Genetic Dissection of Seedling Root System Architectural Traits in a Diverse Panel of Hexaploid Wheat through Multi-Locus Genome-Wide Association Mapping for Improving Drought Tolerance
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Analyses
2.2. Multivariate Analyses of Phenotypic Traits
2.2.1. Association Analysis
2.2.2. Principal Component Analysis
2.2.3. Clustering of Genotypes
2.3. Marker Distribution, Linkage Distribution and Population Structure
2.4. Genome-Wide Association Studies
2.4.1. Colocalization of Root Architecture Loci
2.4.2. Allelic Effects of Identified Genomic Regions on Respective Phenotypes
2.4.3. Genes Linked to Quantitative Trait Nucleotides
3. Discussion
3.1. Phenotypic Variability
3.2. Multivariate Analyses
3.3. Genome Wide Association and Candidate Genes Identification
4. Materials and Methods
4.1. Experimental Material and Design
4.2. Root and Shoot Traits Measured for Phenotyping
4.3. Statistical Analyses of Phenotypic Data
4.4. DNA Extraction and SNP Genotyping
4.5. Population Structure and LD
4.6. Genome Wide Association Analysis
4.7. Identification of Potential Candidate Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2017. Available online: www.fao.org/faostat (accessed on 27 September 2020).
- ICAR-IIWBR. Director’s Report of AICRP on Wheat and Barley 2019-2020; Singh, G.P., Ed.; ICAR-Indian Institute of Wheat and Barley Research: Karnal, Haryana, India, 2020; p. 76. [Google Scholar]
- Tardif, G.; Kane, N.A.; Adam, H.; Labrie, L.; Major, G.; Gulick, P.; Sarhan, F.; Laliberte, J.F. Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol. Biol. 2007, 63, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Monneveux, P.; Jing, R.; Misra, S. Phenotyping for drought adaptation in wheat using physiological traits. Front. Physiol. 2012, 3, 429. [Google Scholar] [CrossRef] [Green Version]
- Fleury, D.; Jefferies, S.; Kuchel, H.; Langridge, P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010, 61, 3211–3222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, T.; Dai, A. The Magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Clim. 2015, 28, 4490–4512. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Cheng, M.; Jiang, H.; Zhang, X.; Peng, C.; Lu, X.; Zhang, M.; Jin, J. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. Int. J. Environ. Res. 2018, 15, 839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osmont, K.S.; Sibout, R.; Hardtke, C.S. Hidden branches: Developments in root system architecture. Annu. Rev. Plant Biol. 2007, 58, 93–113. [Google Scholar] [CrossRef]
- Smith, S.; De Smet, I. Root system architecture: Insights from Arabidopsis and cereal crops. Phil. Trans. R. Soc. B 2012, 367, 1441–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishopp, A.; Lynch, J.P. The hidden half of crop yields. Nat. Plants 2015, 1, 15117. [Google Scholar] [CrossRef]
- Kabir, M.R.; Liu, G.; Guan, P.; Wang, F.; Khan, A.A.; Ni, Z.; Sun, Q. Mapping QTLs associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica 2015, 206, 175–190. [Google Scholar] [CrossRef]
- Maccaferri, M.; El-Feki, W.; Nazemi, G.; Salvi, S.; Cane, M.A.; Colalongo, M.C.; Tuberosa, R. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J. Exp. Bot. 2016, 67, 1161–1178. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Kumari, J.; Rengel, Z. Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant Soil 2019, 439, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Prasad, P.V.V.; Kumari, J.; Sehgal, S.K.; Friebe, B.; Djalovic, I.; Chen, Y.; Siddique, K.H.M.; Gill, B.S. Alien chromosome segment from Aegilops speltoides and Dasypyrum villosum increases drought tolerance in wheat via profuse and deep root system. BMC Plant Biol. 2019, 19, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, K.A.; Virk, D.S.; Kumar, R.; Prasad, S.C.; Witcombe, J.R. Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res. 2007, 101, 180–186. [Google Scholar] [CrossRef]
