Osteonecrosis of the Femoral Head in Patients with Hypercoagulability—From Pathophysiology to Therapeutic Implications
Abstract
:1. Introduction
2. Hereditary Thrombophilia Associated with ONFH
2.1. Factor V Leiden
2.2. Prothrombin G20210A Mutation
2.3. Antithrombin III Deficiency
2.4. Protein C and Protein S Deficiency and Resistance to Activated Protein C
2.5. MTHFR C677T Gene Polymorphism
3. Hypofibrinolytic Disorders
Plasminogen Activator Inhibitor-1
4. Therapeutic Implications
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cooper, C.; Steinbuch, M.; Stevenson, R.; Miday, R.; Watts, N.B. The epidemiology of osteonecrosis: Findings from the GPRD and THIN databases in the UK. Osteoporos. Int. 2010, 21, 569–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mont, M.A.; Cherian, J.J.; Sierra, R.J.; Jones, L.C.; Lieberman, J.R. Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today? A Ten-Year Update. J. Bone Jt. Surg. Am. 2015, 97, 1604–1627. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Role of thrombosis in osteonecrosis. Curr. Hematol. Rep. 2003, 2, 417–422. [Google Scholar] [PubMed]
- Orth, P.; Anagnostakos, K. Coagulation abnormalities in osteonecrosis and bone marrow edema syndrome. Orthopedics 2013, 36, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Assouline-Dayan, Y.; Chang, C.; Greenspan, A.; Shoenfeld, Y.; Gershwin, M.E. Pathogenesis and natural history of osteonecrosis. Semin. Arthritis Rheum. 2002, 32, 94–124. [Google Scholar] [CrossRef]
- Baig, S.A.; Baig, M.N. Osteonecrosis of the Femoral Head: Etiology, Investigations, and Management. Cureus 2018, 10, e3171. [Google Scholar] [CrossRef] [Green Version]
- Thulasidhar, A.N.; Kumar, S.; Aroor, S.; Mundkur, S. Avascular Necrosis of Femoral Head in a Child with Beta Thalassaemia Major. J. Clin. Diagn. Res. 2016, 10, SL03. [Google Scholar] [CrossRef] [PubMed]
- Adesina, O.; Brunson, A.; Keegan, T.H.M.; Wun, T. Osteonecrosis of the femoral head in sickle cell disease: Prevalence, comorbidities, and surgical outcomes in California. Blood Adv. 2017, 1, 1287–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Merchan, E.C. Effects of hemophilia on articulations of children and adults. Clin. Orthop. Relat. Res. 1996, 328, 7–13. [Google Scholar] [CrossRef]
- Simurda, T.; Kubisz, P.; Dobrotova, M.; Necas, L.; Stasko, J. Perioperative Coagulation Management in a Patient with Congenital Afibrinogenemia during Revision Total Hip Arthroplasty. Semin Thromb Hemost 2016, 42, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Abu-Shakra, M.; Buskila, D.; Shoenfeld, Y. Osteonecrosis in patients with SLE. Clin. Rev. Allergy Immunol. 2003, 25, 13–24. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, S.; Song, J.H.; Jung, Y.Y.; Cho, M.R.; Rhyu, K.H. Prevalence of osteonecrosis of the femoral head: A nationwide epidemiologic analysis in Korea. J. Arthroplast. 2009, 24, 1178–1183. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Heritable thrombophilia-hypofibrinolysis and osteonecrosis of the femoral head. Clin. Orthop. Relat Res. 2008, 466, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cho, C.; Cho, Y.; Cho, S.; Yoon, K.; Kim, K. Significant associations of PAI-1 genetic polymorphisms with osteonecrosis of the femoral head. BMC Musculoskelet. Disord. 2011, 12, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassin, M.A.; Moustafa, A.H.; Nashwan, A.J.; Soliman, A.T.; El Derhoubi, H.; Mohamed, S.F.; Mudawi, D.S.; ELkourashy, S.; Asaari, D.R.; Gutierrez, H.L.; et al. Dasatinib Induced Avascular Necrosis of Femoral Head in Adult Patient with Chronic Myeloid Leukemia. Clin. Med. Insights Blood Disord. 2015, 8, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Thekkudan, S.F.; Nityanand, S. Nilotinib induced avascular necrosis of femoral head in an adult chronic myeloid leukemia patient. J. Clin. Orthop. Trauma 2018, 9, S26–S28. [Google Scholar] [CrossRef] [PubMed]
- King, R.; Tanna, N.; Patel, V. Medication-related osteonecrosis of the jaw unrelated to bisphosphonates and denosumab—A review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 289–299. [Google Scholar] [CrossRef]
- Bennardo, F.; Buffone, C.; Giudice, A. New therapeutic opportunities for COVID-19 patients with Tocilizumab: Possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws. Oral Oncol. 2020, 106, 104659. [Google Scholar] [CrossRef]
- Jones, J.P., Jr. Intravascular coagulation and osteonecrosis. Clin. Orthop. Relat. Res. 1992, 277, 41–53. [Google Scholar] [CrossRef]
