Chronic Orofacial Pain: Models, Mechanisms, and Genetic and Related Environmental Influences
Abstract
:1. Introduction
2. Chronic Orofacial Pain States: Features, Animal Models and Mechanisms
2.1. Features of Chronic Orofacial Pain States
2.2. Animal Models
2.3. Cellular Mechanisms and Associated Behaviour
3. Genetic and Related Environmental Factors
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | adenosine tri-phosphate |
BMS | burning mouth syndrome |
CB | cannabinoid |
CGRP | calcitonin gene related peptide |
CNS | central nervous system |
CUPFA | Constant Unilateral Facial Pain with Additional Attacks |
ETSS | Extra-territorial spread of sensitivity |
IAN | inferior alveolar nerve |
ION | infraorbital nerve |
MDH | medullary dorsal horn |
NGF | nerve growth factor |
NMDA | N-Methyl-D- aspartate |
OPPERA | Orofacial Pain Prospective Evaluation and Risk Assessment |
p-ERK | phosphorylated extracellular signal-regulated kinase |
PIDP | persistent idiopathic dentoalveolar pain |
PIFP | persistent idiopathic facial pain |
PTNP | post-traumatic trigeminal neuropathic pain |
P2X | purinergic receptor 2X |
P2Y | purinergic receptor 2Y |
TBSNC | trigeminal brainstem sensory nuclear complex |
TMDs | temporomandibular disorders |
TNF | Tumor necrosis factor |
TRPV1 | Transient Receptor Potential Vanilloid 1 |
References
- Lipton, J.A.; Ship, J.A.; Larach-Robinson, D. Estimated prevalence and distribution of reported orofacial pain in the United States. J. Am. Dent. Assoc. 1993, 124, 115–121. [Google Scholar] [CrossRef]
- Arendt-Nielsen, L.; Graven-Nielsen, T.; Sessle, B.J. Mechanisms underlying extraterritorial and widespread sensitization: From animal to chronic pain. In Musculoskeletal Pain: Basic Mechanisms & Implications; Graven-Nielsen, T., Arendt-Nielsen, L., Eds.; Wolters Kluwer Health: Washington, DC, USA, 2015; pp. 417–436. [Google Scholar]
- Macfarlane, T.V. Epidemiology of orofacial pain. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 33–52. [Google Scholar]
- Svensson, P.; Baad-Hansen, L.; Drangsholt, M.; Jaaskelainen, S. Neurosensory testing for assessment, diagnosis, and prediction of orofacial pain. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 143–164. [Google Scholar]
- Slade, G.D.; Greenspan, J.D.; Fillingim, R.B.; Maixner, W.; Sharma, S.; Ohrbach, R. Overlap of five chronic pain conditions: Temporomandibular disorders, headache, back pain, irritable bowel syndrome, and fibromyalgia. J. Oral Facial Pain Headache 2020, 34, s15–s28. [Google Scholar] [CrossRef]
- Sessle, B.J.; Baad-Hansen, L.; Exposto, F.; Svensson, P. Orofacial pain. In Clinical Pain Management: A Practical Guide, 2nd ed.; Lynch, M., Craig, K., Peng, P., Eds.; Wiley-Blackwell: New York, NY, USA, 2021; in press. [Google Scholar]
- Murray, G.M.; Lavigne, G.L. Orofacial Pain, Motor function, and sleep. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 75–98. [Google Scholar]
- Velly, A.; List, T.; Lobbezoo, F. Comorbid pain and psychological conditions in patients with orofacial pain. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 53–74. [Google Scholar]
- Fillingim, R.B.; Ohrbach, R.; Greenspan, J.D.; Sanders, A.E.; Rathnayaka, N.; Maixner, W.; Slade, G.D. Associations of psychologic factors with multiple chronic overlapping pain conditions. J. Oral Facial Pain Headache 2020, 34, s85–s100. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, J.D.; Slade, G.D.; Rathnayaka, N.; Fillingim, R.B.; Ohrbach, R.; Maixner, W. Experimental pain sensitivity in subjects with temporomandibular disorders and multiple other chronic pain conditions: The OPPERA prospective cohort study. J. Oral Facial Pain Headache 2020, 34, s43–s56. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.E.; Greenspan, J.D.; Fillingim, R.B.; Rathnayaka, N.; Ohrbach, R.; Slade, G.D. Associations of sleep disturbance, atopy, and other health measures with chronic overlapping pain conditions. J. Oral Facial Pain Headache 2020, 34, s73–s84. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.L., 3rd; Gilbert, G.H.; Heft, M.W. Socioeconomic and demographic disparities in symptoms of orofacial pain. J. Public Health Dent. 2003, 63, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Maixner, W.; Fillingim, R.; Booker, D.; Sigurdsson, A. Sensitivity of patients with painful temporomandibular disorders to experimentally evoked pain. Pain 1995, 63, 341–351. [Google Scholar] [CrossRef]
- Maixner, W.; Diatchenko, L.; Dubner, R.; Fillingim, R.B.; Greenspan, J.D.; Knott, C.; Ohrbach, R.; Weir, B.; Slade, G.D. Orofacial pain prospective evaluation and risk assessment study—The OPPERA study. J. Pain 2011, 12 (Suppl. 11), T4–T11. [Google Scholar] [CrossRef] [Green Version]
- Meloto, C.B.; Smith, S.; Maixner, W.; Seltzer, Z.; Diatchenko, L. Genetic risk factors for orofacial pain: Insights from human experimental studies. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 445–480. [Google Scholar]