- Ehdaie, B.; Merhaut, D.J.; Ahmadian, S.; Hoops, A.C.; Khuong, T.; Layne, A.P.; Waines, J.G. Root system size influences water-nutrient uptake and nitrate leaching potential in wheat. J. Agron. Crop Sci. 2010, 196, 455–466. [Google Scholar] [CrossRef]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Inoue, H. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097. [Google Scholar] [CrossRef]
- Yu, G.R.; Zhuang, J.; Nakayama, K.; Jin, Y. Root water uptake and profile soil water as affected by vertical root distribution. Plant Ecol. 2007, 189, 15–30. [Google Scholar] [CrossRef]
- Mace, E.S.; Singh, V.; Van Oosterom, E.J.; Hammer, G.L.; Hunt, C.H.; Jordan, D.R. QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor. Appl. Genet. 2012, 124, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Sertse, D.; You, F.M.; Ravichandran, S.; Cloutier, S. The complex genetic architecture of early root and shoot traits in flax revealed by genome-wide association analyses. Front. Plant Sci. 2019, 10, 1483. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Liu, Y.; Gruber, B.D.; Neumann, K.; Kilian, B.; Graner, A.; von Wirén, N. Genetic dissection of root system architectural traits in spring barley. Front. Plant Sci. 2019, 10, 400. [Google Scholar] [CrossRef]
- Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Tang, H.; Risch, N. Admixture mapping and the role of population structure for localizing disease genes. In Genetic Dissection of Complex Traits, 2nd ed.; Rao, D.C., Gu, C.C., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 547–569. [Google Scholar]
- Hu, J.; Guo, C.; Wang, B.; Ye, J.; Liu, M.; Wu, Z.; Liu, K. Genetic properties of a nested association mapping population constructed with semi-winter and spring oilseed rapes. Front. Plant Sci. 2018, 9, 1740. [Google Scholar] [CrossRef] [Green Version]
- Bollinedi, H.; Yadav, A.K.; Vinod, K.K.; Krishnan, S.G.; Bhowmick, P.K.; Nagarajan, M.; Singh, A.K. Genome-wide association study reveals novel marker-trait associations (MTAs) governing the localization of Fe and Zn in the rice grain. Front. Plant Sci. 2020, 11, 213. [Google Scholar]
- Chaurasia, S.; Singh, A.K.; Songachan, L.S.; Sharma, A.D.; Bhardwaj, R.; Singh, K. Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 2020, 112, 4608–4621. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Rani, K.; Ajay, B.C.; Patel, M.S.; Mungra, K.D.; Patel, M.P. Multivariate diversity analysis for grain micronutrients concentration, yield and agro-morphological traits in pearl millet (Pennisetum glaucum (L) R. Br.). Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2209–2226. [Google Scholar] [CrossRef]
- Narayanan, S.; Mohan, A.; Gill, K.S.; Prasad, P.V.V. Variability of root traits in spring wheat germplasm. PLoS ONE 2014, 9, e100317. [Google Scholar] [CrossRef] [PubMed]
- Rosello, M.; Royo, C.; Sanchez-Garcia, M.; Soriano, J.M. Genetic dissection of the seminal root system architecture in mediterranean durum wheat landraces by genome-wide association study. Agronomy 2019, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Palta, J.; Prasad, P.V.V.; Siddique, K.H. Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biol. 2020, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Phogat, B.; Kumar, S.; Kumari, J.; Kumar, N.; Pandey, A.C.; Singh, T.; Tyagi, R.; Jacob, S.R.; Singh, A.K.; Srinivasan, K.; et al. Characterization of wheat germplasm conserved in the Indian National Genebank and establishment of a composite core collection. Crop Sci. 2020, 61, 604–620. [Google Scholar] [CrossRef]