- Boss, J.H.; Misselevich, I. Osteonecrosis of the femoral head of laboratory animals: The lessons learned from a comparative study of osteonecrosis in man and experimental animals. Vet. Pathol. 2003, 40, 345–354. [Google Scholar] [CrossRef]
- Bejar, J.; Peled, E.; Boss, J.H. Vasculature deprivation—Induced osteonecrosis of the rat femoral head as a model for therapeutic trials. Biol. Med. Model. 2005, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Laroche, M. Intraosseous circulation from physiology to disease. Jt. Bone Spine 2002, 69, 262–269. [Google Scholar] [CrossRef]
- Petek, D.; Hannouche, D.; Suva, D. Osteonecrosis of the femoral head: Pathophysiology and current concepts of treatment. Efort Open Rev. 2019, 4, 85–97. [Google Scholar] [CrossRef]
- Cohen-Rosenblum, A.; Cui, Q. Osteonecrosis of the Femoral Head. Orthop. Clin. N. Am. 2019, 50, 139–149. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Sieve, L.; Wang, P. Enoxaparin prevents progression of stages I and II osteonecrosis of the hip. Clin. Orthop. Relat. Res. 2005, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Svensson, P.J.; Zoller, B.; Mattiasson, I.; Dahlback, B. The factor VR506Q mutation causing APC resistance is highly prevalent amongst unselected outpatients with clinically suspected deep venous thrombosis. J. Intern. Med. 1997, 241, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, S.S.; Shubeilat, T. Prevalence of factor V Leiden, prothrombin G20210A, and MTHFR G677A among 594 thrombotic Jordanian patients. Blood Coagul. Fibrinolysis 2005, 16, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ayyub, M.; Khan, S.A. High prevalence of protein C, protein S, antithrombin deficiency, and Factor V Leiden mutation as a cause of hereditary thrombophilia in patients of venous thromboembolism and cerebrovascular accident. Pak. J. Med. Sci. 2014, 30, 1323–1326. [Google Scholar] [CrossRef]
- Liu, F.; Silva, D.; Malone, M.V.; Seetharaman, K. MTHFR A1298C and C677T Polymorphisms Are Associated with Increased Risk of Venous Thromboembolism: A Retrospective Chart Review Study. Acta Haematol. 2017, 138, 208–215. [Google Scholar] [CrossRef]
- Hoffman, M. A cell-based model of coagulation and the role of factor VIIa. Blood Rev. 2003, 17 (Suppl. 1), S1–S5. [Google Scholar] [CrossRef]
- Brouns, S.L.N.; van Geffen, J.P.; Campello, E.; Swieringa, F.; Spiezia, L.; van Oerle, R.; Provenzale, I.; Verdoold, R.; Farndale, R.W.; Clemetson, K.J.; et al. Platelet-primed interactions of coagulation and anticoagulation pathways in flow-dependent thrombus formation. Sci. Rep. 2020, 10, 11910. [Google Scholar] [CrossRef]
- Mohan, G.; Malayala, S.V.; Mehta, P.; Balla, M. A Comprehensive Review of Congenital Platelet Disorders, Thrombocytopenias and Thrombocytopathies. Cureus 2020, 12, e11275. [Google Scholar] [CrossRef] [PubMed]
- Sokol, J.; Skerenova, M.; Ivankova, J.; Simurda, T.; Stasko, J. Association of Genetic Variability in Selected Genes in Patients with Deep Vein Thrombosis and Platelet Hyperaggregability. Clin. Appl. Thromb. Hemost. 2018, 24, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Kalafatis, M.; Rand, M.D.; Mann, K.G. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J. Biol. Chem. 1994, 269, 31869–31880. [Google Scholar] [CrossRef]
- Kalafatis, M.; Mann, K.G. Factor V Leiden and thrombophilia. N. Engl. J. Med. 1995, 332, 1382–1383. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, E.; Brugge, J.M.; Nicolaes, G.A.; Girelli, D.; Tans, G.; Rosing, J. Impaired APC cofactor activity of factor V plays a major role in the APC resistance associated with the factor V Leiden (R506Q) and R2 (H1299R) mutations. Blood 2004, 103, 4173–4179. [Google Scholar] [CrossRef]
- Zoller, B.; Svensson, P.J.; He, X.; Dahlback, B. Identification of the same factor V gene mutation in 47 out of 50 thrombosis-prone families with inherited resistance to activated protein C. J. Clin. Investig. 1994, 94, 2521–2524. [Google Scholar] [CrossRef]
- Rees, D.C.; Cox, M.; Clegg, J.B. World distribution of factor V Leiden. Lancet 1995, 346, 1133–1134. [Google Scholar] [CrossRef]
- Ridker, P.M.; Miletich, J.P.; Hennekens, C.H.; Buring, J.E. Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. JAMA 1997, 277, 1305–1307. [Google Scholar] [CrossRef] [PubMed]
- Gregg, J.P.; Yamane, A.J.; Grody, W.W. Prevalence of the factor V-Leiden mutation in four distinct American ethnic populations. Am. J. Med. Genet. 1997, 73, 334–336. [Google Scholar] [CrossRef]