- Carvalho Soares, F.F.; Poluha, R.L.; De la Torre Canales, G.; Costa, Y.M.; Nascimento, G.G.; Rodrigues Conti, P.C.; Bonjardim, L.R. Effect of genetic polymorphisms on pain sensitivity in the orofacial region: A systematic review. J. Oral Facial Pain Headache 2020, 34, 353–363. [Google Scholar] [CrossRef]
- Dubner, R.; Sessle, B.J.; Storey, A.T. The Neural Basis of Oral and Facial Function; Plenum Press: New York, NY, USA, 1978; p. 483. [Google Scholar]
- International Classification of Orofacial Pain Committee (ICOP). International Classification of Orofacial Pain, 1st ed. Cephalalgia 2020, 40, 129–221. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.E.; Campbell, F.; Clark, A.J.; Dunbar, M.J.; Goldstein, D.; Peng, P.; Stinson, J.; Tupper, H. A systematic review of the effect of waiting for treatment for chronic pain. Pain 2008, 136, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.R.; Vierck, C.J. The transition of acute postoperative pain to chronic pain: An integrative overview of research on mechanisms. J. Pain 2017, 18, 359.e1–359.e38. [Google Scholar] [CrossRef]
- Pak, D.J.; Yong, R.J.; Kaye, A.D.; Urman, R.D. Chronification of pain: Mechanisms, current understanding, and clinical implications. Curr. Pain Headache Rep. 2018, 22, 9. [Google Scholar] [CrossRef]
- Glare, P.; Aubrey, K.R.; Myles, P.S. Transition from acute to chronic pain after surgery. Lancet 2019, 393, 1537–1546. [Google Scholar] [CrossRef]
- Khan, J.; Zusman, T.; Wang, Q.; Eliav, E. Acute and chronic pain in orofacial trauma patients. Dent. Traumatol. 2019, 35, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Sessle, B.J. Mechanisms of oral somatosensory and motor functions and their clinical correlates. J. Oral Rehabil. 2006, 33, 243–261. [Google Scholar] [CrossRef]
- Iwata, K.; Sessle, B.J. The evolution of neuroscience as a research field relevant to dentistry. J. Dent. Res. 2019, 98, 1407–1417. [Google Scholar] [CrossRef]
- Gatchel, R.J.; Peng, Y.B.; Peters, M.L.; Fuchs, P.N.; Turk, D.C. The biopsychosocial approach to chronic pain: Scientific advances and future directions. Psychol. Bull. 2007, 133, 581–624. [Google Scholar] [CrossRef]
- Eli, I.; Gatchel, R.J. Psychosocial and behavioral modes of orofacial pain management. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 251–268. [Google Scholar]
- Diatchenko, L.; Fillingim, R.B.; Smith, S.B.; Maixner, W. The phenotypic and genetic signatures of common musculoskeletal pain conditions. Nat. Rev. Rheumatol. 2013, 9, 340–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schliessbach, J.; Siegenthaler, A.; Streitberger, K.; Eichenberger, U.; Nüesch, E.; Jüni, P.; Arendt-Nielsen, L.; Curatolo, M. The prevalence of widespread central hypersensitivity in chronic pain patients. Eur. J. Pain 2013, 17, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Curatolo, M.; Müller, M.; Ashraf, A.; Neziri, A.Y.; Streitberger, K.; Andersen, O.K.; Arendt-Nielsen, L. Pain hypersensitivity and spinal nociceptive hypersensitivity in chronic pain: Prevalence and associated factors. Pain 2015, 156, 2373–2382. [Google Scholar] [CrossRef]
- La Touche, R.; Paris-Alemany, A.; Hidalgo-Pérez, A.; López-de-Uralde-Villanueva, I.; Angulo-Diaz-Parreño, S.; Muñoz-García, D. Evidence for central sensitization in patients with temporomandibular disorders: A systematic review and meta-analysis of observational studies. Pain Pract. 2018, 18, 388–409. [Google Scholar] [CrossRef] [PubMed]
- Garrigós-Pedrón, M.; La Touche, R.; Navarro-Desentre, P.; Gracia-Naya, M.; Segura-Ortí, E. Widespread mechanical pain hypersensitivity in patients with chronic migraine and temporomandibular disorders: Relationship and correlation between psychological and sensorimotor variables. Acta Odontol. Scand. 2019, 77, 224–231. [Google Scholar] [CrossRef]
- Nielsen, C.S.; Stubhaug, A.; Price, D.D.; Vassend, O.; Czajkowski, N.; Harris, J.R. Individual differences in pain sensitivity: Genetic and environmental contributions. Pain 2008, 136, 21–29. [Google Scholar] [CrossRef]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152 (Suppl. 3), S2–S15. [Google Scholar] [CrossRef]
- Dubner, R.; Iwata, K.; Wei, F. Neuropathic orofacial pain mechanisms: Insights from animal models. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 331–350. [Google Scholar]
- Benca, L.; Naud, J.; Drangsholt, M.T. Quantitative sensory testing assessing extraterritorial neurosensory abnormalities in atypical odontalgia. J. Dent. Res. 2012, 91, 181. [Google Scholar]
- Zakrzewska, J.M. Multi-Dimensionality of chronic pain of the oral cavity and face. J. Headache Pain 2013, 14, 37. [Google Scholar] [CrossRef]
- Korczeniewska, O.A.; Khan, J.; Eliav, E.; Benoliel, R. Molecular mechanisms of painful traumatic trigeminal neuropathy-evidence from animal research and clinical correlates. J. Oral Pathol. Med. 2020, 49, 580–589. [Google Scholar] [CrossRef]
