Caloric Restriction and Hypothalamic Leptin Gene Therapy Have Differential Effects on Energy Partitioning in Adult Female Rats
Abstract
:1. Introduction
2. Results
2.1. Effects of Hypothalamic rAAV-Lep or Caloric Restriction on Body Weight and Food Consumption
2.2. Effects of Hypothalamic rAAV-Lep or Caloric Restriction on Abdominal WAT, Serum Adipokines and Tissue Gene Expression
2.3. Effects of Hypothalamic rAAV-Lep or Caloric Restriction on Bone Marrow Adiposity
2.4. Effects of Hypothalamic rAAV-Lep or Caloric Restriction on Bone Mass, Architecture, and Serum Markers of Bone Turnover
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. rAAV Vector Administration
4.3. Tissue Collection at Necropsy
4.4. RNA Analysis
4.5. Serum Assays
4.6. Histomorphometry
4.7. Densitometry
4.8. Microcomputed Tomography
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BAT | Brown adipose tissue |
bMAT | Bone marrow adipose tissue |
DXA | Dual energy x-ray absorptiometry |
GFP | Green fluorescent protein |
µCT | Microcomputed tomography |
rAAV | Recombinant adeno-associated virus |
Ucp-1 | Uncoupling protein 1 |
W-M | Weight-matched |
WAT | White adipose tissue |
References
- Hutfless, S.; Maruthur, N.M.; Wilson, R.F.; Gudzune, K.A.; Brown, R.; Lau, B.; Fawole, O.A.; Chaudhry, Z.W.; Anderson, C.A.M.; Segal, J.B. Strategies to prevent weight gain among adults. In Strategies to Prevent Weight Gain Among Adults; AHRQ Comparative Effectiveness Reviews, No. 97; NCBI Bookshelf: Rockville, MD, USA, 2013. [Google Scholar]
- Malhotra, R.; Østbye, T.; Riley, C.M.; Finkelstein, E.A. Young adult weight trajectories through midlife by body mass category. Obesity 2013, 21, 1923–1934. [Google Scholar] [CrossRef] [PubMed]
- Changzheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight Gain from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–272. [Google Scholar] [CrossRef]
- Gruzdeva, O.; Borodkina, D.; Uchasova, E.; Dyleva, Y.; Barbarash, O. Leptin resistance: Underlying mechanisms and diagnosis. Diabetes Metab. Syndr. Obes. 2019, 12, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Kusminski, C.M.; Elmquist, J.K.; Scherer, P.E. Leptin: Less Is More. Diabetes 2020, 69, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Breitkopf, C.R.; Berenson, A.B. Correlates of Weight Loss Behaviors among Low-Income African-American, Caucasian, and Latina Women. Obstet. Gynecol. 2004, 103, 231–239. [Google Scholar] [CrossRef]
- Montani, J.-P.; Schutz, Y.; Dulloo, A. Dieting and weight cycling as risk factors for cardiometabolic diseases: Who is really at risk? Obes. Rev. 2015, 16, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Santos, I.; Sniehotta, F.; Marques, M.M.; Carraça, E.; Teixeira, P.J. Prevalence of personal weight control attempts in adults: A systematic review and meta-analysis. Obes. Rev. 2017, 18, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Slof-Op ’t Landt, M.C.T.; van Furth, E.F.; van Beijsterveldt, C.E.M.; Bartels, M.; Willemsen, G.; de Geus, E.J.; Ligthart, L.; Boomsma, D.I. Prevalence of dieting and fear of weight gain across ages: A community sample from adolescents to the elderly. Int. J. Public Health 2017, 62, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Elfhag, K.; Rossner, S. Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obes. Rev. 2005, 6, 67–85. [Google Scholar] [CrossRef]
- Wu, T.; Gao, X.; Chen, M.; Van Dam, R.M. Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: A meta-analysis. Obes. Rev. 2009, 10, 313–323. [Google Scholar] [CrossRef]