- Jadaon, M.M. Epidemiology of activated protein C resistance and factor v leiden mutation in the mediterranean region. Mediterr. J. Hematol. Infect. Dis. 2011, 3, e2011037. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Boriel, G.; Khan, Z.; Brar, A.; Padda, J.; Wang, P. The role of the factor V Leiden mutation in osteonecrosis of the hip. Clin. Appl. Thromb. Hemost. 2013, 19, 499–503. [Google Scholar] [CrossRef]
- Bjorkman, A.; Svensson, P.J.; Hillarp, A.; Burtscher, I.M.; Runow, A.; Benoni, G. Factor V leiden and prothrombin gene mutation: Risk factors for osteonecrosis of the femoral head in adults. Clin. Orthop. Relat. Res. 2004, 425, 168–172. [Google Scholar] [CrossRef]
- Zalavras, C.G.; Vartholomatos, G.; Dokou, E.; Malizos, K.N. Genetic background of osteonecrosis: Associated with thrombophilic mutations? Clin. Orthop. Relat Res. 2004, 422, 251–255. [Google Scholar] [CrossRef]
- Gagala, J.; Buraczynska, M.; Mazurkiewicz, T.; Ksiazek, A. Prevalence of genetic risk factors related with thrombophilia and hypofibrinolysis in patients with osteonecrosis of the femoral head in Poland. BMC Musculoskelet. Disord. 2013, 14, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.D.; Hur, M.; Lee, S.S.; Yoo, J.H.; Lee, K.M. Genetic background of nontraumatic osteonecrosis of the femoral head in the Korean population. Clin. Orthop. Relat Res. 2008, 466, 1041–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.W.; Yoon, K.Y.; Park, S.; Shim, Y.S.; Cho, H.I.; Park, S.S. Absence of factor V Leiden mutation in Koreans. Thromb. Res. 1997, 86, 181–182. [Google Scholar] [CrossRef]
- Jun, Z.J.; Ping, T.; Lei, Y.; Li, L.; Ming, S.Y.; Jing, W. Prevalence of factor V Leiden and prothrombin G20210A mutations in Chinese patients with deep venous thrombosis and pulmonary embolism. Clin. Lab. Haematol. 2006, 28, 111–116. [Google Scholar] [CrossRef]
- Rosendaal, F.R.; Doggen, C.J.; Zivelin, A.; Arruda, V.R.; Aiach, M.; Siscovick, D.S.; Hillarp, A.; Watzke, H.H.; Bernardi, F.; Cumming, A.M.; et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb. Haemost. 1998, 79, 706–708. [Google Scholar]
- Varga, E.A.; Moll, S. Cardiology patient pages. Prothrombin 20210 mutation (factor II mutation). Circulation 2004, 110, e15–e18. [Google Scholar] [CrossRef] [Green Version]
- Glueck, C.J.; Fontaine, R.N.; Gruppo, R.; Stroop, D.; Sieve-Smith, L.; Tracy, T.; Wang, P. The plasminogen activator inhibitor-1 gene, hypofibrinolysis, and osteonecrosis. Clin. Orthop. Relat. Res. 1999, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Hillarp, A.; Zoller, B.; Svensson, P.J.; Dahlback, B. The 20210 A allele of the prothrombin gene is a common risk factor among Swedish outpatients with verified deep venous thrombosis. Thromb. Haemost. 1997, 78, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Perez, C.; de la Morena-Barrio, M.E.; Vicente, V.; Corral, J. Antithrombin deficiency as a still underdiagnosed thrombophilia: A primer for internists. Pol. Arch. Intern. Med. 2020, 130, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Maclean, P.S.; Tait, R.C. Hereditary and acquired antithrombin deficiency: Epidemiology, pathogenesis and treatment options. Drugs 2007, 67, 1429–1440. [Google Scholar] [CrossRef]
- Patnaik, M.M.; Moll, S. Inherited antithrombin deficiency: A review. Haemophilia 2008, 14, 1229–1239. [Google Scholar] [CrossRef]
- Bucciarelli, P.; Rosendaal, F.R.; Tripodi, A.; Mannucci, P.M.; De Stefano, V.; Palareti, G.; Finazzi, G.; Baudo, F.; Quintavalla, R. Risk of venous thromboembolism and clinical manifestations in carriers of antithrombin, protein C, protein S deficiency, or activated protein C resistance: A multicenter collaborative family study. Arter. Thromb. Vasc. Biol. 1999, 19, 1026–1033. [Google Scholar] [CrossRef] [Green Version]
- Di Minno, M.N.; Ambrosino, P.; Ageno, W.; Rosendaal, F.; Di Minno, G.; Dentali, F. Natural anticoagulants deficiency and the risk of venous thromboembolism: A meta-analysis of observational studies. Thromb. Res. 2015, 135, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Cenni, E.; Fotia, C.; Rustemi, E.; Yuasa, K.; Caltavuturo, G.; Giunti, A.; Baldini, N. Idiopathic and secondary osteonecrosis of the femoral head show different thrombophilic changes and normal or higher levels of platelet growth factors. Acta Orthop. 2011, 82, 42–49. [Google Scholar] [CrossRef]