- Huang, J.; Kim, C.M.; Xuan, Y.H.; Liu, J.; Kim, T.H.; Kim, B.K.; Han, C.D. Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). Planta 2013, 237, 1227–1239. [Google Scholar] [CrossRef]
- Pei, W.; Du, F.; Zhang, Y.; He, T.; Ren, H. Control of the actin cytoskeleton in root hair development. Plant Sci. 2012, 187, 10–18. [Google Scholar] [CrossRef]
- Lin, H.J.; Gao, J.; Zhang, Z.M.; Shen, Y.O.; Lan, H.; Liu, L.; Gao, S.B. Transcriptional responses of maize seedling root to phosphorus starvation. Mol. Biol. Rep. 2013, 40, 5359–5379. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Romero, V.; Benítez-Vega, J.; López-Bellido, L.; López-Bellido, R.J. Monitoring wheat root development in a rainfed vertisol: Tillage effect. Eur. J. Agron. 2010, 33, 182–187. [Google Scholar] [CrossRef]
- Canè, M.A.; Maccaferri, M.; Nazemi, G.; Salvi, S.; Francia, R.; Colalongo, C.; Tuberosa, R. Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol. Breed. 2014, 34, 1629–1645. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Peng, Z.; Mao, X.; Wang, J.; Chang, X.; Reynolds, M.; Jing, R. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann. Bot. 2019, 124, 993–1006. [Google Scholar] [CrossRef] [PubMed]
- Rowse, H.R.; Goodman, D. Axial resistance to water movement in broad bean (Vicia faba) roots. J. Exp. Bot. 1981, 32, 591–598. [Google Scholar] [CrossRef]
- Figueroa-Bustos, V.; Palta, J.A.; Chen, Y.; Siddique, K.H. Characterization of root and shoot traits in wheat cultivars with putative differences in root system size. Agronomy 2018, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Davidson, R.L. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann. Bot. 1969, 33, 561–569. [Google Scholar] [CrossRef]
- Garnier, E. Resource capture, biomass allocation and growth in herbaceous plants. Trends Ecol. Evol. 1991, 6, 126–131. [Google Scholar] [CrossRef]
- Qian, H.; Lu, H.; Ding, H.; Lavoie, M.; Li, Y.; Liu, W.; Fu, Z. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Sci. Rep. 2015, 5, 11975. [Google Scholar] [CrossRef] [Green Version]
- Soto-Cerda, B.J.; Cloutier, S.; Gajardo, H.A.; Aravena, G.; Quian, R. Identifying drought-resilient flax genotypes and related-candidate genes based on stress indices, root traits and selective sweep. Euphytica 2019, 215, 41. [Google Scholar] [CrossRef]
- Zhao, Z.; Ge, T.; Gunina, A.; Li, Y.; Zhu, Z.; Peng, P.; Kuzyakov, Y. Carbon and nitrogen availability in paddy soil affect rice photosynthate allocation, microbial community composition, and priming: Combining continuous 13 C labeling with PLFA analysis. Plant Soil 2019, 445, 137–152. [Google Scholar] [CrossRef]
- Manschadi, A.M.; Christopher, J.; Devoil, P.; Hammer, G.L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct. Plant Biol. 2006, 33, 823–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopher, J.T.; Manschadi, A.M.; Hammer, G.L.; Borrell, A.K. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust. J. Agric. Res. 2008, 59, 354–364. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Jia, Z.; Dunwell, J.M. The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front. Plant Sci. 2019, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Safdar, L.B.; Andleeb, T.; Latif, S.; Umer, M.J.; Tang, M.; Li, X.; Quraishi, U.M. Genome-wide association study and QTL meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Front. Plant Sci. 2020, 11, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, R.; Purty, R.S.; Agrawal, V.; Gupta, S.C. Transformation of tomato cultivar ‘Pusa Ruby’ with bspA gene from Populus tremula for drought tolerance. Plant Cell Tissue Organ Cult. 2006, 84, 56–68. [Google Scholar] [CrossRef]
- Manske, G.G.B.; Vlek, P.L.G. Root architecture-wheat as a model plant. In Plant Roots: The Hidden Half; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 249–259. [Google Scholar]
