Enhanced Sensing Ability of Brush-Like Fe2O3-ZnO Nanostructures towards NO2 Gas via Manipulating Material Synergistic Effect
Abstract
:1. Introduction
2. Results
2.1. Microstructural Analysis
2.2. UV–vis Optical Characterization
2.3. Transmission Electron Microscopy Analysis
2.4. Surface Active Site Analysis
2.5. Gas Sensing Performance
3. Discussion
4. Materials and Methods
4.1. Materials Synthesis
4.2. Characterization Analysis
4.3. Gas Sensing Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, P.; He, X.; Wang, W.; Ma, J.; Sun, Y.; Lu, G. Template-free synthesis of monodisperse α-Fe2O3 porous ellipsoids and their application to gas sensors. CrystEngComm 2012, 14, 2229–2234. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Lin, T.-Y.; Lee, C.-M. Crystal growth and shell layer crystal feature-dependent sensing and photoactivity performance of zinc oxide–indium oxide core–shell nanorod heterostructures. CrystEngComm 2015, 17, 7948–7955. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Hung, C.-S. Design of Hydrothermally Derived Fe2O3 Rods with Enhanced Dual Functionality via Sputtering Decoration of a Thin ZnO Coverage Layer. ACS Omega 2020, 5, 16272–16283. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.C.; Chang, C.W. Improvement of Ethanol Gas-Sensing Responses of ZnO–WO3 Composite Nanorods through Annealing Induced Local Phase Transformation. Nanomaterials 2019, 9, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Rackauskas, S.; Barbero, N.; Barolo, C.; Viscardi, G. ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials 2017, 7, 381. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Chen, Y.; Wang, R.; Wang, L.; Cao, M.-S.; Shi, X. Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens. Actuators B Chem. 2009, 140, 185–189. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Wang, L.; Yang, T.; Guo, X.; Wu, S.; Wang, S.; Zhang, S. Synthesis and gas sensing properties of α-Fe2O=@ ZnO core–shell nanospindles. Nanotechnology 2011, 22, 185501–185507. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Hu, C.-Y.; Zhong, H.; Wang, J.-L. Crystal synthesis and effects of epitaxial perovskite manganite underlayer conditions on characteristics of ZnO nanostructured heterostructures. Nanoscale 2013, 5, 2346–2351. [Google Scholar] [CrossRef]
- Maji, S.K.; Mukherjee, N.; Mondal, A.; Adhikary, B. Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles. Polyhedron 2012, 33, 145–149. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Zhao, W.-C. Morphology-dependent photocatalytic and gas-sensing functions of three-dimensional TiO2–ZnO nanoarchitectures. CrystEngComm 2020, 22, 7575–7589. [Google Scholar] [CrossRef]
- Liang, Y.C.; Lung, T.W. Growth of Hydrothermally Derived CdS-Based Nanostructures with Various Crystal Features and Photoactivated Properties. Nanoscale Res. Lett. 2016, 11, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Yang, S.; Zhang, S.; Cai, X.; Gao, Q.; Yu, X.; Xu, Y.; Zhou, X.; Peng, F.; Fang, Y. CdS branched TiO2: Rods-on-rods nanoarrays for efficient photoelectrochemical (PEC) and self-bias photocatalytic (PC) hydrogen production. J. Power Sources 2019, 430, 32–42. [Google Scholar] [CrossRef]
- Long, X.; Gao, L.; Li, F.; Hu, Y.; Wei, S.; Wang, C.; Wang, T.; Jin, J.; Ma, J. Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl. Catal. B Environ. 2019, 257, 117813. [Google Scholar] [CrossRef]
- Liang, Y.C.; Chao, Y. Crystal phase content-dependent functionality of dual phase SnO2–WO3 nanocomposite films via cosputtering crystal growth. RSC Adv. 2019, 9, 6482–6493. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Li, F.; Deng, J.; Wang, L.; Zhang, T. Branch-like Hierarchical Heterostructure (α-Fe2O3/TiO2): A Novel Sensing Material for Trimethylamine Gas Sensor. ACS Appl. Mater. Interfaces 2013, 5, 12310–12316. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, W.; Yu, X.; Duan, S.; Zeng, W. Enhanced ethanol sensing performance using Co3O4–ZnSnO3 arrays prepared on alumina substrates. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 117, 113825. [Google Scholar] [CrossRef]