- Rathod, T.N.; Tayade, M.B.; Shetty, S.D.; Jadhav, P.; Sathe, A.H.; Mohanty, S.S. Association of Thrombophilic Factors in Pathogenesis of Osteonecrosis of Femoral Head in Indian Population. Indian J. Orthop. 2020, 54, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Chotanaphuti, T.; Heebthamai, D.; Chuwong, M.; Kanchanaroek, K. The prevalence of thrombophilia in idiopathic osteonecrosis of the hip. J. Med. Assoc. Thai 2009, 92 (Suppl. 6), S141–S146. [Google Scholar]
- Kubo, T.; Tsuji, H.; Yamamoto, T.; Nakahara, H.; Nakagawa, M.; Hirasawa, Y. Antithrombin III deficiency in a patient with multifocal osteonecrosis. Clin. Orthop. Relat. Res. 2000, 306–311. [Google Scholar] [CrossRef]
- Seguin, C.; Kassis, J.; Busque, L.; Bestawros, A.; Theodoropoulos, J.; Alonso, M.L.; Harvey, E.J. Non-traumatic necrosis of bone (osteonecrosis) is associated with endothelial cell activation but not thrombophilia. Rheumatology 2008, 47, 1151–1155. [Google Scholar] [CrossRef] [Green Version]
- Garcia, F.L.; Ramalli, E.L.; Picado, C.H. Coagulation disorders in patients with femoral head osteonecrosis. Acta Ortop. Bras. 2013, 21, 43–45. [Google Scholar] [CrossRef] [Green Version]
- Dahlback, B.; Villoutreix, B.O. Regulation of blood coagulation by the protein C anticoagulant pathway: Novel insights into structure-function relationships and molecular recognition. Arter. Thromb. Vasc. Biol. 2005, 25, 1311–1320. [Google Scholar] [CrossRef]
- Esmon, C.T. The protein C pathway. Chest 2003, 124, 26S–32S. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Dahlback, B. Factor V and protein S as synergistic cofactors to activated protein C in degradation of factor VIIIa. J. Biol. Chem. 1994, 269, 18735–18738. [Google Scholar] [CrossRef]
- Williamson, D.; Brown, K.; Luddington, R.; Baglin, C.; Baglin, T. Factor V Cambridge: A new mutation (Arg306-->Thr) associated with resistance to activated protein C. Blood 1998, 91, 1140–1144. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.; Tracy, T.; Stroop, D.; Wang, P. Thrombophilia and hypofibrinolysis: Pathophysiologies of osteonecrosis. Clin. Orthop. Relat. Res. 1997, 334, 43–56. [Google Scholar] [CrossRef]
- Lykissas, M.G.; Gelalis, I.D.; Kostas-Agnantis, I.P.; Vozonelos, G.; Korompilias, A.V. The role of hypercoagulability in the development of osteonecrosis of the femoral head. Orthop. Rev. 2012, 4, e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Q.; Jo, W.L.; Koo, K.H.; Cheng, E.Y.; Drescher, W.; Goodman, S.B.; Ha, Y.C.; Hernigou, P.; Jones, L.C.; Kim, S.Y.; et al. ARCO Consensus on the Pathogenesis of Non-traumatic Osteonecrosis of the Femoral Head. J. Korean Med. Sci. 2021, 36, e65. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.B.; Sturk, A. Activated protein C resistance—A major risk factor for thrombosis. Eur. J. Clin. Chem. Clin. Biochem. 1997, 35, 501–516. [Google Scholar] [PubMed]
- Pierre-Jacques, H.; Glueck, C.J.; Mont, M.A.; Hungerford, D.S. Familial heterozygous protein-S deficiency in a patient who had multifocal osteonecrosis. A case report. J. Bone Jt. Surg. Am. 1997, 79, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Zalavras, C.; Dailiana, Z.; Elisaf, M.; Bairaktari, E.; Vlachogiannopoulos, P.; Katsaraki, A.; Malizos, K.N. Potential aetiological factors concerning the development of osteonecrosis of the femoral head. Eur. J. Clin. Investig. 2000, 30, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Korompilias, A.V.; Ortel, T.L.; Urbaniak, J.R. Coagulation abnormalities in patients with hip osteonecrosis. Orthop. Clin. N. Am. 2004, 35, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Freiberg, R.A.; Wissman, R.; Wang, P. Long term anticoagulation (4–16 years) stops progression of idiopathic hip osteonecrosis associated with familial thrombophilia. Adv. Orthop. 2015, 2015, 138382. [Google Scholar] [CrossRef]
- Xu, J.; Li, K.; Zhou, W. Relationship between genetic polymorphism of MTHFR C677T and lower extremities deep venous thrombosis. Hematology 2019, 24, 108–111. [Google Scholar] [CrossRef] [Green Version]
- Brezovska-Kavrakova, J.; Krstevska, M.; Bosilkova, G.; Alabakovska, S.; Panov, S.; Orovchanec, N. Hyperhomocysteinemia and of Methylenetetrahydrofolate Reductase (C677T) Genetic Polymorphism in Patients with Deep Vein Thrombosis. Mater. Sociomed. 2013, 25, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Simurda, T.; Brunclikova, M.; Asselta, R.; Caccia, S.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Genetic Variants in the FGB and FGG Genes Mapping in the Beta and Gamma Nodules of the Fibrinogen Molecule in Congenital Quantitative Fibrinogen Disorders Associated with a Thrombotic Phenotype. Int. J. Mol. Sci. 2020, 21, 4616. [Google Scholar] [CrossRef]