- Pfau, D.B.; Rolke, R.; Nickel, R.; Treede, R.D.; Daublaender, M. Somatosensory profiles in subgroups of patients with myogenic temporomandibular disorders and fibromyalgia syndrome. Pain 2009, 147, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.F.; Maixner, W.; Khan, A.A. Widespread pain in temporomandibular disorders. Pain Manag. 2011, 1, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Slade, G.D.; Smith, S.B.; Zaykin, D.V.; Tchivileva, I.E.; Gibson, D.G.; Yuryev, A.; Mazo, I.; Bair, E.; Fillingim, R.; Ohrbach, R.; et al. Facial pain with localized and widespread manifestations: Separate pathways of vulnerability. Pain 2013, 154, 2335–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spano, V.E.; Imbriglio, T.V.; Ho, K.C.J.; Chow, J.C.F.; Cioffi, I. Increased somatosensory amplification is associated with decreased pressure pain thresholds at both trigeminal and extra-trigeminal locations in healthy individuals. J. Oral Rehabil. 2021, 48, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, T.; Sakamoto, E.; Shiiba, S.; Ichikawa, F.; Arakawa, Y.; Makihara, Y.; Abe, S.; Ogawa, A.; Tsuboi, E.; Imamura, Y. Cervical plexus block helps in diagnosis of orofacial pain originating from cervical structures. Tohoku J. Exp. Med. 2006, 210, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Mellick, L.B.; Mellick, G.A. Treatment of acute orofacial pain with lower cervical intramuscular bupivacaine injections: A 1-year retrospective review of 114 patients. J. Orofac. Pain 2008, 22, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Dellon, A.L. Facial pain and headache associated with brachial plexus compression in the thoracic inlet. Microsurgery 2008, 28, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Baron, R. Peripheral neuropathic pain: From mechanisms to symptoms. Clin. J. Pain 2000, 16 (Suppl. 2), S12–S20. [Google Scholar] [CrossRef] [PubMed]
- Milligan, E.D.; Twining, C.; Chacur, M.; Biedenkapp, J.; O’Connor, K.; Poole, S.; Tracey, K.; Martin, D.; Maier, S.F.; Watkins, L.R. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J. Neurosci. 2003, 23, 1026–1040. [Google Scholar] [CrossRef]
- Mogil, J.S. Pain genetics: Past, present and future. Trends Genet. 2012, 28, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.R.; Dworkin, R.H.; Turk, D.C.; Angst, M.S.; Dionne, R.; Freeman, R.; Hansson, P.; Haroutounian, S.; Arendt-Nielsen, L.; Attal, N.; et al. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations. Pain 2016, 157, 1851–1871. [Google Scholar] [CrossRef]
- Aroke, E.N.; Joseph, P.V.; Roy, A.; Overstreet, D.S.; Tollefsbol, T.O.; Vance, D.E.; Goodin, B.R. Could epigenetics help explain racial disparities in chronic pain? J. Pain Res. 2019, 12, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Scholz, J.; Finnerup, N.B.; Attal, N.; Aziz, Q.; Baron, R.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Cruccu, G.; Davis, K.D.; et al. The IASP classification of chronic pain for ICD-11: Chronic neuropathic pain. Pain 2019, 160, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Bannister, K.; Sachau, J.; Baron, R.; Dickenson, A.H. Neuropathic pain: Mechanism-Based therapeutics. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Hillerup, S. Iatrogenic injury to oral branches of the trigeminal nerve: Records of 449 cases. Clin. Oral Investig. 2007, 11, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Eliav, E.; Benoliel, R. Neuropathic orofacial pain mechanisms: Insights from Human Experimental Studies. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 415–434. [Google Scholar]
- Melek, L.N.; Smith, J.G.; Karamat, A.; Renton, T. Comparison of the neuropathic pain symptoms and psychosocial impacts of trigeminal neuralgia and painful posttraumatic trigeminal neuropathy. J. Oral Facial Pain Headache 2019, 33, 77–88. [Google Scholar] [CrossRef]
- Vaegter, H.B.; Graven-Nielsen, T. Pain modulatory phenotypes differentiate subgroups with different clinical and experimental pain sensitivity. Pain 2016, 157, 1480–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastie, B.A.; Riley, J.L., 3rd; Kaplan, L.; Herrera, D.G.; Campbell, C.M.; Virtusio, K.; Mogil, J.S.; Wallace, M.R.; Fillingim, R.B. Ethnicity interacts with the oprm1 gene in experimental pain sensitivity. Pain 2012, 153, 1610–1619. [Google Scholar] [CrossRef] [Green Version]
- Jääskeläinen, S.K.; Lindholm, P.; Valmunen, T.; Pesonen, U.; Taiminen, T.; Virtanen, A.; Lamusuo, S.; Forssell, H.; Hagelberg, N.; Hietala, J.; et al. Variation in the dopamine D2 receptor gene plays a key role in human pain and its modulation by transcranial magnetic stimulation. Pain 2014, 155, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Iwata, K.; Imamura, Y.; Honda, K.; Shinoda, M. Physiological mechanisms of neuropathic pain: The orofacial region. Int. Rev. Neurobiol. 2011, 97, 227–250. [Google Scholar] [CrossRef]
- Baad-Hansen, L.; Pigg, M.; Ivanovic, S.E.; Faris, H.; List, T.; Drangsholt, M.; Svensson, P. Intraoral somatosensory abnormalities in patients with atypical odontalgia—A controlled multicenter quantitative sensory testing study. Pain 2013, 154, 1287–1294. [Google Scholar] [CrossRef] [Green Version]
