Midazolam’s Effects on Delayed-Rectifier K+ Current and Intermediate-Conductance Ca2+-Activated K+ Channel in Jurkat T-lymphocytes
Abstract
:1. Introduction
2. Results
2.1. Conjugation of MDZ with Jurkat Cell
2.2. Effect of MDZ on IK(DR) Recorded from Jurkat T-lymphocytes
2.3. Kinetic Analysis of MDZ-Induced Block of IK(DR)
2.4. MDZ-Induced Effect on the Steady-State Inactivation Curve of IK(DR) Density
2.5. Inability of Flumazenil to Reverse MDZ-Induced Inhibition of IK(DR)
2.6. Inhibitory Effect of MDZ on IKCa Channels Recorded from JURKAT T-Lymphocytes
2.7. Effect of MDZ on IK(DR) in PHA-Preactivated Human T Lymphocytes
2.8. Effect of LPS Challenge on the Levels of IL-6 in JUKART Cell
3. Discussion
4. Materials and Methods
4.1. Drugs and Solutions
Midazolam
4.2. Cell Preparations
4.3. Electrophysiological Measurements
4.4. Data Recordings
4.5. Conjugation of MDZ with FIuorescein Dye for Confocal Microscopy Imaging
4.6. RNA Extraction and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)
4.7. Data Analyses
4.8. Single-Channel Analyses
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
IK(DR) | Delayed-rectifier K+ current |
MDZ | Midazolam |
IC50 | Half maximal inhibitory concentration |
IKCa | Intermediate-conductance Ca2+-activated K+ channel |
DCEBIO | 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one |
FITC | Fluorescein isothiocyanate |
PAP-1 | PAP-1 (5-(4-Phenoxybutoxy)psoralen) |
References
- Babcock, G.F.; Hernández, L.; Yadav, E.; Schwemberger, S.; Dugan, A. The Burn Wound Inflammatory Response Is Influenced by Midazolam. Inflammation 2011, 35, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Hurst, N.F.; Bibolini, M.J.; Roth, G.A. Diazepam Inhibits Proliferation of Lymph Node Cells Isolated from Rats with Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation 2015, 22, 293–302. [Google Scholar] [CrossRef]
- Gilhar, A.; Bergman, R.; Assay, B.; Ullmann, Y.; Etzioni, A. The Beneficial Effect of Blocking Kv1.3 in the Psoriasiform SCID Mouse Model. J. Investig. Dermatol. 2011, 131, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Heine, G.H.; Weindler, J.; Gabriel, H.H.; Kindermann, W.; Ruprecht, K.W. Oral premedication with low dose midazolam modifies the immunological stress reaction after the setting of retrobulbar anaesthesia. Br. J. Ophthalmol. 2003, 87, 1020–1024. [Google Scholar] [CrossRef] [PubMed]
- Massoco, C.; Palermo-Neto, J. Effects of midazolam on equine innate immune response: A flow cytometric study. Vet. Immunol. Immunopathol. 2003, 95, 11–19. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kang, J.H.; Lee, C.W.; Oh, S.H.; Ryu, J.S.; Bae, Y.S.; Kim, H.M. Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice. Mol. Cells 2013, 36, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Ohta, N.; Ohashi, Y.; Takayama, C.; Mashimo, T.; Fujino, Y. Midazolam Suppresses Maturation of Murine Dendritic Cells and Priming of Lipopolysaccharide-induced T Helper 1-type Immune Response. Anesthesiology 2011, 114, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Roquilly, A.; Josien, R.; Asehnoune, K. Midazolam impairs immune functions: It’s time to take care of dendritic cells. Anesthesiology 2011, 114, 237–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.S.; Hsu, P.C.; Huang, G.S.; Lin, T.C.; Hong, G.J.; Shih, C.M.; Li, C.Y. Midazolam attenuates adenosine diphosphate-induced P-selectin expression and platelet-leucocyte aggregation. Eur. J. Anaesthesiol. 2004, 21, 871–876. [Google Scholar] [PubMed]
- Liu, L.; You, Q.; Tu, Y.; Li, Q.; Zheng, L.; Li, X.; Gu, J.; Wang, G. Midazolam inhibits the apoptosis of astrocytes induced by oxygen glucose deprivation via targeting JAK2-STAT3 signaling pathway. Cell Physiol. Biochem. 2015, 35, 126–136. [Google Scholar] [CrossRef]
- Stevens, M.F.; Werdehausen, R.; Gaza, N.; Hermanns, H.; Kremer, D.; Bauer, I.; Kury, P.; Hollmann, M.W.; Braun, S. Midazolam activates the intrinsic pathway of apoptosis independent of benzodiazepine and death receptor signaling. Reg. Anesth. Pain Med. 2011, 36, 343–349. [Google Scholar] [CrossRef]
- Klockgether-Radke, A.P.; Pawlowski, P.; Neumann, P.; Hellige, G. Mechanisms involved in the relaxing effect of midazolam on coronary arteries. Eur. J. Anaesthesiol. 2005, 22, 135–139. [Google Scholar] [CrossRef]