- Ekim, M.; Ekim, H.; Yilmaz, Y.K.; Kulah, B.; Polat, M.F.; Gocmen, A.Y. Study on relationships among deep vein thrombosis, homocysteine & related B group vitamins. Pak. J. Med. Sci. 2015, 31, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Whiting, M.J.; Veillard, A.S.; Ehnholm, C.; Sullivan, D.R.; Keech, A.C.; Investigators, F.s. Plasma homocysteine and the risk of venous thromboembolism: Insights from the FIELD study. Clin. Chem. Lab. Med. 2012, 50, 2213–2219. [Google Scholar] [CrossRef] [Green Version]
- den Heijer, M.; Koster, T.; Blom, H.J.; Bos, G.M.; Briet, E.; Reitsma, P.H.; Vandenbroucke, J.P.; Rosendaal, F.R. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N. Engl. J. Med. 1996, 334, 759–762. [Google Scholar] [CrossRef] [Green Version]
- Glueck, C.J.; Freiberg, R.A.; Fontaine, R.N.; Tracy, T.; Wang, P. Hypofibrinolysis, thrombophilia, osteonecrosis. Clin. Orthop. Relat Res. 2001, 19–33. [Google Scholar] [CrossRef]
- Asano, T.; Takahashi, K.A.; Fujioka, M.; Inoue, S.; Ueshima, K.; Hirata, T.; Okamoto, M.; Satomi, Y.; Nishino, H.; Tanaka, T.; et al. Relationship between postrenal transplant osteonecrosis of the femoral head and gene polymorphisms related to the coagulation and fibrinolytic systems in Japanese subjects. Transplantation 2004, 77, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Hong, J.M.; Kim, H.J.; Park, E.K.; Kim, S.Y. Lack of association of MTHFR gene polymorphisms with the risk of osteonecrosis of the femoral head in a Korean population. Mol. Cells 2010, 29, 343–348. [Google Scholar] [CrossRef]
- Shang, X.F.; Su, H.; Chang, W.W.; Wang, C.C.; Han, Q.; Xu, Z.W. Association between MTHFR C677T polymorphism and osteonecrosis of the femoral head: A meta-analysis. Mol. Biol. Rep. 2012, 39, 7089–7094. [Google Scholar] [CrossRef]
- Zhang, T.; Ye, S.; Chen, Z.; Ma, Y. Association between MTHFR C677T polymorphism and non-traumatic osteonecrosis of the femoral head: An update meta-analysis. Pteridines 2020, 31, 38–45. [Google Scholar] [CrossRef]
- Rosenberg, N.; Murata, M.; Ikeda, Y.; Opare-Sem, O.; Zivelin, A.; Geffen, E.; Seligsohn, U. The frequent 5,10-methylenetetrahydrofolate reductase C677T polymorphism is associated with a common haplotype in whites, Japanese, and Africans. Am. J. Hum. Genet. 2002, 70, 758–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadewa, A.H.; Sunarti, S.R.; Hayashi, C.; Lee, M.J.; Ayaki, H.; Sofro, A.S.; Matsuo, M.; Nishio, H. The C677T mutation in the methylenetetrahydrofolate reductase gene among the Indonesian Javanese population. Kobe J. Med. Sci. 2002, 48, 137–144. [Google Scholar]
- Ueland, P.M.; Hustad, S.; Schneede, J.; Refsum, H.; Vollset, S.E. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharm. Sci. 2001, 22, 195–201. [Google Scholar] [CrossRef]
- Simurda, T.; Vilar, R.; Zolkova, J.; Ceznerova, E.; Kolkova, Z.; Loderer, D.; Neerman-Arbez, M.; Casini, A.; Brunclikova, M.; Skornova, I.; et al. A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype. Biomedicines 2020, 8, 605. [Google Scholar] [CrossRef] [PubMed]
- Altalhi, R.; Pechlivani, N.; Ajjan, R.A. PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 3170. [Google Scholar] [CrossRef] [PubMed]
- Dentali, F.; Gessi, V.; Marcucci, R.; Gianni, M.; Grandi, A.M.; Franchini, M. Lipoprotein(a) as a Risk Factor for Venous Thromboembolism: A Systematic Review and Meta-analysis of the Literature. Semin. Thromb. Hemost. 2017, 43, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, P.R.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arter. Thromb Vasc Biol. 2012, 32, 1732–1741. [Google Scholar] [CrossRef] [Green Version]
- Marcucci, R.; Liotta, A.A.; Cellai, A.P.; Rogolino, A.; Gori, A.M.; Giusti, B.; Poli, D.; Fedi, S.; Abbate, R.; Prisco, D. Increased plasma levels of lipoprotein(a) and the risk of idiopathic and recurrent venous thromboembolism. Am. J. Med. 2003, 115, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Rodger, M.A.; Le Gal, G.; Carrier, M.; Betancourt, M.T.; Kahn, S.R.; Wells, P.S.; Anderson, D.A.; Lacut, K.; Chagnon, I.; Solymoss, S.; et al. Serum lipoprotein (a) levels in patients with first unprovoked venous thromboembolism is not associated with subsequent risk of recurrent VTE. Thromb. Res. 2010, 126, 222–226. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Chen, N.; Shu, C.; Guo, X.; He, Y.; Zhou, Y. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and risk of venous thromboembolism: A meta-analysis. Thromb. Res. 2014, 134, 1241–1248. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, Y.; Li, X.; Peng, X.; Peng, N.; Song, J.; Xu, M. Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous thromboembolism—A meta-analysis and systematic review. Vasa 2020, 49, 141–146. [Google Scholar] [CrossRef]
