New Insights into Red Blood Cell Microcytosis upon mTOR Inhibitor Administration
Abstract
:1. Introduction
2. Results
2.1. Everolimus Has a Significant Impact on Red Blood Cell Parameters in Patients with TSC
2.2. The Decrease in Erythroid-Like K562 Cell Size In Vitro upon Everolimus Exposure Is Not the Effect of Iron Deficiency
2.3. Everolimus Affects Cells Size at Different Stages of Erythroid Maturation
3. Discussion
4. Methods
4.1. Patients
4.2. Treatment Protocol
4.3. Laboratory Parameters Measurements
4.4. In Vitro Studies
4.4.1. Reagents
4.4.2. Cell Lines and Culture Conditions
4.4.3. MTT Assay
4.4.4. Identification of Erythroid Differentiation
Determination of Hemoglobin
Flow Cytometry
Effects of Everolimus on the Size of Undifferentiated K562 Cells
Effects of Everolimus on More Mature K562 Cells
Cell Size Testing
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hasskarl, J. Everolimus. In Small Molecules in Oncology. Recent Results in Cancer Research, 1st ed.; Martens, U., Ed.; Springer International Publishing AG: Cham, Switzerland, 2018; Volume 211, pp. 101–123. [Google Scholar]
- Klintmalm, G.B.; Nashan, B. The Role of mTOR Inhibitors in Liver Transplantation: Reviewing the Evidence. J. Transplant. 2014, 2014, 845438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, J.; Bridson, J.M.; Sharma, A.; Halawa, A. Systematic Review on Role of Mammalian Target of Rapamycin Inhibitors as an Alternative to Calcineurin Inhibitors in Renal Transplant: Challenges and Window to Excel. Exp. Clin. Transplant. 2016, 15, 241–252. [Google Scholar] [PubMed]
- Lebwohl, D.; Anak, Ö.; Sahmoud, T.; Klimovsky, J.; Elmroth, I.; Haas, T.; Posluszny, J.; Saletan, S.; Berg, W. Development of everolimus, a novel oral mTOR inhibitor, across a spectrum of diseases. Ann. N. Y. Acad. Sci. 2013, 1291, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, F.; Fagone, P.; Meroni, P.; McCubrey, J.; Bendtzen, K. MTOR as a Multifunctional Therapeutic Target in HIV Infec-tion. Drug Discov. Today 2011, 16, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Fagone, P.; Ciurleo, R.; Lombardo, S.D.; Iacobello, C.; Palermo, C.I.; Shoenfeld, Y.; Bendtzen, K.; Bramanti, P.; Nicoletti, F. Transcriptional Landscape of SARS-CoV-2 Infection Dismantles Pathogenic Pathways Activated by the Virus, Proposes Unique Sex-Specific Differences and Predicts Tailored Therapeutic Strategies. Autoimmun. Rev. 2020, 19, 102571. [Google Scholar] [CrossRef] [PubMed]
- Franz, D.N.; Belousova, E.; Sparagana, S.; Bebin, E.M.; Frost, M.; Kuperman, R.; Witt, O.; Kohrman, M.H.; Flamini, J.R.; Wu, J.Y.; et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): A multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013, 381, 125–132. [Google Scholar] [CrossRef]
- Bissler, J.J.; Kingswood, J.C.; Radzikowska, E.; Zonnenberg, B.A.; Frost, M.; Belousova, E.D.; Sauter, M.; Nonomura, N.; Brakemeier, S.; De Vries, P.J.; et al. Everolimus for renal angiomyolipoma in patients with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis: Extension of a randomized controlled trial. Nephrol. Dial. Transplant. 2015, 31, 111–119. [Google Scholar] [CrossRef] [Green Version]
- French, J.A.; Lawson, J.; Yapici, Z.; Ikeda, H.; Polster, T.; Nabbout, R.; Curatolo, P.; de Vries, P.J.; Dlugos, D.J.; Berkowitz, N.; et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): A phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016, 388, 2153–2163. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.; Saxena, A.; Kingswood, J.C. Management of everolimus-associated adverse events in patients with tuberous sclerosis complex: A practical guide. Orphanet J. Rare Dis. 2017, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sofroniadou, S.; Goldsmith, D. Mammalian Target of Rapamycin (MTOR) Inhibitors: Potential Uses and a Review of Haematological Adverse Effects. Drug Saf. 2011, 34, 97–115. [Google Scholar] [CrossRef]