- Wei, K.; Li, Y. Functional genomics of the protein kinase superfamily from wheat. Mol. Breed. 2019, 39, 141. [Google Scholar] [CrossRef]
- Li, Y.; Wei, K. Comparative functional genomics analysis of cytochrome P450 gene superfamily in wheat and maize. BMC Plant Biol. 2020, 20, 2887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trewavas, A. How plants learn. Proc. Natl. Acad. Sci. USA 1999, 96, 4216–4218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saradadevi, R.; Bramley, H.; Palta, J.A.; Siddique, K.H. Stomatal behaviour under terminal drought affects post-anthesis water use in wheat. Funct. Plant Biol. 2017, 44, 279–289. [Google Scholar] [CrossRef]
- Schoppach, R.; Wauthelet, D.; Jeanguenin, L.; Sadok, W. Conservative water use under high evaporative demand associated with smaller root metaxylem and limited trans-membrane water transport in wheat. Funct. Plant Biol. 2014, 41, 257–269. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Lilley, J.M.; Howe, G.N.; Graham, J.N. Impact of subsoil water use on wheat yield. Aust. J. Agric. Res. 2007, 58, 303–315. [Google Scholar] [CrossRef]
- Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.S.; Rebetzke, G.J.; Watt, M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 2012, 63, 3485–3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyanagi, A.; Sato, A.; Wada, M. Varietal differences in geotropic response of primary seminal root in Japanese wheat. Jpn. J. Crop. Sci. 1991, 60, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Soriano, J.M.; Alvaro, F. Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci. Rep. 2019, 9, 10537. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Begley, T.J.; Dedon, P.C. tRNA modifications regulate translation during cellular stress. FEBS Lett. 2014, 588, 4287–4296. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Liang, Y.; Hawkesford, M.J. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J. Exp. Bot. 2013, 64, 1745–1753. [Google Scholar] [CrossRef] [Green Version]
- Hochholdinger, F.; Yu, P.; Marcon, C. Genetic control of root system development in maize. Trends Plant Sci. 2018, 23, 79–88. [Google Scholar] [CrossRef]
- Reinert, S.; Kortz, A.; Leon, J.; Naz, A.A. Genome-wide association mapping in the global diversity set reveals new QTL controlling root system and related shoot variation in barley. Front. Plant Sci. 2016, 7, 1061. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.K.; Rani, M.; Kumar, A.; Kumar, S.; Venkatesh, K.; Mandal, P.K. Natural variation in root system architecture in diverse wheat genotypes grown under different nitrate conditions and root growth media. Theor. Exp. Plant Physiol. 2018, 30, 223–234. [Google Scholar] [CrossRef]
- Arsenault, J.L.; Poulcur, S.; Messier, C.; Guay, R. WinRHlZO™, a root-measuring system with a unique overlap correction method. Hort. Sci. 1995, 30, 906. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.K.; Rani, M.; Bansal, N.; Venkatesh, K.; Mandal, P.K. Nitrate starvation induced changes in root system architecture, carbon: Nitrogen metabolism, and miRNA expression in nitrogen-responsive wheat genotypes. Appl. Biochem. Biotechnol. 2015, 177, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.K.; Kumar, A.; Tyagi, A.; Venkatesh, K.; Paul, D.; Singh, N.K.; Mandal, P.K. Root architecture traits variation and nitrate-influx responses in diverse wheat genotypes under different external nitrogen concentrations. Plant Physiol. Biochem. 2020, 148, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Nagar, C.K.; Gayatri, A.B.; Mandal, P.K. Nitrogen stress induced changes in root system architecture (RSA) in diverse wheat (T. aestivum L.) genotypes at seedling stage. Wheat Barley Res. 2018, 10, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 39–40. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 2000, 67, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Wang, S.B.; Feng, J.Y.; Ren, W.L.; Huang, B.; Zhou, L.; Wen, Y.J.; Zhang, Y.M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci. Rep. 2016, 6, 19444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamba, C.L.; Zhang, Y.M. A fast mrMLM algorithm for multi-locus genome-wide association studies. bioRxiv 2018, 341784. [Google Scholar] [CrossRef]