- Kerachian, M.A.; Harvey, E.J.; Cournoyer, D.; Chow, T.Y.; Seguin, C. Avascular necrosis of the femoral head: Vascular hypotheses. Endothelium 2006, 13, 237–244. [Google Scholar] [CrossRef]
- Westrick, R.J.; Eitzman, D.T. Plasminogen activator inhibitor-1 in vascular thrombosis. Curr. Drug Targets 2007, 8, 966–1002. [Google Scholar] [CrossRef]
- Iacoviello, L.; Burzotta, F.; Di Castelnuovo, A.; Zito, F.; Marchioli, R.; Donati, M.B. The 4G/5G polymorphism of PAI-1 promoter gene and the risk of myocardial infarction: A meta-analysis. Thromb. Haemost. 1998, 80, 1029–1030. [Google Scholar]
- Dawson, S.; Hamsten, A.; Wiman, B.; Henney, A.; Humphries, S. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. Arter. Thromb. 1991, 11, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.N.; Xie, L.; Cheng, J.W.; Tan, Z.; Yao, J.; Liu, Q.; Su, W.; Qin, X.; Zhao, J.M. Association between PAI-1 4G/5G Polymorphisms and osteonecrosis of femoral head: A meta-analysis. Thromb. Res. 2013, 132, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, P.; Kallin, B.; van ‘t Hooft, F.M.; Bavenholm, P.; Hamsten, A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc. Natl. Acad. Sci. USA 1995, 92, 1851–1855. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Wang, B.; Pan, H. Relation between osteonecrosis of the femoral head and PAI-1 4G/5G gene polymorphism: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 20337–20342. [Google Scholar]
- Sobhan, M.R.; Mahdinezhad-Yazdi, M.; Moghimi, M.; Aghili, K.; Jafari, M.; Zare-Shehneh, M.; Neamatzadeh, H. Plasminogen Activator Inhibitor-1 4G/5G Polymorphism Contributes to Osteonecrosis of the Femoral Head Susceptibility: Evidence from a Systematic Review and Meta-analysis. Arch. Bone Jt. Surg 2018, 6, 468–477. [Google Scholar]
- Ferrari, P.; Schroeder, V.; Anderson, S.; Kocovic, L.; Vogt, B.; Schiesser, D.; Marti, H.P.; Ganz, R.; Frey, F.J.; Kohler, H.P. Association of plasminogen activator inhibitor-1 genotype with avascular osteonecrosis in steroid-treated renal allograft recipients. Transplantation 2002, 74, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Freiberg, R.A.; Fontaine, R.N.; Sieve-Smith, L.; Wang, P. Anticoagulant therapy for osteonecrosis associated with heritable hypofibrinolysis and thrombophilia. Expert Opin. Investig. Drugs 2001, 10, 1309–1316. [Google Scholar] [CrossRef]
- Chotanaphuti, T.; Thongprasert, S.; Laoruengthana, A. Low molecular weight heparin prevents the progression of precollapse osteonecrosis of the hip. J. Med. Assoc. Thai 2013, 96, 1326–1330. [Google Scholar]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Treatment of Osteonecrosis of the Hip and Knee with Enoxaparin. In Osteonecrosis; Koo, K.H., Mont, M.A., Jones, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Milgrom, A.; Lee, K.; Makadia, F.; Prince, M.; Wang, P.; Glueck, C.J. Multifocal osteonecrosis secondary to familial thrombophilia requiring anticoagulation during pregnancy. J. Investig. Med. 2017, 65, 834–835. [Google Scholar] [CrossRef]
- Jarman, M.I.; Lee, K.; Kanevsky, A.; Min, S.; Schlam, I.; Mahida, C.; Huda, A.; Milgrom, A.; Goldenberg, N.; Glueck, C.J.; et al. Case report: Primary osteonecrosis associated with thrombophilia-hypofibrinolysis and worsened by testosterone therapy. BMC Hematol. 2017, 17, 5. [Google Scholar] [CrossRef] [Green Version]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Long-term Anticoagulation Prevents Progression of Stages I and II Primary Osteonecrosis of the Hip in Patients With Familial Thrombophilia. Orthopedics 2020, 43, e208–e214. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; McMahon, R.E.; Bouquot, J.E.; Tracy, T.; Sieve-Smith, L.; Wang, P. A preliminary pilot study of treatment of thrombophilia and hypofibrinolysis and amelioration of the pain of osteonecrosis of the jaws. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998, 85, 64–73. [Google Scholar] [CrossRef]