- Shaikh, S.; Ganbavale, V.; Mohite, S.; Patil, U.; Rajpure, K. ZnO nanorod based highly selective visible blind ultra-violet photodetector and highly sensitive NO2 gas sensor. Superlattices Microstruct. 2018, 120, 170–186. [Google Scholar] [CrossRef]
- Kheel, H.; Sun, G.J.; Lee, J.K.; Lee, S.; Dwivedi, R.P.; Lee, C. Enhanced H2S sensing performance of TiO2-decorated α-Fe2O3 nanorod sensors. Ceram. Int. 2016, 42, 18597–18604. [Google Scholar] [CrossRef]
- Kotsikau, D.; Ivanovskaya, M.; Orlik, D.; Falasconi, M. Gas-sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites. Sens. Actuators B Chem. 2004, 101, 199–206. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, Y.; Vinluan, R.; Wang, S.; Cui, C.; Lu, X.; Peng, C.; Zhang, M.; Zheng, J.; Gao, P.X. Enhancing ZnO nanowire gas sensors using Au/Fe2O3 hybrid nanoparticle decoration. Nanotechnology 2020, 31, 325505. [Google Scholar] [CrossRef]
- Yang, L.; Xie, C.; Zhang, G.; Zhao, J.; Yu, X.; Zeng, D.; Zhang, S. Enhanced response to NO2 with CuO/ZnO laminated heterostructured configuration. Sens. Actuators B Chem. 2014, 195, 500–508. [Google Scholar] [CrossRef]
- Yan, S.; Ma, S.; Li, W.; Xu, X.; Cheng, L.; Song, H.; Liang, X. Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance. Sens. Actuators B Chem. 2015, 221, 88–95. [Google Scholar] [CrossRef]
- Wang, X.; Ren, P.; Tian, H.; Fan, H.; Cai, C.; Liu, W. Enhanced gas sensing properties of SnO2: The role of the oxygen defects induced by quenching. J. Alloys Compd. 2016, 669, 29–37. [Google Scholar] [CrossRef]
- Mohammad, S.M.; Hassan, Z.; Talib, R.A.; Ahmed, N.M.; Al-Azawi, M.A.; Abd-Alghafour, N.M.; Chin, C.W.; Al-Hardan, N.H. Fabrication of a highly flexible low-cost H2 gas sensor using ZnO nanorods grown on an ultra-thin nylon substrate. J. Mater. Sci. Mater. Electron. 2016, 27, 9461–9469. [Google Scholar] [CrossRef]
- Ge, Y.; Kan, K.; Yang, Y.; Zhou, L.; Jing, L.; Shen, P.; Li, L.; Shi, K. Highly mesoporous hierarchical nickel and cobalt double hydroxide composite: Fabrication, characterization and ultrafast NOx gas sensors at room temperature. J. Mater. Chem. A 2014, 2, 4961–4969. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, C.L.; Xiao, G. Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology 2006, 17, 4537–4541. [Google Scholar] [CrossRef]
- Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Sysoev, V.V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. A Gradient Microarray Electronic Nose Based on Percolating SnO2Nanowire Sensing Elements. Nano Lett. 2007, 7, 3182–3188. [Google Scholar] [CrossRef]
Material | Synthesis Method | Temperature/ NO2 Concentration | Response | Response Time/ Recover Time (s) | Ref. |
---|---|---|---|---|---|
α-Fe2O3-TiO2 | Solvothermal method | 300 °C/5 ppm | 2 (Rg/Ra) | N/A | [18] |
α-Fe2O3-SnO2 | Hydrolysis method | 300 °C/1 ppm | <0.5 ((Rg − Ra)/Ra) | N/A | [19] |
ZnO-Fe2O3 | Co-precipitation method | 400 °C/250 ppm | 10.53 (Rg/Ra) | 1000/4000 | [20] |
ZnO-CuO | Screen printing method | 300 °C/29 ppm | 5.57 (Rg/Ra) | N/A | [21] |
α-Fe2O3-ZnO | Hydrothermal method | 300 °C/10 ppm | 6.34 (Rg/Ra) | 26/185 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.-C.; Hsu, Y.-W. Enhanced Sensing Ability of Brush-Like Fe2O3-ZnO Nanostructures towards NO2 Gas via Manipulating Material Synergistic Effect. Int. J. Mol. Sci. 2021, 22, 6884. https://doi.org/10.3390/ijms22136884
Liang Y-C, Hsu Y-W. Enhanced Sensing Ability of Brush-Like Fe2O3-ZnO Nanostructures towards NO2 Gas via Manipulating Material Synergistic Effect. International Journal of Molecular Sciences. 2021; 22(13):6884. https://doi.org/10.3390/ijms22136884
Chicago/Turabian StyleLiang, Yuan-Chang, and Yu-Wei Hsu. 2021. "Enhanced Sensing Ability of Brush-Like Fe2O3-ZnO Nanostructures towards NO2 Gas via Manipulating Material Synergistic Effect" International Journal of Molecular Sciences 22, no. 13: 6884. https://doi.org/10.3390/ijms22136884
APA StyleLiang, Y. -C., & Hsu, Y. -W. (2021). Enhanced Sensing Ability of Brush-Like Fe2O3-ZnO Nanostructures towards NO2 Gas via Manipulating Material Synergistic Effect. International Journal of Molecular Sciences, 22(13), 6884. https://doi.org/10.3390/ijms22136884