- Kaplan, B.; Qazi, Y.; Wellen, J.R. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant. Rev. 2014, 28, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Franz, D.N.; Agricola, K.; Mays, M.; Tudor, C.; Care, M.M.; Holland-Bouley, K.; Berkowitz, N.; Miao, S.; Peyrard, S.; Krueger, D.A. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann. Neurol. 2015, 78, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Krueger, D.A.; Care, M.M.; Agricola, K.; Tudor, C.; Mays, M.; Franz, D.N. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology 2013, 80, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Trelinska, J.; Dachowska, I.; Kotulska, K.; Fendler, W.; Jozwiak, S.; Mlynarski, W. Complications of mammalian target of rapamycin inhibitor anticancer treatment among patients with tuberous sclerosis complex are common and occasionally life-threatening. Anti-Cancer Drugs 2015, 26, 437–442. [Google Scholar] [CrossRef]
- Przybylowski, P.; Malyszko, J.; MacDougall, I.; Malyszko, J. Iron Metabolism, Hepcidin, and Anemia in Orthotopic Heart Transplantation Recipients Treated with Mammalian Target of Rapamycin. Transplant. Proc. 2013, 45, 387–390. [Google Scholar] [CrossRef]
- Sofroniadou, S.; Kassimatis, T.; Goldsmith, D. Anaemia, microcytosis and sirolimus-is iron the missing link? Nephrol. Dial. Transplant. 2010, 25, 1667–1675. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Tian, D. Hematologic toxicities associated with mTOR inhibitors temsirolimus and everolimus in cancer patients: A systematic review and meta-analysis. Curr. Med. Res. Opin. 2013, 30, 67–74. [Google Scholar] [CrossRef]
- Thaunat, O.; Beaumont, C.; Chatenoud, L.; Lechaton, S.; Mamzer-Bruneel, M.-F.; Varet, B.; Kreis, H.; Morelon, E. Anemia after Late Introduction of Sirolimus May Correlate with Biochemical Evidence of a Chronic Inflammatory State. Transplantation 2005, 80, 1212–1219. [Google Scholar] [CrossRef]
- Lozzio, C.; Lozzio, B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975, 45, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Knight, Z.; Schmidt, S.F.; Birsoy, K.; Tan, K.; Friedman, J.M. A critical role for mTORC1 in erythropoiesis and anemia. eLife 2014, 3, e01913. [Google Scholar] [CrossRef]
- Ohyashiki, J.H.; Kobayashi, C.; Hamamura, R.; Okabe, S.; Tauchi, T.; Ohyashiki, K. The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci. 2009, 100, 970–977. [Google Scholar] [CrossRef]
- Ackermann, T.; Tardito, S. Cell Culture Medium Formulation and Its Implications in Cancer Metabolism. Trends Cancer 2019, 5, 329–332. [Google Scholar] [CrossRef]
- Mojić, M.; Pristov, J.B.; Maksimović-Ivanić, D.; Jones, D.R.; Stanić, M.; Mijatović, S.; Spasojević, I. Extracellular iron diminishes anticancer effects of vitamin C: An in vitro study. Sci. Rep. 2014, 4, srep05955. [Google Scholar] [CrossRef] [Green Version]
- de Souza, P.V.S.; Badia, B.D.M.L.; Farias, I.B.; Gonçalves, E.A.; Pinto, W.B.V.D.R.; Oliveira, A.S.B. Acute hepatic porphyrias for the neurologist: Current concepts and perspectives. Arq. Neuro-Psiquiatr. 2021, 79, 68–80. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, L.; Ren, C.; Zou, M.; Yang, S.; Cai, B.; Wu, L.; Wang, Y.; Fu, S.; Hua, X.; et al. The opposing roles of the mTOR signaling pathway in different phases of human umbilical cord blood-derived CD34+ cell erythropoiesis. Stem Cells 2020, 38, 1492–1505. [Google Scholar] [CrossRef]