- Wen, Y.J.; Zhang, H.; Ni, Y.L.; Huang, B.; Zhang, J.; Feng, J.Y.; Wu, R. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief. Bioinform. 2018, 19, 700–712. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.L.; Wen, Y.J.; Dunwell, J.M.; Zhang, Y.M. pKWmEB: Integration of Kruskal–Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity 2018, 120, 208–218. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, J.Y.; Ni, Y.L.; Wen, Y.J.; Niu, Y.; Tamba, C.L.; Zhang, Y.M. pLARmEB: Integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity 2017, 118, 517–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamba, C.L.; Ni, Y.L.; Zhang, Y.M. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput. Biol. 2017, 13, e1005357. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.J.; Zhang, H.; Ni, Y.L.; Huang, B.; Zhang, J.; Feng, J.Y.; Wang, S.B.; Dunwell, J.M.; Zhang, Y.M.; Wu, R. mrMLM: Multi-Locus Random-SNP-Effect Mixed Linear Model Tools for Genome-Wide Association Study. Available online: https://cran.r-project.org/package=mrMLM (accessed on 2 October 2020).
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
S. No. | Trait Name | Abbreviation | Trait Description | Unit | Range | Mean ± SE | CV (%) |
---|---|---|---|---|---|---|---|
1 | Total root size | TRS | Sum of the path length of seminal including primary roots and lateral roots (LRs) | cm | 65.10–378.63 | 242.94 ± 5.35 | 26.06 |
2 | First order lateral root number | FOLRN | Number of first order LRs (emerging from primary and seminal roots) | - | 14.33–240.67 | 95.22 ± 3.58 | 44.50 |
3 | Second order lateral root number | SOLRN | Number of second order LRs (emerging from first-order LRs) | - | 6.67–490.33 | 165.57 ± 8.97 | 64.10 |
4 | Lateral root size | LRS | First order length + second order length divided by total root size (TRS) | - | 0.02–0.87 | 0.39 ± 0.01 | 38.39 |
5 | Lateral root density | LRD | First-order LR no. divided by PRP | cm−1 | 0.81–5.89 | 2.81 ± 0.08 | 35.67 |
6 | Root length density | RLD | TRS divided by volume of pot (500 cm3) | cm−2 | 0.11–0.76 | 0.49 ± 0.01 | 26.30 |
7 | Average diameter | AD | Projected area divided by TRS | mm | 0.31–0.49 | 0.38 ± 0.01 | 8.46 |
8 | Root volume | RV | π × (Half of the avg. diameter/2) 2 × TRS | cm3 | 0.02–0.35 | 0.16 ± 0.01 | 37.62 |
9 | Seminal root number | SRN | Primary root bursts through the coleorhiza | - | 2.67–6.00 | 5.06 ± 0.04 | 10.29 |
10 | Shoot dry weight | SDW | Shoot dry weight | mg | 5.02–60.41 | 35.58 ± 0.88 | 29.18 |
11 | Root dry weight | RDW | Root dry weight | mg | 1.07–23.06 | 10.76 ± 0.32 | 35.14 |
12 | Shoot length | SL | Shoot length | cm | 13.57–40.77 | 30.61 ± 0.41 | 15.97 |
13 | Root length | RL | Root length | cm | 9.67–37.50 | 24.81 ± 0.54 | 25.83 |
14 | Root shoot dry weight ratio | RSDWR | Ratio of root to shoot dry weight | - | 0.16–0.59 | 0.31 ± 0.01 | 26.07 |
15 | Specific root length | SRL | Total root length per unit root dry mass | cm mg−1 | 1.32–9.10 | 2.52 ± 0.07 | 34.02 |
Chromosome | Size (Mb) | No. of SNP | Average Number of SNPs per (Mb) | Average LD (r2) | No. of Marker Pairs in Perfect LD (r2 = 1) |
---|---|---|---|---|---|
1A | 594.1 | 911 | 1.53 | 0.206 | 2134 |
1B | 689.85 | 987 | 1.43 | 0.268 | 3511 |
1D | 495.45 | 895 | 1.80 | 0.298 | 3923 |