- Thaler, H.W.; Roller, R.E.; Greiner, N.; Sim, E.; Korninger, C. Thromboprophylaxis with 60 mg enoxaparin is safe in hip trauma surgery. J. Trauma 2001, 51, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.; Mazieres, B. Osteonecrosis: Natural course and conservative therapy. Orthopade 2000, 29, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Haydock, M.M.; Elhamdani, S.; Alsharedi, M. Long-term direct oral anticoagulation in primary osteonecrosis with elevated plasminogen activation inhibitor. Sage Open Med. Case Rep. 2019, 7, 2050313X19827747. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Medical treatment of osteonecrosis of the knee associated with thrombophilia-hypofibrinolysis. Orthopedics 2014, 37, e911–e916. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.S.; Moon, K.H.; Kwon, D.G.; Shin, B.K.; Woo, M.S. The natural history of asymptomatic osteonecrosis of the femoral head. Int. Orthop. 2013, 37, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Mont, M.A.; Zywiel, M.G.; Marker, D.R.; McGrath, M.S.; Delanois, R.E. The natural history of untreated asymptomatic osteonecrosis of the femoral head: A systematic literature review. J. Bone Jt. Surg. Am. 2010, 92, 2165–2170. [Google Scholar] [CrossRef] [PubMed]
- Thaler, E.; Lechner, K. Antithrombin III deficiency and thromboembolism. Clin. Haematol. 1981, 10, 369–390. [Google Scholar] [CrossRef]
- Koster, T.; Rosendaal, F.R.; Briet, E.; van der Meer, F.J.; Colly, L.P.; Trienekens, P.H.; Poort, S.R.; Reitsma, P.H.; Vandenbroucke, J.P. Protein C deficiency in a controlled series of unselected outpatients: An infrequent but clear risk factor for venous thrombosis (Leiden Thrombophilia Study). Blood 1995, 85, 2756–2761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateo, J.; Oliver, A.; Borrell, M.; Sala, N.; Fontcuberta, J. Laboratory evaluation and clinical characteristics of 2,132 consecutive unselected patients with venous thromboembolism—Results of the Spanish Multicentric Study on Thrombophilia (EMET-Study). Thromb. Haemost. 1997, 77, 444–451. [Google Scholar] [CrossRef]
- Koster, T.; Rosendaal, F.R.; de Ronde, H.; Briet, E.; Vandenbroucke, J.P.; Bertina, R.M. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 1993, 342, 1503–1506. [Google Scholar] [CrossRef]
- Rosendaal, F.R.; Koster, T.; Vandenbroucke, J.P.; Reitsma, P.H. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995, 85, 1504–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jimenez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef] [PubMed]
- Kearon, C.; Akl, E.A.; Ornelas, J.; Blaivas, A.; Jimenez, D.; Bounameaux, H.; Huisman, M.; King, C.S.; Morris, T.A.; Sood, N.; et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest 2016, 149, 315–352. [Google Scholar] [CrossRef] [PubMed]
- Sultan, A.A.; Mohamed, N.; Samuel, L.T.; Chughtai, M.; Sodhi, N.; Krebs, V.E.; Stearns, K.L.; Molloy, R.M.; Mont, M.A. Classification systems of hip osteonecrosis: An updated review. Int. Orthop. 2019, 43, 1089–1095. [Google Scholar] [CrossRef]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Curto, M.; Gallus, A.S.; Johnson, M.; Masiukiewicz, U.; Pak, R.; Thompson, J.; Raskob, G.E.; et al. Oral apixaban for the treatment of acute venous thromboembolism. N. Engl. J. Med. 2013, 369, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Hokusai, V.T.E.I.; Buller, H.R.; Decousus, H.; Grosso, M.A.; Mercuri, M.; Middeldorp, S.; Prins, M.H.; Raskob, G.E.; Schellong, S.M.; Schwocho, L.; et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N. Engl. J. Med. 2013, 369, 1406–1415. [Google Scholar] [CrossRef] [Green Version]
- Schulman, S.; Kearon, C.; Kakkar, A.K.; Mismetti, P.; Schellong, S.; Eriksson, H.; Baanstra, D.; Schnee, J.; Goldhaber, S.Z.; Group, R.-C.S. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 2009, 361, 2342–2352. [Google Scholar] [CrossRef] [Green Version]
- Investigators, E.; Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; et al. Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med. 2010, 363, 2499–2510. [Google Scholar] [CrossRef] [Green Version]
Author, Year | No. Patients | Disease Severity | Etiology of Osteonecrosis | Anticoagulant | Study Duration | Efficacy | Safety |
---|---|---|---|---|---|---|---|
Glueck et al. 2001 [107] | 24 patients | Ficat stages I–II | Heritable thrombophilia and/or hypofibrinolysis | Enoxaparin 60 mg od. 12 weeks | 36 weeks | 76% of hips were unchanged and 24% of hips were worse at 36-week follow-up 82% of hips were without femoral head collapse at 36-week follow-up Enoxaparin reduced pain in 82% of hips | No enoxaparin-related side effects |