- Cairns, B.E.; Ren, K.; Tambeli, C.H. Musculoskeletal orofacial pain mechanisms; insights from animal models. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 351–372. [Google Scholar]
- Chichorro, J.G.; Porreca, F.; Sessle, B. Mechanisms of craniofacial pain. Cephalalgia 2017, 37, 613–626. [Google Scholar] [CrossRef]
- Hargreaves, K.M. Orofacial pain. Pain 2011, 152 (Suppl. 3), S25–S32. [Google Scholar] [CrossRef]
- Jääskeläinen, S.K.; Woda, A. Burning mouth syndrome. Cephalalgia 2017, 37, 627–647. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.K.; Wang, S.; Yang, J.; Alshanqiti, I.; Wei, F.; Ro, J.Y. Neural pathways of craniofacial muscle pain: Implications for novel treatments. J. Dent. Res. 2020, 99, 1004–1012. [Google Scholar] [CrossRef]
- Shinoda, M.; Hayashi, Y.; Kubo, A.; Iwata, K. Pathophysiological mechanisms of persistent orofacial pain. J. Oral Sci. 2020, 62, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Bereiter, D.A.; Hirata, H.; Hu, J.W. Trigeminal subnucleus caudalis: Beyond homologies with the spinal dorsal horn. Pain 2000, 88, 221–224. [Google Scholar] [CrossRef]
- Sessle, B.J. Orofacial pain. In The Paths of Pain 1975–2005; Merskey, H., Loeser, J.G., Dubner, R., Eds.; IASP Press: Seattle, WA, USA, 2005; pp. 131–150. [Google Scholar]
- Zhang, S.; Mogil, J.S.; Seltzer, S. Genetic risk factors for orofacial pain: Insights from animal models. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 373–392. [Google Scholar]
- Fried, K.; Hansson, P.T. Animal models of trigeminal neuralgia: A Commentary. Mol. Pain 2020, 16, 1744806920980538. [Google Scholar] [CrossRef]
- Barrett, J.E. The pain of pain: Challenges of animal behavior models. Eur. J. Pharmacol. 2015, 753, 183–190. [Google Scholar] [CrossRef]
- Cheluvappa, R.; Scowen, P.; Eri, R. Ethics of animal research in human disease remediation, Its institutional teaching; and alternatives to animal experimentation. Pharmacol. Res. Perspect. 2017, 5, e00332. [Google Scholar] [CrossRef]
- Larson, C.M.; Wilcox, G.L.; Fairbanks, C.A. The study of pain in rats and mice. Comp. Med. 2019, 69, 555–570. [Google Scholar] [CrossRef]
- Coderre, T.J.; Laferrière, A. The emergence of animal models of chronic pain and logistical and methodological issues concerning their use. J. Neural. Transm. 2020, 127, 393–406. [Google Scholar] [CrossRef]
- Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Mogil, J.S. The translatability of pain across species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20190286. [Google Scholar] [CrossRef]
- Tal, M.; Devor, M. Ectopic discharge in injured nerves: Comparison of trigeminal and somatic afferents. Brain Res. 1992, 579, 148–151. [Google Scholar] [CrossRef]
- Bongenhielm, U.; Boissonade, F.M.; Westermark, A.; Robinson, P.P.; Fried, K. Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat. Pain 1999, 82, 283–288. [Google Scholar] [CrossRef]
- Benoliel, R.; Eliav, E.; Tal, M. No sympathetic nerve sprouting in rat trigeminal ganglion following painful and non-painful infraorbital nerve neuropathy. Neurosci. Lett. 2001, 297, 151–154. [Google Scholar] [CrossRef]
- Kogelman, L.J.A.; Christensen, R.E.; Pedersen, S.H.; Bertalan, M.; Hansen, T.F.; Jansen-Olesen, I.; Olesen, J. Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus. Neuroscience 2017, 350, 169–179. [Google Scholar] [CrossRef]
- Korczeniewska, O.A.; Katzmann Rider, G.; Gajra, S.; Narra, V.; Ramavajla, V.; Chang, Y.J.; Tao, Y.; Soteropoulos, P.; Husain, S.; Khan, J.; et al. Differential gene expression changes in the dorsal root versus trigeminal ganglia following peripheral nerve injury in rats. Eur. J. Pain 2020, 24, 967–982. [Google Scholar] [CrossRef]
- Devor, M. Ectopic discharge in abeta afferents as a source of neuropathic pain. Exp. Brain Res. 2009, 196, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Batbold, D.; Shinoda, M.; Honda, K.; Furukawa, A.; Koizumi, M.; Akasaka, R.; Yamaguchi, S.; Iwata, K. Macrophages in trigeminal ganglion contribute to ectopic mechanical hypersensitivity following inferior alveolar nerve injury in rats. J. Neuroinflamm. 2017, 14, 249. [Google Scholar] [CrossRef] [Green Version]
- Alles, S.R.A.; Smith, P.A. Etiology and pharmacology of neuropathic pain. Pharmacol. Rev. 2018, 70, 315–347. [Google Scholar] [CrossRef]
- Kuchukulla, M.; Boison, D. Are glia targets for neuropathic orofacial pain therapy? J. Am. Dent. Assoc. 2020. [Google Scholar] [CrossRef]
- Wang, S.; Bian, C.; Yang, J.; Arora, V.; Gao, Y.; Wei, F.; Chung, M.K. Ablation of TRPV1+ afferent terminals by capsaicin mediates long-lasting analgesia for trigeminal neuropathic pain. eNeuro 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Sessle, B.J. Acute and chronic craniofacial pain: Brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit. Rev. Oral Biol. Med. 2000, 11, 57–91. [Google Scholar] [CrossRef]
- Sessle, B.J. Peripheral and central mechanisms of orofacial inflammatory pain. Int. Rev. Neurobiol. 2011, 97, 179–206. [Google Scholar] [CrossRef]