- Yaskin, J.; Toner, R.W.; Goldfarb, N. Obesity Management Interventions: A Review of the Evidence. Popul. Health Manag. 2009, 12, 305–316. [Google Scholar] [CrossRef]
- Hohman, E.E.; Balantekin, K.N.; Birch, L.L.; Savage, J.S. Dieting is associated with reduced bone mineral accrual in a longitudinal cohort of girls. BMC Public Health 2018, 18, 1285. [Google Scholar] [CrossRef]
- Turner, R.T.; Iwaniec, U.T. Low dose parathyroid hormone maintains normal bone formation in adult male rats during rapid weight loss. Bone 2011, 48, 726–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Ye, Y.; Zhang, Y.; Pan, X.-F.; Pan, A. Weight change across adulthood in relation to all cause and cause specific mortality: Prospective cohort study. BMJ 2019, 367, l5584. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, X.; Wang, J.; Li, Y.; Ying, D.; Yuan, H. Weight loss increases all-cause mortality in overweight or obese patients with diabetes: A meta-analysis. Medicine 2018, 97, e12075. [Google Scholar] [CrossRef]
- Gregg, E.W.; Gerzoff, R.B.; Thompson, T.J.; Williamson, D.F. Intentional Weight Loss and Death in Overweight and Obese U.S. Adults 35 Years of Age and Older. Ann. Intern. Med. 2003, 138, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Affinati, A.H.; Myers, M.G., Jr. Neuroendocrine control of body energy homeostasis. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Grossman, A., Eds.; MDText.com, Inc.: Dartmouth, MA, USA, 2000. [Google Scholar]
- Philbrick, K.A.; Wong, C.P.; Branscum, A.J.; Turner, R.T.; Iwaniec, U.T. Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J. Endocrinol. 2017, 232, 461–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boghossian, S.; Lecklin, A.; Torto, R.; Kalra, P.S.; Kalra, S.P. Suppression of fat deposition for the life time with gene therapy. Peptides 2005, 26, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, H.; Kalra, S.P.; Prima, V.; Zolotukhin, S.; Scarpace, P.J.; Moldawer, L.L.; Muzyczka, N.; Kalra, P.S. Central leptin gene therapy suppresses body weight gain, adiposity and serum insulin without affecting food consumption in normal rats: A long-term study. Regul. Pept. 2001, 99, 69–77. [Google Scholar] [CrossRef]
- Dube, M.G.; Beretta, E.; Dhillon, H.; Ueno, N.; Kalra, P.S.; Kalra, S.P. Central leptin gene therapy blocks high-fat diet-induced weight gain, hyperleptinemia, and hyperinsulinemia: Increase in serum ghrelin levels. Diabetes 2002, 51, 1729–1736. [Google Scholar] [CrossRef] [Green Version]
- Van Heek, M.; Compton, D.S.; France, C.F.; Tedesco, R.P.; Fawzi, A.B.; Graziano, M.P.; Sybertz, E.J.; Strader, C.D.; Davis, H.R. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J. Clin. Investig. 1997, 99, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.T.; Dube, M.; Branscum, A.J.; Wong, C.P.; Olson, D.A.; Zhong, X.; Kweh, M.F.; Larkin, I.V.; Wronski, T.J.; Rosen, C.J.; et al. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss. J. Endocrinol. 2015, 227, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.A.; Ritman, E.L.; Turner, R.T. Time course of epiphyseal growth plate fusion in rat tibiae. Bone 2003, 32, 261–267. [Google Scholar] [CrossRef]