Glueck et al. 2005 [25] | 28 patients (40 hips) | Ficat stages I–II | 16 patients (25 hips)—primary osteonecrosis: familial or acquired thrombophilic or hypofibrinolytic disorder or both 12 patients (15 hips)—secondary osteonecrosis (long-term high-dose corticosteroid use) | Enoxaparin 60 mg od. 12 weeks | ≥180 weeks | 95% of hips were unchanged at ≥180-week follow-up in primary ONFH (76% based on intent to treat) 80% of hips worsened at ≥180- week follow-up in secondary ONFH | No bleeding episodes, anemia or thrombocytopenia |
Chotanaphuti et al. 2013 [108] | 18 anticoagulated patients (26 hips) and 18 non-anticoagulated patients (23 hips) | Ficat stages I–II | Thrombophilic substrate in 38.9% of patients from the enoxaparin group and in 27.8% of patients from the control group | Enoxaparin 60 mg od. 3 months | 24 months | 15 hips (57.7%) remained in the pre-collapse stage in the enoxaparin group 5 hips (21.7%) remained in the pre-collapse stage in control group (p = 0.042). | Transient hematuria in one patient from the enoxaparin group |
Glueck et al. 2014 [109] | 20 patients (30 hips) | Ficat stages I–II | Heritable thrombophilia and/or hypofibrinolysis | Enoxaparin 60 mg od. —16 patients (25 hips) 1.5 mg/kg daily —4 patients (5 hips) 12 weeks | 4–7 years | 80% of hips were unchanged at 4-year follow-up (based on intent to treat) 60% of hips were unchanged at 7-year follow-up (based on intent to treat) | No significant bleeding episodes |
Glueck et al. 2015 [75] | 6 patients (9 hips) | Ficat stages I–II | 5 patients—Factor V Leiden heterozygosity 1 patient—resistance to activated protein C | Enoxaparin 60 mg od. —5 patients 1.5 mg/kg daily —1 patient 3 months Followed by oral anticoagulation: VKA (INR 2–3) or rivaroxaban 20 mg od. or dabigatran etexilate 150 mg bid. | 4–16 years (4,4,9,13,13,16 years respectively) | No Ficat staging progression No restriction in activities Full range of motion 5/6 cases were symptom-free after 3–16 months of anticoagulant treatment; the 6th patient required pain medication. | No significant bleeding episodes |
Milgrom et al. 2017 [110] | 1 patients (1 hip) | Ficat stages I–II | Factor V Leiden heterozygosity, C677T MTHFR homozygosity and hypofibrinolytic 4G4G homozygosity for the PAI-1 gene | Enoxaparin 40 mg bid. 3 months Followed by dabigatran etexilate 150 mg bid. | ≥6 years | Pain improved after 10 months of oral anticoagulation No joint pain, good functional mobility, no osteonecrosis progression at the imaging evaluation at 6-year follow-up | No bleeding reported |
Jarman et al. 2017 [111] | 1 patient (2 hips) | Ficat stage I | Factor V Leiden heterozygosity, 4G/4G homozygosity for the PAI-1 gene, high ACLA IgM antibodies, eNOS T786C homozygosity | Warfarin 1 year than apixaban 5 mg bid. | 8 months | Asymptomatic | No bleeding episodes |
Glueck et al. 2020 [112] | 9 patients (13 hips) | Ficat stages I–II | 8 patients—Factor V Leiden heterozygosity 1 patientprothrombin G202010A heterozygosity | Enoxaparin 60 mg od. 3 months Folowed by warfarin (INR 2–2.5) —4 patients direct oral anticoagulant—3 patients enoxaparin 120 mg daily—1 patient | ≥3 years (5–21 years) | No hip progressed to collapse Normalized X-ray aspect in one hip Symptom-free after 3–10 months of anticoagulant treatment | No bleeding reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezus, E.; Tamba, B.I.; Badescu, M.C.; Popescu, D.; Bratoiu, I.; Rezus, C. Osteonecrosis of the Femoral Head in Patients with Hypercoagulability—From Pathophysiology to Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 6801. https://doi.org/10.3390/ijms22136801
Rezus E, Tamba BI, Badescu MC, Popescu D, Bratoiu I, Rezus C. Osteonecrosis of the Femoral Head in Patients with Hypercoagulability—From Pathophysiology to Therapeutic Implications. International Journal of Molecular Sciences. 2021; 22(13):6801. https://doi.org/10.3390/ijms22136801
Chicago/Turabian StyleRezus, Elena, Bogdan Ionel Tamba, Minerva Codruta Badescu, Diana Popescu, Ioana Bratoiu, and Ciprian Rezus. 2021. "Osteonecrosis of the Femoral Head in Patients with Hypercoagulability—From Pathophysiology to Therapeutic Implications" International Journal of Molecular Sciences 22, no. 13: 6801. https://doi.org/10.3390/ijms22136801
APA StyleRezus, E., Tamba, B. I., Badescu, M. C., Popescu, D., Bratoiu, I., & Rezus, C. (2021). Osteonecrosis of the Femoral Head in Patients with Hypercoagulability—From Pathophysiology to Therapeutic Implications. International Journal of Molecular Sciences, 22(13), 6801. https://doi.org/10.3390/ijms22136801