishikawa, T.; Yoshikawa, T.; Yamagami, M.; Ohno, M.; Takata, A.; Shibata, C.; Ishibashi, R.; Koike, K. MicroRNAs and liver disease. J. Hum. Genet. 2017, 62, 75–80. [Google Scholar] [CrossRef]
- Grimaldi, B.; Bellet, M.M.; Katada, S.; Astarita, G.; Hirayama, J.; Amin, R.H.; Granneman, J.G.; Piomelli, D.; Leff, T.; Sassone-Corsi, P. PER2 Controls Lipid Metabolism by Direct Regulation of PPARγ. Cell Metab. 2010, 12, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Ruan, X.; Yang, L.; Kiesewetter, K.; Zhao, Y.; Luo, H.; Chen, Y.; Gucek, M.; Zhu, J.; Cao, H. A Liver-Enriched Long Non-Coding RNA, lncLSTR, Regulates Systemic Lipid Metabolism in Mice. Cell Metab. 2015, 21, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, H.; Xu, C.; Yu, C.; Li, Y. Long Non-Coding RNA Profiling in a Non-Alcoholic Fatty Liver Disease Rodent Model: New Insight into Pathogenesis. Int. J. Mol. Sci. 2017, 18, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chi, X.; Qu, N.; Wang, C. Long noncoding RNA lncARSR promotes hepatic lipogenesis via Akt/SREBP-1c pathway and contributes to the pathogenesis of nonalcoholic steatohepatitis. Biochem. Biophys. Res. Commun. 2018, 499, 66–70. [Google Scholar] [CrossRef]
- Wruck, W.; Graffmann, N.; Kawala, M.-A.; Adjaye, J. Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells 2016, 35, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.; Wang, F.; Yan, F.; Wang, L.; Li, B.; Liu, T.; Hu, F.; Jiang, M.; Li, W.; Fu, Z. Bioinformatic identification of candidate biomarkers and related transcription factors in nasopharyngeal carcinoma. World J. Surg. Oncol. 2019, 17, 60. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Dudley, J.T.; Butte, A.J. Identification of Discriminating Biomarkers for Human Disease using Integrative Network Biology. In Proceedings of the Pacific Symposium on Biocomputing, Kohala Cost, HI, USA, 5–9 January 2009; pp. 27–38. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Rao, M.R.S. Functional/Signature Network Module for Target Pathway/Gene Discovery. In Encyclopedia of Systems Biology; Springer: New York, NY, USA, 2013; pp. 773–777. [Google Scholar]
- Xia, X. Bioinformatics and Drug Discovery. Curr. Top. Med. Chem. 2017, 17, 1709–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.; De, A.; Chowdhury, A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl. Gastroenterol. Hepatol. 2020, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-H.; Han, D.-W.; Li, X.-Q.; Zhang, Y.; Zhao, Y.-C. The impact of small doses of LPS on NASH in high sucrose and high fat diet induced rats. Eur. Rev. Med Pharmacol. Sci. 2014, 18, 2742–2747. [Google Scholar] [PubMed]
- Masarone, M.; Rosato, V.; Aglitti, A.; Bucci, T.; Caruso, R.; Salvatore, T.; Sasso, F.C.; Tripodi, M.F.; Persico, M. Liver biopsy in type 2 diabetes mellitus: Steatohepatitis represents the sole feature of liver damage. PLoS ONE 2017, 12, e0178473. [Google Scholar] [CrossRef] [PubMed]
- Manmadhan, S.; Ehmer, U. Hippo Signaling in the Liver—A Long and Ever-Expanding Story. Front. Cell Dev. Biol. 2019, 7. [Google Scholar] [CrossRef]
- Zhao, B.; Li, L.; Lei, Q.-Y.; Guan, K.-L. The Hippo-YAP pathway in organ size control and tumorigenesis: An updated version. Genes Dev. 2010, 24, 862–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pobbati, A.V.; Hong, W. Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol. Ther. 2013, 14, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Pan, D. The Hippo Signaling Pathway in Development and Cancer. Dev. Cell 2010, 19, 491–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawada, A.; Kiyonari, H.; Ukita, K.; Nishioka, N.; Imuta, Y.; Sasaki, H. Redundant Roles of Tead1 and Tead2 in Notochord Development and the Regulation of Cell Proliferation and Survival. Mol. Cell. Biol. 2008, 28, 3177–3189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, K.; Kohn, M.J.; Liu, C.; Depamphilis, M.L. Transcription factor TEAD2 is involved in neural tube closure. Genes 2007, 45, 577–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holden, J.K.; Cunningham, C.N. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Cancers 2018, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Li, T.-S.; Xu, G.; Zhao, Y.-M.; Zhang, N.-P.; Fan, J.; Wu, J. JCAD Promotes Progression of Nonalcoholic Steatohepatitis to Liver Cancer by Inhibiting LATS2 Kinase Activity. Cancer Res. 2017, 77, 5287–5300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Feldmann, G.; Huang, J.; Wu, S.; Zhang, N.; Comerford, S.A.; Gayyed, M.F.; Anders, R.A.; Maitra, A.; Pan, D. Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals. Cell 2007, 130, 1120–1133. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Park, H.W.; Guan, K. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 2014, 15, 642–656. [Google Scholar] [CrossRef] [Green Version]
- Petrilli, A.M.; Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016, 35, 537–548. [Google Scholar] [CrossRef] [Green Version]
- Benhamouche, S.; Curto, M.; Saotome, I.; Gladden, A.B.; Liu, C.-H.; Giovannini, M.; McClatchey, A.I. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010, 24, 1718–1730. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Bai, H.; David, K.K.; Dong, J.; Zheng, Y.; Cai, J.; Giovannini, M.; Liu, P.; Anders, R.A.; Pan, D. The Merlin/NF2 Tumor Suppressor Functions through the YAP Oncoprotein to Regulate Tissue Homeostasis in Mammals. Dev. Cell 2010, 19, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Li, L.; Lu, Q.; Wang, L.H.; Liu, C.-Y.; Lei, Q.; Guan, K.-L. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011, 25, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Yang, B.; Wang, W. Angiomotin-like 2 interacts with and negatively regulates AKT. Oncogene 2017, 36, 4662–4669. [Google Scholar] [CrossRef]
- Moon, Y.J.; Yun, C.-Y.; Choi, H.; Ka, S.-O.; Kim, J.R.; Park, B.-H.; Cho, E.-S. Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability. Exp. Mol. Med. 2016, 48, e256. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Ji, F.; Yang, G.; Hou, Z.; Sun, J.; Wang, X.; Guo, W.; Sun, W.; Yang, W.; Yang, X.; et al. SMAD4 Defect Causes Auditory Neuropathy Via Specialized Disruption of Cochlear Ribbon Synapses in Mice. Mol. Neurobiol. 2016, 53, 5679–5691. [Google Scholar] [CrossRef] [PubMed]
- Hernanda, P.Y.; Chen, K.; Das, A.M.; Sideras, K.; Wang, W.; Li, J.; Cao, W.; Bots, S.J.A.; Kodach, L.L.; De Man, R.A.; et al. SMAD4 exerts a tumor-promoting role in hepatocellular carcinoma. Oncogene 2015, 34, 5055–5068. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.; Wang, G.Z.; Guo, D.D.; Bai, R.X.; Wang, M.; Du, S.Y. Deletion of Smad4 reduces hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis progression. J. Dig. Dis. 2018, 19, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Murata, M.; Yamaguchi, T.; Matsuzaki, K. TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review). Int. J. Oncol. 2014, 45, 1363–1371. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kiyokawa, H.; Dennewitz, M.B.; Costa, R.H. The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc. Natl. Acad. Sci. USA 2002, 99, 16881–16886. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, P.; Mahlapuu, M. Forkhead transcription factors: Key players in development and metabolism. Dev. Biol. 2002, 250, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.H.; Kalinichenko, V.V.; Lim, L. Transcription factors in mouse lung development and function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 280, L823–L838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, S.A. Mechanisms controlling early development of the liver. Mech. Dev. 2003, 120, 19–33. [Google Scholar] [CrossRef]