- Turner, R.; Iwaniec, U.; Turner, R.; Iwaniec, U. Moderate weight gain does not influence bone metabolism in skeletally mature female rats. Bone 2010, 47, 631–635. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.T.; Kidder, L.S.; Kennedy, A.; Evans, G.L.; Sibonga, J.D. Moderate Alcohol Consumption Suppresses Bone Turnover in Adult Female Rats. J. Bone Miner. Res. 2001, 16, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Busetto, L.; Bettini, S.; Makaronidis, J.; Roberts, C.A.; Halford, J.C.G.; Batterham, R.L. Mechanisms of weight regain. Eur. J. Intern. Med. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Jéquier, E. Leptin Signaling, Adiposity, and Energy Balance. Ann. N. Y. Acad. Sci. 2006, 967, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.E.; Keesey, R.E. Defense of differing body weight set points in diet-induced obese and resistant rats. Am. J. Physiol. 1998, 274, R412–R419. [Google Scholar]
- Dhillon, H.; Kalra, S.P.; Kalra, P.S. Dose-Dependent Effects of Central Leptin Gene Therapy on Genes That Regulate Body Weight and Appetite in the Hypothalamus. Mol. Ther. 2001, 4, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Beretta, E.; Dube, M.G.; Kalra, P.S.; Kalra, S.P. Long-term suppression of weight gain, adiposity, and serum insulin by central leptin gene therapy in prepubertal rats: Effects on serum ghrelin and appetite-regulating genes. Pediatric Res. 2002, 52, 189–198. [Google Scholar] [CrossRef]
- Tsao, T.-S.; Lodish, H.F.; Fruebis, J. ACRP30, a new hormone controlling fat and glucose metabolism. Eur. J. Pharmacol. 2002, 440, 213–221. [Google Scholar] [CrossRef]
- Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr. Physiol. 2018, 9, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Cawthorn, W.P.; Scheller, E.L.; Learman, B.S.; Parlee, S.D.; Simon, B.R.; Mori, H.; Ning, X.; Bree, A.J.; Schell, B.; Broome, D.T.; et al. Bone Marrow Adipose Tissue Is an Endocrine Organ that Contributes to Increased Circulating Adiponectin during Caloric Restriction. Cell Metab. 2014, 20, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, M.; Leibel, R.L. Adaptive thermogenesis in humans. Int. J. Obes. 2010, 34, S47–S55. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.M. Leptin and the endocrine control of energy balance. Nat. Metab. 2019, 1, 754–764. [Google Scholar] [CrossRef]
- Kelesidis, T.; Kelesidis, I.; Chou, S.; Mantzoros, C.S. Narrative review: The role of leptin in human physiology: Emerging clinical applications. Ann. Intern. Med. 2010, 152, 93–100. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Sy, M.; Pavlovich, K.; Leibel, R.L.; Hirsch, J. Leptin reverses weight loss–induced changes in regional neural activity responses to visual food stimuli. J. Clin. Investig. 2008, 118, 2583–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ealey, K.N.; Fonseca, D.; Archer, M.C.; Ward, W.E. Bone abnormalities in adolescent leptin-deficient mice. Regul. Pept. 2006, 136, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Garris, D.R.; Burkemper, K.M.; Garris, B.L. Influences of diabetes (db/db), obese (ob/ob) and dystrophic (dy/dy) genotype mutations on hind limb bone maturation: A morphometric, radiological and cytochemical indices analysis. Diabetes Obes. Metab. 2007, 9, 311–322. [Google Scholar] [CrossRef]
- Hamrick, M.W.; Della-Fera, M.A.; Choi, Y.-H.; Pennington, C.; Hartzell, D.; Baile, C.A. Leptin Treatment Induces Loss of Bone Marrow Adipocytes and Increases Bone Formation in Leptin-Deficient ob/ob Mice. J. Bone Miner. Res. 2005, 20, 994–1001. [Google Scholar] [CrossRef]
- Hamrick, M.; Pennington, C.; Newton, D.; Xie, D.; Isales, C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 2004, 34, 376–383. [Google Scholar] [CrossRef]
- Steppan, C.M.; Crawford, D.; Chidsey-Frink, K.L.; Ke, H.; Swick, A.G. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept. 2000, 92, 73–78. [Google Scholar] [CrossRef]