- Yu, X.M.; Sessle, B.J.; Hu, J.W. Differential effects of cutaneous and deep application of inflammatory irritant on mechanoreceptive field properties of trigeminal brain stem nociceptive neurons. J. Neurophysiol. 1993, 70, 1704–1707. [Google Scholar] [CrossRef]
- LeResche, L.; Von Korff, M. At the crossroads of chronic overlapping pain conditions and research diagnostic criteria: Which direction to take? J. Oral Facial Pain Headache 2020, 34, s3–s5. [Google Scholar] [CrossRef]
- Svensson, P.; Exposto, F. Further evidence for overlaps among chronic pain conditions-But no news about causal relationships. J. Oral Facial Pain Headache 2020, 34, s6–s8. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Dostrovsky, J.O.; Iwata, K.; Sessle, B.J. Role of glia in orofacial pain. Neuroscientist 2011, 17, 303–320. [Google Scholar] [CrossRef]
- Hauge, A.W.; Asghar, M.S.; Schytz, H.W.; Christensen, K.; Olesen, J. Effects of tonabersat on migraine with aura: A randomised, double-blind, placebo-controlled crossover study. Lancet Neurol. 2009, 8, 718–723. [Google Scholar] [CrossRef]
- Gelesko, S.; Long, L.; Faulk, J.; Phillips, C.; Dicus, C.; White, R.P., Jr. Cryotherapy and topical minocycline as adjunctive 837 measures to control pain after third molar surgery: An exploratory study. J. Oral Maxillofac. Surg. 2011, 69, e324–e332. [Google Scholar] [CrossRef] [Green Version]
- Kwok, Y.H.; Swift, J.E.; Gazerani, P.; Rolan, P. A double-blind, randomized, placebo-controlled pilot trial to determine the efficacy and safety of ibudilast, a potential glial attenuator, in chronic migraine. J. Pain Res. 2016, 9, 899–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairns, B.E. The influence of gender and sex steroids on craniofacial nociception. Headache 2007, 47, 319–324. [Google Scholar] [CrossRef]
- Bereiter, D.A.; Okamoto, K. Neurobiology of estrogen status in deep craniofacial pain. Int. Rev. Neurobiol. 2011, 97, 251–284. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, P.C.; Young, R.F.; Albe-Fessard, D.; Chodakiewitz, J. Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain. J. Neurosurg. 1991, 74, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Chiang, C.Y.; Xie, Y.F.; Park, S.J.; Lu, Y.; Hu, J.W.; Dostrovsky, J.O.; Sessle, B.J. Central sensitization in thalamic nociceptive neurons induced by mustard oil application to rat molar tooth pulp. Neuroscience 2006, 142, 833–842. [Google Scholar] [CrossRef]
- Kawamura, J.; Kaneko, T.; Kaneko, M.; Sunakawa, M.; Kaneko, R.; Chokechanachaisakul, U.; Okiji, T.; Suda, H. Neuron-Immune interactions in the sensitized thalamus induced by mustard oil application to rat molar pulp. J. Dent. Res. 2010, 89, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.T.; Tsai, M.L.; Iwata, K.; Yen, C.T. Long-Term changes in trigeminal ganglionic and thalamic neuronal activities following inferior alveolar nerve transection in behaving rats. J. Neurosci. 2012, 32, 16051–16063. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Kaneko, M.; Nakamura, H.; Kobayashi, M. Spatiotemporal profiles of proprioception processed by the masseter muscle spindles in rat cerebral cortex: An optical imaging study. Front. Neural Circuits 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cao, P.; Mei, L.; Yin, W.; Mao, Y.; Niu, C.; Zhang, Z.; Tao, W. Microglia in the primary somatosensory barrel cortex mediate trigeminal neuropathic pain. Neuroscience 2019, 414, 299–310. [Google Scholar] [CrossRef]
- Davis, K.D.; Stohler, C.S. Neuroimaging and orofacial pain. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 165–183. [Google Scholar]
- Gustin, S.M.; Peck, C.C.; Wilcox, S.L.; Nash, P.G.; Murray, G.M.; Henderson, L.A. Different pain, different brain: Thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J. Neurosci. 2011, 31, 5956–5964. [Google Scholar] [CrossRef]
- Moayedi, M.; Hodaie, M. Trigeminal nerve and white matter brain abnormalities in chronic orofacial pain disorders. Pain Rep. 2019, 4, e755. [Google Scholar] [CrossRef]
- Park, S.J.; Zhang, S.; Chiang, C.Y.; Hu, J.W.; Dostrovsky, J.O.; Sessle, B.J. Central sensitization induced in thalamic nociceptive neurons by tooth pulp stimulation is dependent on the functional integrity of trigeminal brainstem subnucleus caudalis but not subnucleus oralis. Brain Res. 2006, 1112, 134–145. [Google Scholar] [CrossRef]
- Okada-Ogawa, A.; Suzuki, I.; Sessle, B.J.; Chiang, C.Y.; Salter, M.W.; Dostrovsky, J.O.; Tsuboi, Y.; Kondo, M.; Kitagawa, J.; Kobayashi, A.; et al. Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J. Neurosci. 2009, 29, 11161–11171. [Google Scholar] [CrossRef]