- Rogler, C.E.; Bebawee, R.; Matarlo, J.; Locker, J.; Pattamanuch, N.; Gupta, S.; Rogler, L.E. Triple Staining Including FOXA2 Identifies Stem Cell Lineages Undergoing Hepatic and Biliary Differentiation in Cirrhotic Human Liver. J. Histochem. Cytochem. 2017, 65, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Nobili, V.; Carpino, G.; Alisi, A.; Franchitto, A.; Alpini, G.; De Vito, R.; Onori, P.; Alvaro, D.; Gaudio, E. Hepatic progenitor cells activation, fibrosis, and adipokines production in pediatric nonalcoholic fatty liver disease. Hepatology 2012, 56, 2142–2153. [Google Scholar] [CrossRef]
- Lake, A.D.; Chaput, A.L.; Novak, P.; Cherrington, N.J.; Smith, C.L. Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis. Biochem. Pharmacol. 2016, 122, 62–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Yao, L.-J.; Shen, W.; Ding, K.; Shi, P.-M.; Chen, F.; He, J.; Ding, J.; Zhang, X.; Xie, W.-F. FOXA2 alleviates CCl4-induced liver fibrosis by protecting hepatocytes in mice. Sci. Rep. 2017, 7, 15532. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, H.; Wang, Z.; Wu, J.; Ying, S.; Huang, M.; Li, Y. Integrated expression profiles of mRNA and miRNA in a gerbil model of fatty liver fibrosis treated with exenatide. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101312. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhou, Y.; Cheng, Y.; Fang, W.; Hu, G.; Wei, J.; Lin, Y.; Man, Y.; Guo, L.; Sun, M.; et al. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice. Cell. Physiol. Biochem. 2018, 45, 1487–1505. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Song, X.; Ling, Y.; Zhou, J.; Tao, Z.; Shen, Y. Comprehensive bioinformatics analysis of critical lncRNAs, mRNAs and miRNAs in non-alcoholic fatty liver disease. Mol. Med. Rep. 2019, 19, 2649–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.-S.; Lin, X.-F.; Zheng, J.-Z.; Wang, Q.; Guan, H.-Q. lncRNA NEAT1 regulates fibrosis and inflammatory response induced by nonalcoholic fatty liver by regulating miR-506/GLI3. Eur. Cytokine Netw. 2019, 30, 98–106. [Google Scholar] [CrossRef]
- Huang, F.; Liu, H.; Lei, Z.; Li, Z.; Zhang, T.; Yang, M.; Zhou, K.; Sun, C. Long noncoding RNA CCAT1 inhibits miR-613 to promote nonalcoholic fatty liver disease via increasing LXRα transcription. J. Cell. Physiol. 2020, 235, 9819–9833. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, A.; Rani, S. MiRNA Biogenesis and Regulation of Diseases: An Overview. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1509, pp. 1–10. [Google Scholar]
- Shabgah, A.G.; Norouzi, F.; Hedayati-Moghadam, M.; Soleimani, D.; Pahlavani, N.; Navashenaq, J.G. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutr. Metab. 2021, 18, 1–15. [Google Scholar] [CrossRef]
- Feng, L.; Xie, Y.; Zhang, H.; Wu, Y. Down-regulation of NDRG2 gene expression in human colorectal cancer involves promoter methylation and microRNA-650. Biochem. Biophys. Res. Commun. 2011, 406, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, W.; Zhang, J.; Huo, S.; Zhou, L.; Gu, Z.; Zhang, M. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem. Biophys. Res. Commun. 2010, 395, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-Y.; Cui, S.-Y.; Chen, Y.-T.; Song, H.-Z.; Huang, G.-C.; Feng, B.; Sun, M.; De, W.; Wang, R.; Chen, L.-B. MicroRNA-650 Was a Prognostic Factor in Human Lung Adenocarcinoma and Confers the Docetaxel Chemoresistance of Lung Adenocarcinoma Cells via Regulating Bcl-2/Bax Expression. PLoS ONE 2013, 8, e72615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, B.; Kong, D.-L.; Tian, J.; Liu, T.-W.; Zhou, H.; Wang, Z.-F. microRNA-1205 promotes cell growth by targeting APC2 in lung adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1125–1133. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Liu, W.; Li, B.; Chen, D.; Hu, F.; Wang, L.; Liu, X.M.; Cui, R.; Liu, R. MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer. Oncogene 2019, 38, 4820–4834. [Google Scholar] [CrossRef] [PubMed]
- HGNC Database, HUGO Gene Nomenclature Committee (HGNC), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom. Available online: www.genenames.org (accessed on 22 February 2021).