- Yagasaki, Y.; Yamaguchi, T.; Watahiki, J.; Konishi, M.; Katoh, H.; Maki, K. The role of craniofacial growth in leptin deficient (ob/ob) mice. Orthod. Craniofacial Res. 2003, 6, 233–241. [Google Scholar] [CrossRef]
- Atar, M.; Yasmin, R.; Sharma, R.; Le Comber, S.C.; Verry, P.; Polly, P.D. Of mice and mutations: Phenotypic effects of the diabetic db/db and ob/ob mutations on the skull and teeth of mice. Eur. Arch. Paediatr. Dent. 2008, 9, 37–40. [Google Scholar] [CrossRef]
- Tamasi, J.A.; Arey, B.J.; Bertolini, D.R.; Feyen, J.H. Characterization of Bone Structure in Leptin Receptor-Deficient Zucker (fa/fa) Rats. J. Bone Miner. Res. 2003, 18, 1605–1611. [Google Scholar] [CrossRef]
- Hamann, C.; Picke, A.-K.; Campbell, G.M.; Balyura, M.; Rauner, M.; Bernhardt, R.; Huber, G.; Morlock, M.; Günther, K.-P.; Bornstein, S.R.; et al. Effects of Parathyroid Hormone on Bone Mass, Bone Strength, and Bone Regeneration in Male Rats with Type 2 Diabetes Mellitus. Endocrinology 2014, 155, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.A.; Callon, K.E.; Watson, M.; Costa, J.L.; Ding, Y.; Dickinson, M.; Wang, Y.; Naot, D.; Reid, I.R.; Cornish, J. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J. Bone Miner. Res. 2011, 26, 1698–1709. [Google Scholar] [CrossRef]
- Iwaniec, U.T.; Boghossian, S.; Lapke, P.D.; Turner, R.T.; Kalra, S.P. Central leptin gene therapy corrects skeletal abnormalities in leptin-deficient ob/ob mice. Peptides 2007, 28, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Evans, G.L.; Bryant, H.U.; Magee, D.E.; Turner, R.T. Raloxifene inhibits bone turnover and prevents further cancellous bone loss in adult ovariectomized rats with established osteopenia. Endocrinology 1996, 137, 4139–4144. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, E.; Collazo-Clavell, M.L.; Faubion, S.S. Weight Gain in Women at Midlife: A Concise Review of the Pathophysiology and Strategies for Management. Mayo Clin. Proc. 2017, 92, 1552–1558. [Google Scholar] [CrossRef]
- Lindenmaier, L.B.; Philbrick, K.A.; Branscum, A.J.; Kalra, S.P.; Turner, R.T.; Iwaniec, U.T. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets. Front. Endocrinol. 2016, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Torto, R.; Boghossian, S.; Dube, M.G.; Kalra, P.S.; Kalra, S.P. Central Leptin Gene Therapy Blocks Ovariectomy-Induced Adiposity. Obesity 2006, 14, 1312–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaniec, U.T.; Boghossian, S.; Trevisiol, C.H.; Wronski, T.J.; Turner, R.T.; Kalra, S.P. Hypothalamic leptin gene therapy prevents weight gain without long-term detrimental effects on bone in growing and skeletally mature female rats. J. Bone Miner. Res. 2011, 26, 1506–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, H. Effects of Recombinant Adeno-Associated Virus Encoding Leptin on Body Weight Regulation and Energy Homeostasis. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2000. Available online: http://purl.fcla.edu/fcla/etd/ane5948 (accessed on 20 June 2021).
- Dhillon, H.; Ge, Y.-L.; Minter, R.; Prima, V.; Moldawer, L.; Muzyczka, N.; Zolotukhin, S.; Kalra, P.; Kalra, S. Long-term differential modulation of genes encoding orexigenic and anorexigenic peptides by leptin delivered by rAAV vector in ob/ob mice. Regul. Pept. 2000, 92, 97–105. [Google Scholar] [CrossRef]