2A | 780.8 | 952 | 1.22 | 0.241 | 999 |
2B | 801.26 | 1178 | 1.47 | 0.159 | 819 |
2D | 651.85 | 1037 | 1.59 | 0.226 | 1813 |
3A | 750.84 | 663 | 0.88 | 0.114 | 274 |
3B | 830.83 | 1003 | 1.20 | 0.149 | 368 |
3D | 615.55 | 579 | 0.94 | 0.098 | 121 |
4A | 744.59 | 573 | 0.76 | 0.122 | 310 |
4B | 673.62 | 447 | 0.66 | 0.111 | 197 |
4D | 509.86 | 287 | 0.56 | 0.087 | 73 |
5A | 709.77 | 737 | 1.03 | 0.122 | 368 |
5B | 713.15 | 1125 | 1.57 | 0.189 | 1769 |
5D | 566.08 | 769 | 1.35 | 0.147 | 713 |
6A | 618.08 | 657 | 1.06 | 0.157 | 655 |
6B | 720.99 | 846 | 1.17 | 0.147 | 354 |
6D | 473.59 | 622 | 1.31 | 0.112 | 255 |
7A | 736.71 | 862 | 1.17 | 0.122 | 401 |
7B | 750.62 | 757 | 1.00 | 0.126 | 269 |
7D | 638.69 | 729 | 1.14 | 0.099 | 202 |
S. No | QTN | Trait | Marker | Allele | CHR | Physical Position (bp) | LOD Score | R2 (%) | Method |
---|---|---|---|---|---|---|---|---|---|
1 | Q.TRS-2AS | TRS | AX-94952472 | G/C | 2AS | 8181794 | 3.29–3.75 | 9.77–17.72 | 1,5 |
2 | Q.TRS-4AL | TRS | AX-95105488 | A/C | 4AL | 631903354 | 3.38–5.01 | 8.82–10.85 | 2,4 |
3 | Q.TRS-7BS | TRS | AX-95119337 | G/A | 7BS | 138882791 | 6.81–10.73 | 17.10–22.22 | 2,4 |
4 | Q.FOLRN-7AS | FOLRN | AX-95249973 | G/A | 7AS | 54997993 | 3.10–4.92 | 5.22–6.83 | 1,2 |
5 | Q.FOLRN-7BS | FOLRN | AX-95123855 | T/C | 7BS | 99635031 | 3.59–4.41 | 6.12–8.62 | 4,5 |
6 | Q.SOLRN-1AL | SOLRN | AX-95102105 | A/G | 1AL | 474573230 | 3.24–4.58 | 1.68–3.65 | 1,2,4 |
7 | Q.SOLRN-1BL | SOLRN | AX-95077960 | G/A | 1BL | 572301473 | 3.55–8.97 | 2–4.15 | 1,2,4,5 |
8 | Q.SOLRN-1DS | SOLRN | AX-94448890 | T/C | 1DS | 10741698 | 4.44–6.92 | 2.47–4.12 | 1,2,4,5 |
9 | Q.SOLRN-3BL | SOLRN | AX-94516395 | C/T | 3BL | 738699225 | 4.34–5.58 | 2.61–3.99 | 1,2,4 |
10 | Q.SOLRN-3BL | SOLRN | AX-95150666 | G/C | 3BL | 664019441 | 10.31–14.84 | 27.09–38.60 | 1,2,4,5 |
11 | Q.SOLRN-3DL | SOLRN | AX-94450588 | A/G | 3DL | 367309893 | 8.17–10.84 | 21.14–26.16 | 4,5 |
12 | Q.SOLRN-6AL | SOLRN | AX-95244609 | T/C | 6AL | 599035159 | 4.61–6.78 | 1.88–3.29 | 1,2,4,5 |
13 | Q.SOLRN-7BL | SOLRN | AX-94564853 | A/G | 7BL | 673962683 | 4.30–5.98 | 9.92–18.50 | 1,2,4 |
14 | Q.SOLRN-7BS | SOLRN | AX-95123855 | T/C | 7BS | 99635031 | 4.49–4.69 | 1.60–2.17 | 4,5 |
15 | Q.LRS-2DS | LRS | AX-94471646 | A/G | 2DS | 13929712 | 3.31–7.30 | 1–2.40 | 2,4 |
16 | Q.LRS-3AS | LRS | AX-94961347 | C/T | 3AS | 184635201 | 7.15–15.48 | 7.47–12.41 | 1,4,5 |
17 | Q.LRS-3BL | LRS | AX-94480990 | G/T | 3BL | 417261367 | 6.63–15.77 | 1–6.15 | 2,4 |
18 | Q.LRD-5BS | LRS | AX-94706358 | A/C | 5BS | 69134215 | 3.41–13.25 | 3.47–8.20 | 1,4,5 |
19 | Q.LRS-6AL | LRS | AX-95244609 | T/C | 6AL | 599035159 | 3.27–4.21 | 0.12–0.2 | 4,5 |
20 | Q.LRD-7BL | LRS | AX-94528392 | G/A | 7BL | 675314495 | 4.92–9.18 | 16.43–30.67 | 1,4,5 |
21 | Q.LRD-7BS | LRS | AX-95123855 | T/C | 7BS | 99635031 | 3.35–17.24 | 4.17–8.35 | 1,2,4,5 |
22 | Q.LRD-4AL | LRD | AX-94841365 | G/A | 4AL | 725751499 | 4.90–5.56 | 12.04–13.40 | 4,5 |
23 | Q.LRD-5DL | LRD | AX-94571501 | T/C | 5DL | 472635782 | 3.46–5.69 | 5.74–11.60 | 3,4,5 |
24 | Q.LRD-7BL | LRD | AX-94763902 | T/C | 7BL | 552120841 | 3.58–6.43 | 6.83–10.02 | 2,4,5 |
25 | Q.RLD-1BL | RLD | AX-94728516 | T/C | 1BL | 491241476 | 6.01–28.19 | 0.45–4.15 | 4,5 |
26 | Q.RLD-2AS | RLD | AX-94952472 | G/C | 2AS | 8181794 | 3.67–9.52 | 0.98–4.23 | 4,5 |
27 | Q.RLD-3BS | RLD | AX-94516395 | C/T | 3BL | 738699225 | 3.36–3.46 | 1.66–1.93 | 4,5 |
28 | Q.RLD-3DL | RLD | AX-94544285 | C/G | 3DL | 594478810 | 5.88–21.54 | 3.94–6.33 | 2,4 |
29 | Q.RLD-4AL | RLD | AX-95105488 | A/C | 4AL | 631903354 | 3.26–8.06 | 5.97–15.44 | 1,4 |
30 | Q.RLD-5AL | RLD | AX-95659861 | G/A | 5AL | 565754230 | 3.49–6.68 | 1.89–2.57 | 2,5 |
31 | Q.RLD-5DS | RLD | AX-95160709 | G/T | 5DS | 10471964 | 3.49–13.73 | 0.16–4.38 | 4,5 |