- Starmann, J.; Fälth, M.; Spindelböck, W.; Lanz, K.-L.; Lackner, C.; Zatloukal, K.; Trauner, M.; Sültmann, H. Gene Expression Profiling Unravels Cancer-Related Hepatic Molecular Signatures in Steatohepatitis but Not in Steatosis. PLoS ONE 2012, 7, e46584. [Google Scholar] [CrossRef] [Green Version]
- Diboun, I.; Wernisch, L.; Orengo, C.A.; Koltzenburg, M. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genom. 2006, 7, 252. [Google Scholar] [CrossRef]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’Ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scardoni, G.; Petterlini, M.; Laudanna, C. Analyzing biological network parameters with CentiScaPe. Bioinformatics 2009, 25, 2857–2859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Luo, Q.; Huang, C.; Gao, Q.; Li, L.; Chen, J.; Chen, B.; Liu, W.; Zeng, W.; Chen, Z. Pathogenesis of non-alcoholic fatty liver disease mediated by YAP. Hepatol. Int. 2018, 12, 26–36. [Google Scholar] [CrossRef]
- Alder, O.; Cullum, R.; Lee, S.; Kan, A.C.; Wei, W.; Yi, Y.; Garside, V.C.; Bilenky, M.; Griffith, M.; Morrissy, A.S.; et al. Hippo Signaling Influences HNF4A and FOXA2 Enhancer Switching during Hepatocyte Differentiation. Cell Rep. 2014, 9, 261–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayoub, R.; Lüpke, M.; Hofmann, U.; Melter, M.; Weiss, T. Reduced HNF3b (FOXA2) levels in steatosis leads to diminished expression of anti-lipoapoptotic protein ALR. Z. Gastroenterol. 2015, 53. [Google Scholar] [CrossRef]
- Lin, K.C.; Park, H.W.; Guan, K.-L. Regulation of the Hippo Pathway Transcription Factor TEAD. Trends Biochem. Sci. 2017, 42, 862–872. [Google Scholar] [CrossRef]
- Nguyen, Q.; Anders, R.A.; Alpini, G.; Bai, H. Yes-associated protein in the liver: Regulation of hepatic development, repair, cell fate determination and tumorigenesis. Dig. Liver Dis. 2015, 47, 826–835. [Google Scholar] [CrossRef] [Green Version]
- Grannas, K.; Arngården, L.; Lönn, P.; Mazurkiewicz, M.; Blokzijl, A.; Zieba, A.; Söderberg, O. Crosstalk between Hippo and TGFβ: Subcellular Localization of YAP/TAZ/Smad Complexes. J. Mol. Biol. 2015, 427, 3407–3415. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, N.; Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015, 43, D146–D152. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Identifier | Description | Count in Gene | p-Value |
---|---|---|---|
GO:0042127 | Regulation of cell proliferation | 371 | 8.51 × 10−5 |
GO:0045597 | Positive regulation of cell differentiation | 102 | 0.00850 |
GO:0045595 | Regulation of cell differentiation | 66 | 0.013427 |
KEGG: hsa04390 | Hippo signaling pathway—Homo sapiens | 81 | 0.025864 |