- Zolotukhin, S.; Byrne, B.J.; Mason, E.; Zolotukhin, I.; Potter, M.; Chesnut, K.; Summerford, C.; Samulski, R.J.; Muzyczka, N. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999, 6, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.T.; Philbrick, K.A.; Wong, C.P.; Olson, D.A.; Branscum, A.J.; Iwaniec, U.T. Morbid obesity attenuates the skeletal abnormalities associated with leptin deficiency in mice. J. Endocrinol. 2014, 223, M1–M15. [Google Scholar] [CrossRef] [Green Version]
- Iwaniec, U.T.; Wronski, T.J.; Turner, R.T. Histological Analysis of Bone. Methods Mol. Biol. 2008, 447, 325–341. [Google Scholar] [CrossRef]
- Maddalozzo, G.F.; Turner, R.T.; Edwards, C.H.T.; Howe, K.S.; Widrick, J.J.; Rosen, C.J.; Iwaniec, U.T. Alcohol alters whole body composition, inhibits bone formation, and increases bone marrow adiposity in rats. Osteoporos. Int. 2009, 20, 1529–1538. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
rAAV-Lep | Weight-Matched | p Value | |||||
---|---|---|---|---|---|---|---|
Dual Energy X-ray Absorptiometry | |||||||
Total Femur | |||||||
Bone area (cm2) | 2.32 ± 0.03 | 2.36 ± 0.03 | 0.592 | ||||
Bone mineral content (g) | 0.462 ± 0.009 | 0.469 ± 0.008 | 0.762 | ||||
Bone mineral density (g/cm2) | 0.199 ± 0.002 | 0.198 ± 0.002 | 0.918 | ||||
Microcomputed Tomography | |||||||
Midshaft Femur (cortical bone) | |||||||
Cross-sectional volume (mm3) | 3.27 ± 0.07 | 3.25 ± 0.06 | 0.853 | ||||
Cortical volume (mm³) | 2.18 ± 0.04 | 2.12 ± 0.03 | 0.464 | ||||
Marrow volume (mm³) | 1.09 ± 0.04 | 1.13 ± 0.04 | 0.762 | ||||
Cortical thickness (µm) | 765 ± 9 | 741 ± 9 | 0.067 | ||||
Polar moment of inertia (mm4) | 16.67 ± 0.67 | 16.18 ± 0.54 | 0.762 | ||||
Distal Femur Metaphysis (cancellous bone) | |||||||
Bone volume/tissue volume (%) | 20.0 ± 1.3 | 23.1 ± 1.2 | 0.258 | ||||
Connectivity density (mm−3) | 63.6 ± 4.4 | 67.1 ± 4.6 | 0.762 | ||||
Trabecular thickness (µm) | 70 ± 2 | 75 ± 2 | 0.513 | ||||
Trabecular number (1/mm) | 3.9 ± 0.1 | 4.0 ± 0.1 | 0.277 | ||||
Trabecular spacing (µm) | 253 ± 7 | 243 ± 7 | 0.547 | ||||
Distal Femur Epiphysis (cancellous bone) | |||||||
Bone volume/tissue volume (%) | 38.5 ± 0.7 | 38.0 ± 0.7 | 0.762 | ||||
Connectivity density (mm−3) | 34.9 ± 1.3 | 33.6 ± 1.0 | 0.718 | ||||
Trabecular thickness (µm) | 103 ± 2 | 102 ± 1 | 0.814 | ||||
Trabecular number (mm−1) | 3.7 ± 0.1 | 3.7 ± 0.1 | 0.762 | ||||
Trabecular spacing (µm) | 256 ± 6 | 260 ± 5 | 0.762 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, R.T.; Wong, C.P.; Fosse, K.M.; Branscum, A.J.; Iwaniec, U.T. Caloric Restriction and Hypothalamic Leptin Gene Therapy Have Differential Effects on Energy Partitioning in Adult Female Rats. Int. J. Mol. Sci. 2021, 22, 6789. https://doi.org/10.3390/ijms22136789
Turner RT, Wong CP, Fosse KM, Branscum AJ, Iwaniec UT. Caloric Restriction and Hypothalamic Leptin Gene Therapy Have Differential Effects on Energy Partitioning in Adult Female Rats. International Journal of Molecular Sciences. 2021; 22(13):6789. https://doi.org/10.3390/ijms22136789
Chicago/Turabian StyleTurner, Russell T., Carmen P. Wong, Kristina M. Fosse, Adam J. Branscum, and Urszula T. Iwaniec. 2021. "Caloric Restriction and Hypothalamic Leptin Gene Therapy Have Differential Effects on Energy Partitioning in Adult Female Rats" International Journal of Molecular Sciences 22, no. 13: 6789. https://doi.org/10.3390/ijms22136789
APA StyleTurner, R. T., Wong, C. P., Fosse, K. M., Branscum, A. J., & Iwaniec, U. T. (2021). Caloric Restriction and Hypothalamic Leptin Gene Therapy Have Differential Effects on Energy Partitioning in Adult Female Rats. International Journal of Molecular Sciences, 22(13), 6789. https://doi.org/10.3390/ijms22136789