32 | Q.RLD-6BL | RLD | AX-94502864 | G/A | 6BL | 710324542 | 9.73–14.54 | 1.14–8.22 | 4,5 |
33 | Q.RLD-7BS | RLD | AX-95119337 | G/A | 7BS | 138882791 | 6.71–11.23 | 12.20–17.08 | 1,4,5 |
34 | Q.AD-1AL | AD | AX-94932678 | A/G | 1AL | 557954056 | 3.67–6.82 | 2.42–5.92 | 4,5 |
35 | Q.AD-1BL | AD | AX-94620468 | A/G | 1BL | 586302698 | 5.16–8.86 | 3.31–7.79 | 2,4,5 |
36 | Q.AD-1BS | AD | AX-94668789 | G/A | 1BS | 96515530 | 3.67–5.97 | 0.17–1.53 | 2,5 |
37 | Q.AD-2DL | AD | AX-94647816 | A/C | 2DL | 641980126 | 4.58–22.75 | 3.53–7.08 | 2,4 |
38 | Q.AD-3AS | AD | AX-94996868 | C/T | 3AS | 1030506 | 6.25–16.45 | 1.67–8.54 | 2,4 |
39 | Q.AD-3BS | AD | AX-94886515 | T/C | 3BS | 129437930 | 3.90–9.27 | 1.55–2.72 | 2,5 |
40 | Q.AD-3DS | AD | AX-94726849 | C/T | 3DS | 81391081 | 6.70–7.87 | 0.21–2.18 | 2,4 |
41 | Q.AD-4AL | AD | AX-94740863 | T/C | 4AL | 725802675 | 3.10–5.14 | 0.12–3.54 | 4,5 |
42 | Q.AD-6AL | AD | AX-95244609 | T/C | 6AL | 599035159 | 3.38–10.62 | 3.03–5.88 | 2,3,4,5 |
43 | Q.AD-6BS | AD | AX-94691127 | G/A | 6BS | 288419550 | 4.97–5.80 | 0.18–1.28 | 4,5 |
44 | Q.AD-6DL | AD | AX-94853162 | G/A | 6DL | 470294593 | 3.70–4.51 | 0.39–1.65 | 4,5 |
45 | Q.RV-2BS | RV | AX-95227366 | G | 2BS | 46089220 | 3.25–1152.63 | 11.40–13.56 | 1,2,4 |
46 | Q.RV-4AL | RV | AX-95105488 | A/C | 4AL | 631903354 | 3.97–1166.09 | 2.06–8.08 | 1,2,3 |
47 | Q.RV-4BS | RV | AX-94648074 | C/T | 4BS | 140929724 | 3.45–1122.58 | 2.72–4.81 | 1,2,4 |
48 | Q.RV-5BL | RV | AX-94439232 | C/A | 5BL | 287624152 | 3.80–1152.24 | 1.47–5.31 | 1,2,4,5 |
49 | Q.RV-6AL | RV | AX-95162623 | C/T | 6AL | 611851405 | 3.76–7.56 | 0.18–2.61 | 4,5 |
50 | Q.RV-6AS | RV | AX-94687596 | A/G | 6AS | 959041 | 5.10–7.87 | 0.97–2.20 | 4,5 |
51 | Q.RV-6AS | RV | AX-94893701 | A/G | 6AS | 24857477 | 5.21–9.45 | 0.70–1.23 | 4,5 |
52 | Q.RV-6BL | RV | AX-94502864 | G/A | 6BL | 710324542 | 4.54–1136.81 | 0.52–5.93 | 2,4,5 |
53 | Q.RV-7AL | RV | AX-94664277 | C/T | 7AL | 689920746 | 4.61–1155.16 | 5.53–11.20 | 1,2,4,5 |
54 | Q.SRN-2DL | SRN | AX-94551988 | A/G | 2DL | 579965138 | 4.27–7.94 | 6.83–17.74 | 1,3,4,5 |
55 | Q.SRN-3BS | SRN | AX-94486290 | T/C | 3BL | 477885835 | 5.68–6.68 | 5.82–6.51 | 1,2 |
56 | Q.SRN-3DL | SRN | AX-94382595 | C/T | 3DL | 392956661 | 3.19–4.40 | 0.31–8.32 | 2,4 |
57 | Q.SRN-4DL | SRN | AX-95157799 | A/G | 4DL | 461218017 | 5.66–7.19 | 17.38–20.91 | 1,2 |
58 | Q.SRN-6AL | SRN | AX-94637211 | A/G | 6AL | 611576606 | 3.08–4.87 | 11.77–14.95 | 1,2 |
59 | Q.SRN-6AL | SRN | AX-94790960 | C/A | 6AL | 600131055 | 6.19–9.13 | 23.20–28.08 | 1,2 |
60 | Q.SDW-3DS | SDW | AX-94439998 | T/C | 3DS | 85060915 | 4.29–4.29 | 8.15–9.74 | 1,2 |
61 | Q.SDW-4AL | SDW | AX-94470023 | T/C | 4AL | 581216490 | 4.49–6.61 | 8.09–19.05 | 1,2,3,4,5 |
62 | Q.SDW-4BS | SDW | AX-95630040 | A/G | 4BS | 12893614 | 3.25–8.40 | 5.43–11.57 | 3,4,5 |
63 | Q.SDW-5BL | SDW | AX-94484139 | T/C | 5BL | 289567014 | 4.72–4.87 | 5.64–5.92 | 4,5 |
64 | Q.SDW-7AL | SDW | AX-94664277 | C/T | 7AL | 689920746 | 3.36–4.03 | 4.39–5.30 | 4,5 |
65 | Q.SDW-7BL | SDW | AX-95165787 | C/A | 7BL | 591053449 | 3.11–3.13 | 6.54–7.06 | 4,5 |
66 | Q.RDW-1BL | RDW | AX-94925225 | T/C | 1BL | 372996241 | 4.49–4.97 | 4.87–7.59 | 4,5 |
67 | Q.RDW-5AL | RDW | AX-94501549 | C/T | 5AL | 672339596 | 4.29–4.91 | 4.71–7.45 | 2,3,4 |
68 | Q.RDW-6AS | RDW | AX-94809955 | C/T | 6AS | 631698 | 4.67–5.39 | 4.37–5.67 | 2,4 |
69 | Q.RDW-7AS | RDW | AX-94386260 | G/A | 7AS | 269093921 | 3.65–4.35 | 18.35–18.60 | 1,2 |
70 | Q.SL-1AL | SL | AX-94929421 | T/C | 1AL | 550331092 | 5.63–5.66 | 5.16–5.39 | 1,2 |
71 | Q.SL-2AL | SL | AX-95076063 | T/C | 2AL | 555820355 | 3.52–4.91 | 3.68–8.24 | 1,3,5 |
72 | Q.SL-4BS | SL | AX-95012217 | C/T | 4BS | 97922535 | 4.71–6.36 | 5.06–5.74 | 1,5 |