- Sztiller-Sikorska, M.; Jakubowska, J.; Wozniak, M.; Stasiak, M.; Czyz, M. A non-apoptotic function of caspase-3 in pharmacologically-induced differentiation of K562 cells. Br. J. Pharmacol. 2009, 157, 1451–1462. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, N.; Osti, F.; Rutigliano, C.; Corradini, F.G.; Borsetti, E.; Tomassetti, M.; Mischiati, C.; Feriotto, G.; Gambari, R. The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. Br. J. Haematol. 1999, 104, 258–265. [Google Scholar] [CrossRef]
- Fingar, D.C.; Salama, S.; Tsou, C.; Harlow, E.; Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002, 16, 1472–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trendowski, M.; Christen, T.D.; Andonova, A.A.; Narampanawe, B.; Thibaud, A.; Kusang, T.; Fondy, T.P. Effects of mTOR inhibitors and cytoskeletal-directed agents alone and in combination against normal and neoplastic hematopoietic cells in vitro. Investig. New Drugs 2015, 33, 1162–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Northrup, H.; Krueger, D.A.; Roberds, S.; Smith, K.; Sampson, J.; Korf, B.; Kwiatkowski, D.J.; Mowat, D.; Nellist, M.; Povey, S.; et al. Tuberous Sclerosis Complex Diagnostic Criteria Update: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr. Neurol. 2013, 49, 243–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tszyrsznic, W.; Borowiec, A.; Pawlowska, E.; Jaźwiec, R.; Zochowska, D.; Bartlomiejczyk, I.; Zegarska, J.; Paczek, L.; Dadlez, M. Two rapid ultra performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) methods with common sample pretreatment for therapeutic drug monitoring of immunosuppressants compared to immunoassay. J. Chromatogr. B 2013, 928, 9–15. [Google Scholar] [CrossRef]
Mean Value | Study Group | Control Group | p Value |
---|---|---|---|
age | 11.49 ± 4.69 | 8.77 ± 5.04 | 0.06 |
Fe (μg/dL) | 94.21 ± 41.60 | 82.16 ± 50.76 | 0.41 |
Ferritin (μg/L) | 37.80 ± 27.15 | 35.24 ± 23.91 | 0.74 |
HsTfR (μg/mL) | 2.08 ± 0.63 | 1.76 ± 0.72 | 0.15 |
IL-6 (pg/mL) | 3.22 ± 5.14 | 1.80 ± 0.71 | 0.24 |
Hepcidin (ng/mL) | 5.13 ± 2.54 | 5.00 ± 3.62 | 0.90 |
HJV (ng/mL) | 1.23 ± 0.83 | 1.50 ± 1.06 | 0.49 |
BMP-6 (ng/mL) | 3.82 ± 1.22 | 4.18 ± 1.59 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubowska, J.; Pawlik, B.; Wyka, K.; Stolarska, M.; Kotulska, K.; Jóźwiak, S.; Młynarski, W.; Trelińska, J. New Insights into Red Blood Cell Microcytosis upon mTOR Inhibitor Administration. Int. J. Mol. Sci. 2021, 22, 6802. https://doi.org/10.3390/ijms22136802
Jakubowska J, Pawlik B, Wyka K, Stolarska M, Kotulska K, Jóźwiak S, Młynarski W, Trelińska J. New Insights into Red Blood Cell Microcytosis upon mTOR Inhibitor Administration. International Journal of Molecular Sciences. 2021; 22(13):6802. https://doi.org/10.3390/ijms22136802
Chicago/Turabian StyleJakubowska, Justyna, Bartłomiej Pawlik, Krystyna Wyka, Małgorzata Stolarska, Katarzyna Kotulska, Sergiusz Jóźwiak, Wojciech Młynarski, and Joanna Trelińska. 2021. "New Insights into Red Blood Cell Microcytosis upon mTOR Inhibitor Administration" International Journal of Molecular Sciences 22, no. 13: 6802. https://doi.org/10.3390/ijms22136802
APA StyleJakubowska, J., Pawlik, B., Wyka, K., Stolarska, M., Kotulska, K., Jóźwiak, S., Młynarski, W., & Trelińska, J. (2021). New Insights into Red Blood Cell Microcytosis upon mTOR Inhibitor Administration. International Journal of Molecular Sciences, 22(13), 6802. https://doi.org/10.3390/ijms22136802