- Tsuboi, Y.; Iwata, K.; Dostrovsky, J.O.; Chiang, C.Y.; Sessle, B.J.; Hu, J.W. Modulation of astroglial glutamine synthetase activity affects nociceptive behaviour and central sensitization of medullary dorsal horn nociceptive neurons in a rat model of chronic pulpitis. Eur. J. Neurosci. 2011, 34, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Kiyomoto, M.; Shinoda, M.; Honda, K.; Nakaya, Y.; Dezawa, K.; Katagiri, A.; Kamakura, S.; Inoue, T.; Iwata, K. p38 phosphorylation in medullary microglia mediates ectopic orofacial inflammatory pain in rats. Mol. Pain 2015, 11, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, B.P.; Strassman, A.M.; Maciewicz, R.J. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J. Neurosci. 1994, 14 Pt 1, 2708–2723. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.Y.; Park, S.J.; Kwan, C.L.; Hu, J.W.; Sessle, B.J. NMDA receptor mechanisms contribute to neuroplasticity induced in caudalis nociceptive neurons by tooth pulp stimulation. J. Neurophysiol. 1998, 80, 2621–2631. [Google Scholar] [CrossRef] [Green Version]
- Imbe, H.; Iwata, K.; Zhou, Q.Q.; Zou, S.; Dubner, R.; Ren, K. Orofacial deep and cutaneous tissue inflammation and trigeminal neuronal activation. Implications for persistent temporomandibular pain. Cells Tissues Organs 2001, 169, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.K.; Sessle, B.J.; Hu, J.W. Surgical incision can alter capsaicin-induced central sensitization in rat brainstem nociceptive neurons. Neuroscience 2008, 156, 737–747. [Google Scholar] [CrossRef]
- Bernstein, C.; Burstein, R. Sensitization of the trigeminovascular pathway: Perspective and implications to migraine pathophysiology. J. Clin. Neurol. 2012, 8, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Kiyomoto, M.; Shinoda, M.; Okada-Ogawa, A.; Noma, N.; Shibuta, K.; Tsuboi, Y.; Sessle, B.J.; Imamura, Y.; Iwata, K. Fractalkine signaling in microglia contributes to ectopic orofacial pain following trapezius muscle inflammation. J. Neurosci. 2013, 33, 7667–7680. [Google Scholar] [CrossRef] [Green Version]
- Kanno, K.; Shimizu, K.; Shinoda, M.; Hayashi, M.; Takeichi, O.; Iwata, K. Role of macrophage-mediated Toll-like receptor 4-interleukin-1R signaling in ectopic tongue pain associated with tooth pulp inflammation. J. Neuroinflamm. 2020, 17, 312. [Google Scholar] [CrossRef]
- Zhang, S.H.; Deniz, B.; Lu, Y.; Sessle, B.J.; Hu, J.; Seltzer, Z. Neuropathic pain spread to ipsi- and contralateral body regions following unilateral infraorbital neurectomy in mice is determined genetically. Neurosci. Abstr. 2006, 553, 8. [Google Scholar]
- Mashregi, M.; Soleimannejad, E.; Froimotvitch, D.; Biton, S.; Seltzer, Z. Phenomics and QTL mapping of sensitivity to noxious heat and mechanical stimuli in naïve A/J, C57BL/6J and their 23 AXB- BXA descendant recombinant mice lines. In Proceedings of the IASP World Congress on Pain, Montreal, QC, Canada, 29 August–2 September 2010. [Google Scholar]
- Wang, H.; Cao, Y.; Chiang, C.-Y.; Dostrovsky, J.O.; Seltzer, Z.; Sessle, B.J. Unilateral partial infraorbital nerve injury in the rat causes neuropathic sensory abnormalities that spread extraterritorially and are genetically dependent. Pain Res. Manag. 2012, 17, 228. [Google Scholar]
- Varathan, V.; Cherkas, P.S.; Sessle, B.J. Genetic factors are involved in the nociceptive behaviour, medullary dorsal horn (MDH) central sensitisation and glial morphological changes occurring in mice following trigeminal nerve injury. In Proceedings of the IASP NeupSIG Meeting, Toronto, ON, Canada, 23–26 May 2013. [Google Scholar]
- Kobayashi, A.; Shinoda, M.; Sessle, B.J.; Honda, K.; Imamura, Y.; Hitomi, S.; Tsuboi, Y.; Okada-Ogawa, A.; Iwata, K. Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats. Mol. Pain 2011, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seltzer, Z.; Dubner, R.; Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990, 43, 205–218. [Google Scholar] [CrossRef]
- Coderre, T.J.; Melzack, R. Central neural mediators of secondary hyperalgesia following heat injury in rats: Neuropeptides and excitatory amino acids. Neurosci. Lett. 1991, 131, 71–74. [Google Scholar] [CrossRef]
- Aloisi, A.M.; Porro, C.A.; Cavazzuti, M.; Baraldi, P.; Carli, G. ‘Mirror pain’ in the formalin test: Behavioral and 2-deoxyglucose studies. Pain 1993, 55, 267–273. [Google Scholar] [CrossRef]
- Tal, M.; Bennett, G.J. Extra-territorial pain in rats with a peripheral mononeuropathy: Mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 1994, 57, 375–382. [Google Scholar] [CrossRef]
- Costigan, M.; Scholz, J.; Woolf, C.J. Neuropathic pain: A maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 2009, 32, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Yu, B. The mirror-image pain: An unclered phenomenon and its possible mechanism. Neurosci. Biobehav. Rev. 2010, 34, 528–532. [Google Scholar] [CrossRef]
- Jancalek, R. Signaling mechanisms in mirror image pain pathogenesis. Ann. Neurosci. 2011, 18, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lei, Y.; Tian, Y.; Xu, S.; Shen, X.; Wu, H.; Bao, S.; Wang, F. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol. Pain 2019, 15, 1744806919847366. [Google Scholar] [CrossRef]