Reactome: R-HSA-2028269 | Signaling by Hippo—Homo sapiens | 10 |
Cell Proliferation | Cell Differentiation | Hippo Signaling Pathway |
---|---|---|
APP, YAP1, CNTF, TES, ADARB1, CCAR1, CRKL, TCL1A, CAPNS1, FTH1, CYP1B1, SOX9, SOX4, TNS2, TIPIN, RBFOX2, RPL23, CLEC11A, P3H1, FLT3LG, LDOC1, P3H3, ZNF16, SULT2B1, ACE2, SFRP4, TIAM1, EID2, AZGP1, GAREM1, SFRP5, CSNK2B, AGTR1, BTK, ATF5, KIF20B, EPHA1, TP53, PLPP1, TSPYL5, BEX4, CTBP1, PRKDC, EIF5A2, PDGFB, PDGFA, TGFA, MST1R, CIAO1, PRDX3, PKHD1, NUAK1, PDCD10, PDGFD, PDGFC, ZNF703, ZNF268, S100A11, ZBTB7C, SLAMF1, MCTS1, JAG2, SRPK2, NGFR, JUN, XBP1, XRCC6, JUND, JAG1, YES1, JUP, XRCC5, INSR, THAP12, FN1, IGF2, LIF, PTK6, IFNLR1, IGF1, SMARCA2, ST18, FOSL1, BST1, AGO3, TNFSF4, WNK2, ACER3, SPDYA, CDK10, NOX4, CD27, GNRH1, STRN, GRAP, CALR, CDK13, HRG, ACVRL1, ITK, TENM1, BTG2, CDKN1A, CDKN1B, TGFB1I1, KIF14, AKR1B1, PTPRJ, PTPRK, BRCA1, HOXC10, MECP2, ING5, SHH, HNF4A, TIMP1, IL11, CNOT6L, SYK, IL15, PRMT1, TESC, FSHB, RHOG, EMP2, EMP3, PROX1, SIRT1, CBFA2T3, SIRT2, RHOA, NME1, KIT, RARA, MZB1, SGK3, ARHGEF2, SGK1, CACUL1, GAS8, CCL14, KANK2, XIAP, DERL2, EGFR, FAM129B, MNT, RPS15A, SERTAD1, EPCAM, FRZB, LMNA, PDPN, HSF1, GCNT2, CHRNA10, STX3, TP53I11, CCL23, EGLN3, CDKN2C, CDKN2A, IL34, DAB2IP, VEGFC, AKR1C2, PODN, DHRS2, SLURP1, FABP3, FABP6, PRKRA, CLCF1, DLC1, ABI1, CTNNB1, HSPA1B, CRLF1, FRK, HSPA1A, CD86, ATP8A2, EPO, IRS1, PDCD5, SIRPG, SLA, IRS2, CIB1, FGF1, ETS1, CCND2, ADORA3, PIM2, CAPN1, ARID2, TNFRSF4, IL6R, HIST1H2AC, ENPP7, KRT6A, HIST1H2AB, PDGFRB, PDGFRA, OSR2, RPS9, MAP2K1, IGFBP3, HGF, F2R, CEP131, MATK, ADAM10, LIFR, TSC1, NCCRP1, FOXP3, POU3F2, PGF, CDC25B, ADAM17, HGS, COL4A3, PHIP, STAMBP, ROR2, IL6ST, CSF1R, KMT2D, NOTCH1, SHC1, CUL2, NPR3, TNFRSF11B, FOXO4, ZFP36L1, EFNB2, DPP4, SLC9A3R1, SDCBP, ADGRG1, GRK5, DDRGK1, TMEM127, FGF20, IGFBP7, TNFRSF14, IGFBP6, DRD2, WNT2, CD164, ZBTB17, TFAP2B, TFAP2C, VDR, TNK2, HMGA1, TNFRSF10B, UBE2A, BMX, SMAD6, CHERP, BMP5, BMP2, IL6, CDK6, TMEM115, DLG3, BAMBI, CCPG1, FES, IL7, FGF19, IL9, FGFR1OP, MDM4, NF2, CNOT8, COPS8, IL7R, FGFR3, EIF4G1, FGFR1, BMPR1A, CXCL6, BMPR2, CXCL8, FLT3, CDCA7L, FLT4, HTR2B, PTEN, HMGB2, LAMC2, TCIRG1, FOXM1, DUSP15, PKD2, ADRA1A, CXCL2, CXCL5, RERG, TNFSF13B, RPS4X, SIX4, ADAMTS1, GPER1, NCK2, WDR6, ITGAV, NKX3-1, DIS3L2, KLF10, KLF11, ITGA1, DHPS, NRG1, OPRM1, SSTR1, NGF, ADRA2A, DYNAP, TGFBR2, DUSP22, ZAP70, LCK, TNFRSF25, ITGB1BP1, IRF6, SLC25A5, FXN, BIRC2, TNFRSF21, HDAC4, SRC, HDAC1, LEF1, PLG, DBF4B, PPM1D, DLL1, THBS1, TBRG4, INS, DNAJB2, RAB25, RBBP4, TP53INP1, MXI1, ZNF503, S1PR3, VHL, E2F7, TCFL5, TBX1, NTRK2, TCF7L2, CNBP, NAP1L1, SOD2, PTPN14, MYO16, TBX3, PML, TBX2, CUL4A, TEC, BCL6B, DNAJA2, NEURL1, PTPN6, LTBR | NF2, SMAD4, PHLDB1, FOXA2, HSP90AB1, PLEKHB2, MEGF10, PLEKHB1, RORC, AKR1B1, CTGF, LGALS3, RPS6KA3, SHH, HEY1, PPP2R1A, TRPS1, RPS6KA1, HEY2, DAG1, DDX17, SERPINF2, EMP2, ISL1, RUNX2, RUNX1, TIAM1, PHLDB2, EPHA3, BIRC2, GCM1, DLX1, DDX5, ZBTB46, SRF, LTBP4, DLL1, KLK6, INS, PURB, PPP2CA, SPOCK2, VHL, ZNF268, TCFL5, TBX1, TFAP2B, CREBBP, JUN, JUND, UQCC2, IGF2, NR1D2, NR1D1, PA2G4, HOPX, SMAD7, CDK9, CDK6, FES, BCL6B, SMOC1, OCIAD1, PDCD2, CAMK1, CD24, BMPR1B, FGFR1, SYAP1, ZC3H12A, SOX9, IL6R, CMKLR1, SOX5, ACVR1, MEF2C, PRKCH, HGF, CTNNBIP1, OLFM1, AGTR1, HOXB4, PRKD1, WDFY2, IL6ST, NOTCH1, PKDCC, TACSTD2, TWIST1, CREBL2, ZFP36L1, SDCBP, ZNF703, WNT4, MSR1, XBP1, SUCO, IGF1, BMP6, COL1A1, BMP2, IL6, DAB2, BAMBI, TMEM119, MYF6, TCF3, EZH2, MYF5, BMPR1A, ACVRL1, BMPR2, TGFB1I1, ATRAID, RBM4, GLIPR2, CD36, HIF1AN, CD34, ADIG, ZHX3, ATP6AP1, PAX2, TGFBR2, CDH15, PPARD, FOXC1, LEF1, CDC42, MAPK9, SULT1E1, FRZB, GPC1, NOCT, PDPN, GCNT2, CTNNA1, AAMDC, SPAG9, TMEM64, MAPK14, ACVR2B, ACVR2A, MTOR, CARM1, ASXL2, CTNNB1, ASB4 | AMOTL2, SMAD4, TEAD2, NF2, TJP2, GSK3B, YWHAE, WNT2B, BMPR2, SERPINE1, ITGB2, PPP2R2A, FZD10, FGF1, ACTB, GLI2, PPP1CB, CCND3, RASSF1, CCND2, RASSF2, CCND1, PPP2R1B, PPP2R1A, RASSF6, YWHAG, YWHAH, TEAD3, TEAD4, FBXW11, SCRIB, CSNK1E, YWHAZ, TGFBR2, PARD3, AJUBA, BIRC2, LLGL2, TCF7, LEF1, PARD6G, WNT8B, PRKCZ, NKD1, SAV1, PPP2CA, PPP2CB, PARD6A, DVL2, CTNNA1, DVL3, CTNNA3, WNT2, WNT4, WNT10B, TCF7L2, WNT10A, FZD3, TCF7L1, FZD2, FZD5, FZD4, FZD7, FZD9, FZD8, MPP5, WTIP, BMP6, GDF7, SMAD7, BMP5, PPP1CA, MOB1B, MOB1A, BMP2, DLG3, PPP2R2B, ID2, ID1, PPP2R2D, CTNNB1, FAT4, BMPR1B, BMPR1A, TJP1, CASP3, AMOTL1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matboli, M.; Gadallah, S.H.; Rashed, W.M.; Hasanin, A.H.; Essawy, N.; Ghanem, H.M.; Eissa, S. mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2021, 22, 6770. https://doi.org/10.3390/ijms22136770
Matboli M, Gadallah SH, Rashed WM, Hasanin AH, Essawy N, Ghanem HM, Eissa S. mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences. 2021; 22(13):6770. https://doi.org/10.3390/ijms22136770
Chicago/Turabian StyleMatboli, Marwa, Shaimaa H. Gadallah, Wafaa M. Rashed, Amany Helmy Hasanin, Nada Essawy, Hala M. Ghanem, and Sanaa Eissa. 2021. "mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease" International Journal of Molecular Sciences 22, no. 13: 6770. https://doi.org/10.3390/ijms22136770
APA StyleMatboli, M., Gadallah, S. H., Rashed, W. M., Hasanin, A. H., Essawy, N., Ghanem, H. M., & Eissa, S. (2021). mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 22(13), 6770. https://doi.org/10.3390/ijms22136770