73 | Q.SL-5BL | SL | AX-95092434 | C/G | 5BL | 579153579 | 4.16–5.20 | 5.57–8.61 | 1,2 |
74 | Q.SL-7BS | SL | AX-94876335 | G/A | 7BS | 144484919 | 4.04–5.48 | 7.23–8.27 | 1,2 |
75 | Q.RL-1DS | RL | AX-94448890 | T/C | 1DS | 10741698 | 4.02–5.52 | 3.67–7.89 | 1,2,5 |
76 | Q.RL-2BS | RL | AX-95227366 | G | 2BS | 46089220 | 3.68–5.77 | 8.59–15.76 | 1,4 |
77 | Q.RL-6BL | RL | AX-94502864 | G/A | 6BL | 710324542 | 4.63–6.06 | 4.68–9.41 | 1,2,3,4,5 |
78 | Q.RL-6BS | RL | AX-94539094 | A/C | 6BS | 8387528 | 3.52–6.77 | 2.83–17.15 | 1,2,5 |
79 | Q.RL-6BS | RL | AX-94900754 | A/G | 6BS | 157792843 | 3.27–5.44 | 5.26–9.16 | 1,3 |
80 | Q.RL-7AL | RL | AX-95241843 | G/T | 7AL | 610498024 | 6.31–6.50 | 5.55–5.97 | 1,2 |
81 | Q.RL-7BL | RL | AX-94528392 | G/A | 7BL | 675314495 | 3.21–8.52 | 15.42–30.83 | 1,5 |
82 | Q.RL-7DL | RL | AX-94861078 | A/G | 7DL | 614276051 | 3.36–5.01 | 3.12–4.24 | 3,4 |
83 | Q.RSDWR-2AL | RSDWR | AX-94430108 | C/T | 2AL | 509357786 | 5.19–14.68 | 0.55–1.38 | 2,4 |
84 | Q.RSDWR-2BL | RSDWR | AX-94856412 | C/T | 2BL | 754864363 | 4.85–103.96 | 0.58–1.95 | 4,5 |
85 | Q.RSDWR-3BS | RSDWR | AX-94691217 | A/G | 3BS | 8029967 | 8.14–83.91 | 0.02–3.22 | 2,4 |
86 | Q.SRL-5AL | SRL | AX-94748697 | A/G | 5AL | 406534846 | 3.37–6.01 | 4.81–8.10 | 2,4,5 |
87 | Q.SRL-2BL | SRL | AX-94457792 | T/C | 2BL | 576083471 | 8.12–19.40 | 64.33–31.92 | 1,2,4,5 |
S. No. | Marker | Traits | Chromosome | Position (Mb) |
---|---|---|---|---|
1 | AX-94448890 | SOLRN, RL | 1DS | 10.7417 |
2 | AX-94502864 | RLD, RV, RL | 6BL | 710.3245 |
3 | AX-94516395 | SOLRN, RLD | 3BL | 738.6992 |
4 | AX-94528392 | LRS, RL | 7BL | 675.3145 |
5 | AX-94664277 | RV, SDW | 7AL | 689.9207 |
6 | AX-94952472 | TRS, RLD | 2AS | 8.181794 |
7 | AX-95105488 | TRS, RLD, RV | 4AL | 631.9034 |
8 | AX-95119337 | TRS, RLD | 7BS | 138.8828 |
9 | AX-95123855 | FOLRN, SOLRN, LRS | 7BS | 99.63503 |
10 | AX-95227366 | RV, RL | 2BS | 46.08922 |
11 | AX-95244609 | SOLRN, LRS, AD | 6AL | 599.0352 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danakumara, T.; Kumari, J.; Singh, A.K.; Sinha, S.K.; Pradhan, A.K.; Sharma, S.; Jha, S.K.; Bansal, R.; Kumar, S.; Jha, G.K.; et al. Genetic Dissection of Seedling Root System Architectural Traits in a Diverse Panel of Hexaploid Wheat through Multi-Locus Genome-Wide Association Mapping for Improving Drought Tolerance. Int. J. Mol. Sci. 2021, 22, 7188. https://doi.org/10.3390/ijms22137188
Danakumara T, Kumari J, Singh AK, Sinha SK, Pradhan AK, Sharma S, Jha SK, Bansal R, Kumar S, Jha GK, et al. Genetic Dissection of Seedling Root System Architectural Traits in a Diverse Panel of Hexaploid Wheat through Multi-Locus Genome-Wide Association Mapping for Improving Drought Tolerance. International Journal of Molecular Sciences. 2021; 22(13):7188. https://doi.org/10.3390/ijms22137188
Chicago/Turabian StyleDanakumara, Thippeswamy, Jyoti Kumari, Amit Kumar Singh, Subodh Kumar Sinha, Anjan Kumar Pradhan, Shivani Sharma, Shailendra Kumar Jha, Ruchi Bansal, Sundeep Kumar, Girish Kumar Jha, and et al. 2021. "Genetic Dissection of Seedling Root System Architectural Traits in a Diverse Panel of Hexaploid Wheat through Multi-Locus Genome-Wide Association Mapping for Improving Drought Tolerance" International Journal of Molecular Sciences 22, no. 13: 7188. https://doi.org/10.3390/ijms22137188
APA StyleDanakumara, T., Kumari, J., Singh, A. K., Sinha, S. K., Pradhan, A. K., Sharma, S., Jha, S. K., Bansal, R., Kumar, S., Jha, G. K., Yadav, M. C., & Prasad, P. V. V. (2021). Genetic Dissection of Seedling Root System Architectural Traits in a Diverse Panel of Hexaploid Wheat through Multi-Locus Genome-Wide Association Mapping for Improving Drought Tolerance. International Journal of Molecular Sciences, 22(13), 7188. https://doi.org/10.3390/ijms22137188