- Tang, J.-S.; Chiang, C.-Y.; Dostrovsky, J.O.; Yao, D.; Sessle, B.J. Responses of neurons in rostral ventromedial medulla to nociceptive stimulation of craniofacial region and tail in rats. Brain Res. 2021, 1767, 147539. [Google Scholar] [CrossRef]
- Smith, S.B.; Mir, E.; Bair, E.; Slade, G.D.; Dubner, R.; Fillingim, R.B.; Greenspan, J.D.; Ohrbach, R.; Knott, C.; Weir, B.; et al. Genetic variants associated with development of TMD and its intermediate phenotypes: The genetic architecture of TMD in the OPPERA prospective cohort study. J. Pain 2013, 14 (Suppl. 12), T91–T101.e3. [Google Scholar] [CrossRef] [Green Version]
- Furquim, B.D.; Flamengui, L.M.; Repeke, C.E.; Cavalla, F.; Garlet, G.P.; Conti, P.C. Influence of TNF-alpha-308 G/A gene polymorphism on temporomandibular disorder. Am. J. Orthod. Dentofacial. Orthop. 2016, 149, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Meloto, C.B.; Benavides, R.; Lichtenwalter, R.N.; Wen, X.; Tugarinov, N.; Zorina-Lichtenwalter, K.; Chabot-Dore, A.J.; Piltonen, M.H.; Cattaneo, S.; Verma, V.; et al. Human pain genetics database: A resource dedicated to human pain genetics research. Pain 2018, 159, 749–763. [Google Scholar] [CrossRef]
- Brown, E. Genetics: An incomplete mosaic. Nature 2016, 535, S12–S13. [Google Scholar] [CrossRef] [PubMed]
- Casey, K.L. Chasing the Dream: The Search for a Neurobiological Mechanism; Oxford University Press: New York, NY, USA, 2019; p. 192. [Google Scholar]
- Ohrbach, R.; Durham, J.; Fillingim, R. Self-Report assessment of orofacial pain and psychosocial status. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms; Sessle, B.J., Ed.; IASP Press: Washington, DC, USA, 2014; pp. 121–142. [Google Scholar]
- Wei, F.; Zou, S.; Young, A.; Dubner, R.; Ren, K. Effects of four herbal extracts on adjuvant-induced inflammation and hyperalgesia in rats. J. Altern. Complement. Med. 1999, 5, 429–436. [Google Scholar] [CrossRef]
- Shir, Y.; Seltzer, Z. Heat hyperalgesia following partial sciatic ligation in rats: Interacting nature and nurture. Neuroreport 2001, 12, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Chesler, E.J.; Wilson, S.G.; Lariviere, W.R.; Rodriguez-Zas, S.L.; Mogil, J.S. Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neurosci. Biobehav. Rev. 2002, 26, 907–923. [Google Scholar] [CrossRef]
- Raber, P.; Devor, M. Social variables affect phenotype in the neuroma model of neuropathic pain. Pain 2002, 97, 139–150. [Google Scholar] [CrossRef]
- Bjørklund, G.; Aaseth, J.; Doşa, M.D.; Pivina, L.; Dadar, M.; Pen, J.J.; Chirumbolo, S. Does diet play a role in reducing nociception related to inflammation and chronic pain? Nutrition 2019, 66, 153–165. [Google Scholar] [CrossRef]
- Stone, L.S.; Szyf, M. The emerging field of pain epigenetics. Pain 2013, 154, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Ren, K.; Dubner, R. Epigenetic regulation of persistent pain. Transl. Res. 2015, 165, 177–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Bono, J.; Tao, Y.X. Long noncoding RNA (lncRNA): A target in neuropathic pain. Expert Opin. Ther. Targets 2019, 23, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Danaher, R.J.; Zhang, L.; Donley, C.J.; Laungani, N.A.; Hui, S.E.; Miller, C.S.; Westlund, K.N. Histone deacetylase inhibitors prevent persistent hypersensitivity in an orofacial neuropathic pain model. Mol. Pain 2018, 14, 1744806918796763. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.; Ross, H.; Zhang, Y.; Lee, K.; Ro, J.Y. The role of DNA methylation in transcriptional regulation of pro-nociceptive genes in rat trigeminal ganglia. Epigenet Insights. 2020, 13. [Google Scholar] [CrossRef]
- Biggers, J.D.; Claringbold, P.J. Why use inbred lines? Nature 1954, 174, 596–597. [Google Scholar] [CrossRef]
- Tuttle, A.H.; Philip, V.M.; Chesler, E.J.; Mogil, J.S. Comparing phenotypic variation between inbred and outbred mice. Nat. Methods 2018, 15, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Devor, M.; Raber, P. Heritability of symptoms in an experimental model of neuropathic pain. Pain 1990, 42, 51–67. [Google Scholar] [CrossRef]
- Mogil, J.S.; Sternberg, W.F.; Marek, P.; Sadowski, B.; Belknap, J.K.; Liebeskind, J.C. The genetics of pain and pain inhibition. Proc. Natl. Acad. Sci. USA 1996, 93, 3048–3055. [Google Scholar] [CrossRef] [Green Version]
- Mogil, J.S.; Wilson, S.G.; Bon, K.; Lee, S.E.; Chung, K.; Raber, P.; Pieper, J.O.; Hain, H.S.; Belknap, J.K.; Hubert, L.; et al. Heritability of nociception I: Responses of 11 inbred mouse strains on 12 measures of nociception. Pain 1999, 80, 67–82. [Google Scholar] [CrossRef]
- Mogil, J.S.; Wilson, S.G.; Bon, K.; Lee, S.E.; Chung, K.; Raber, P.; Pieper, J.O.; Hain, H.S.; Belknap, J.K.; Hubert, L.; et al. Heritability of nociception II. ‘Types’ of nociception revealed by genetic correlation analysis. Pain 1999, 80, 83–93. [Google Scholar] [CrossRef]
- Yoon, Y.W.; Lee, D.H.; Lee, B.H.; Chung, K.; Chung, J.M. Different strains and substrains of rats show different levels of neuropathic pain behaviors. Exp. Brain Res. 1999, 129, 167–171. [Google Scholar] [CrossRef]
- Lovell, J.A.; Stuesse, S.L.; Cruce, W.L.; Crisp, T. Strain differences in neuropathic hyperalgesia. Pharmacol. Biochem. Behav. 2000, 65, 141–144. [Google Scholar] [CrossRef]
- Lariviere, W.R.; Chesler, E.J.; Mogil, J.S. Transgenic studies of pain and analgesia: Mutation or background genotype? J. Pharmacol. Exp. Ther. 2001, 297, 467–473. [Google Scholar] [PubMed]
- Shir, Y.; Zeltser, R.; Vatine, J.J.; Carmi, G.; Belfer, I.; Zangen, A.; Overstreet, D.; Raber, P.; Seltzer, Z. Correlation of intact sensibility and neuropathic pain-related behaviors in eight inbred and outbred rat strains and selection lines. Pain 2001, 90, 75–82. [Google Scholar] [CrossRef]
- Gardell, L.R.; Ibrahim, M.; Wang, R.; Wang, Z.; Ossipov, M.H.; Malan, T.P., Jr.; Porreca, F.; Lai, J. Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain. Neuroscience 2004, 123, 43–52. [Google Scholar] [CrossRef] [PubMed]
- LaCroix-Fralish, M.L.; Rutkowski, M.D.; Weinstein, J.N.; Mogil, J.S.; Deleo, J.A. The magnitude of mechanical allodynia in a rodent model of lumbar radiculopathy is dependent on strain and sex. Spine 2005, 30, 1821–1827. [Google Scholar] [CrossRef]
- Herradon, G.; Ezquerra, L.; Nguyen, T.; Wang, C.; Siso, A.; Franklin, B.; Dilorenzo, L.; Rossenfeld, J.; Alguacil, L.F.; Silos-Santiago, I. Changes in BDNF gene expression correlate with rat strain differences in neuropathic pain. Neurosci. Lett. 2007, 420, 273–276. [Google Scholar] [CrossRef]
- De Felice, M.; Sanoja, R.; Wang, R.; Vera-Portocarrero, L.; Oyarzo, J.; King, T.; Ossipov, M.H.; Vanderah, T.W.; Lai, J.; Dussor, G.O.; et al. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain 2011, 152, 2701–2709. [Google Scholar] [CrossRef] [Green Version]
- Ziv-Sefer, S.; Raber, P.; Barbash, S.; Devor, M. Unity vs. diversity ofneuropathic pain mechanisms: Allodynia and hyperalgesia in rats selected for heritable predisposition to spontaneous pain. Pain 2009, 146, 148–157. [Google Scholar] [CrossRef]
- Nitzan-Luques, A.; Minert, A.; Devor, M.; Tal, M. Dynamic genotype-selective “phenotypic switching” of CGRP expression contributes to differential neuropathic pain phenotype. Exp. Neurol. 2013, 250, 194–204. [Google Scholar] [CrossRef]
- Le Coz, G.M.; Fiatte, C.; Anton, F.; Hanesch, U. Differential neuropathic pain sensitivity and expression of spinal mediators in Lewis and Fischer 344 rats. BMC Neurosci. 2014, 15, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madasu, M.K.; Okine, B.N.; Olango, W.M.; Rea, K.; Lenihan, R.; Roche, M.; Finn, D.P. Genotype-dependent responsivity to inflammatory pain: A role for TRPV1 in the periaqueductal grey. Pharmacol. Res. 2016, 113 Pt A, 44–54. [Google Scholar] [CrossRef]
- Hestehave, S.; Abelson, K.S.P.; Bronnum Pedersen, T.; Finn, D.P.; Andersson, D.R.; Munro, G. The influence of rat strain on the development of neuropathic pain and comorbid anxio-depressive behaviour after nerve injury. Sci. Rep. 2020, 10, 20981. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S.; Chesler, E.J.; Wilson, S.G.; Juraska, J.M.; Sternberg, W.F. Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci. Biobehav. Rev. 2000, 24, 375–389. [Google Scholar] [CrossRef]
- Cherkas, P.S.; Varathan, V.; Sessle, B.J. Infraorbital nerve injury induces glial changes in medullary dorsal horn. J. Dent. Res. 2013, 92, 2832. [Google Scholar]
- Avivi-Arber, L.; Seltzer, Z.; Friedel, M.; Lerch, J.P.; Moayedi, M.; Davis, K.D.; Sessle, B.J. Widespread volumetric brain changes following tooth loss in female mice. Front. Neuroanat. 2017, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Sessle, B.J. Face sensorimotor cortex undergoes neuroplastic changes in a rat model of trigeminal neuropathic pain. Exp. Brain Res. 2018, 23, 1357–1368. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.C.H. Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 2019, 20, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Erzurumlu, R.S.; Gaspar, P. How the barrel cortex became a working model for developmental plasticity: A historical perspective. J. Neurosci. 2020, 40, 6460–6473. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sessle, B.J. Chronic Orofacial Pain: Models, Mechanisms, and Genetic and Related Environmental Influences. Int. J. Mol. Sci. 2021, 22, 7112. https://doi.org/10.3390/ijms22137112
Sessle BJ. Chronic Orofacial Pain: Models, Mechanisms, and Genetic and Related Environmental Influences. International Journal of Molecular Sciences. 2021; 22(13):7112. https://doi.org/10.3390/ijms22137112
Chicago/Turabian StyleSessle, Barry J. 2021. "Chronic Orofacial Pain: Models, Mechanisms, and Genetic and Related Environmental Influences" International Journal of Molecular Sciences 22, no. 13: 7112. https://doi.org/10.3390/ijms22137112
APA StyleSessle, B. J. (2021). Chronic Orofacial Pain: Models, Mechanisms, and Genetic and Related Environmental Influences. International Journal of Molecular Sciences, 22(13), 7112. https://doi.org/10.3390/ijms22137112