- Nakamura, A.; Kawahito, S.; Kawano, T.; Nazari, H.; Takahashi, A.; Kitahata, H.; Nakaya, Y.; Oshita, S. Differen-tial effects of etomidate and midazolam on vascular adenosine triphosphate-sensitive potassium channels: Isometric tension and patch clamp studies. Anesthesiology 2007, 106, 515–522. [Google Scholar] [CrossRef]
- Okada, M.; Mizuno, W.; Nakarai, R.; Matada, T.; Yamawaki, H.; Hara, Y. Benzodiazepines Inhibit the Acetylcholine Receptor-Operated Potassium Current (IK.ACh) by Different Mechanisms in Guinea-pig Atrial Myocytes. J. Vet. Med Sci. 2012, 74, 879–884. [Google Scholar] [CrossRef] [Green Version]
- Panyi, G.; Vámosi, G.; Bacsó, Z.; Bagdány, M.; Dóczy-Bodnár, A.; Varga, Z.; Gáspár, R.; Mátyus, L.; Damjanovich, S. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc. Natl. Acad. Sci. USA 2004, 101, 1285–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholz, E.; Vonderlin, N.; Fischer, F.; Zitron, E.; Seyler, C.; Scherer, D.; Thomas, D.; Katus, H.A. Inhibition of cardiac Kv1.5 potassium current by the anesthetic midazolam: Mode of action. Drug Des. Dev. Ther. 2014, 8, 2263–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gąsiorowska, J.; Teisseyre, A.; Uryga, A.; Michalak, K. Inhibition of Kv1.3 Channels in Human Jurkat T Cells by Xanthohumol and Isoxanthohumol. J. Membr. Biol. 2015, 248, 705–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.-N.; Chen, B.-S.; Lo, Y.-C. Evidence for aconitine-induced inhibition of delayed rectifier K+ current in Jurkat T-lymphocytes. Toxicology 2011, 289, 11–18. [Google Scholar] [CrossRef]
- Gulbins, E.; Sassi, N.; Grassmè, H.; Zoratti, M.; Szabò, I. Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim. Biophys. Acta 2010, 1797, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Kahlfuss, S.; Simma, N.; Mankiewicz, J.; Bose, T.; Lowinus, T.; Klein-Hessling, S.; Sprengel, R.; Schraven, B.; Heine, M.; Bommhardt, U. Immunosuppression by N-methyl-D-aspartate receptor antagonists is mediated through inhibition of Kv1.3 and KCa3.1 channels in T cells. Mol. Cell. Biol. 2014, 34, 820–831. [Google Scholar] [CrossRef] [Green Version]
- Kazama, I. Roles of lymphocyte Kv1.3-channels in gut mucosal immune system: Novel therapeutic implications for inflammatory bowel disease. Med. Hypotheses 2015, 85, 61–63. [Google Scholar] [CrossRef]
- Hansen, L.K.; Møller, L.M.S.; Rabjerg, M.; Larsen, D.; Hansen, T.P.; Klinge, L.; Wulff, H.; Knudsen, T.; Kjeldsen, J.; Köhler, R. Expression of T-cell KV1.3 potassium channel correlates with pro-inflammatory cytokines and disease activity in ulcerative colitis. J. Crohn’s Coliti 2014, 8, 1378–1391. [Google Scholar] [CrossRef] [PubMed]
- Leanza, L.; Henry, B.; Sassi, N.; Zoratti, M.; Chandy, K.G.; Gulbins, E.; Szabò, I. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol. Med. 2012, 4, 577–593. [Google Scholar] [CrossRef]
- Panyi, G.; Bagdany, M.; Bodnar, A.; Vamosi, G.; Szentesi, G.; Jenei, A.; Matyus, L.; Varga, S.; Waldmann, T.A.; Gas-par, R.; et al. Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 mole-cules in the plasma membrane of human T lymphocytes. Proc. Natl. Acad. Sci. USA 2003, 100, 2592–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulk, E.; Ay, A.-S.; Hammadi, M.; Ouadid-Ahidouch, H.; Schelhaas, S.; Hascher, A.; Rohde, C.; Thoennissen, N.H.; Wiewrodt, R.; Schmidt, E.; et al. Epigenetic dysregulation of KCa3.1 channels induces poor prognosis in lung cancer. Int. J. Cancer 2015, 137, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-I.; Chi, C.-W.; Lui, W.-Y.; Mok, K.-T.; Wu, C.-W.; Wu, S.-N. Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells. Biochim. Biophys. Acta 1998, 1368, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Ohya, S.; Fukuyo, Y.; Kito, H.; Shibaoka, R.; Matsui, M.; Niguma, H.; Maeda, Y.; Yamamura, H.; Fujii, M.; Kimura, K.; et al. Upregulation of KCa3.1 K+ channel in mesenteric lymph node CD4+ T lymphocytes from a mouse model of dextran sodium sulfate-induced inflammatory bowel disease. Am. J. Physiol. Liver Physiol. 2014, 306, G873–G885. [Google Scholar] [CrossRef]
- Shen, A.-Y.; Tsai, J.-H.; Teng, H.-C.; Huang, M.-H.; Wu, S.-N. Inhibition of intermediate-conductance Ca2+-activated K+ channel and cytoprotective properties of 4-piperidinomethyl-2-isopropyl-5-methylphenol. J. Pharm. Pharmacol. 2010, 59, 679–685. [Google Scholar] [CrossRef]
- So, E.C.; Huang, Y.M.; Hsing, C.H.; Liao, Y.K.; Wu, S.N. Arecoline inhibits intermediate-conductance calci-um-activated potassium channels in human glioblastoma cell lines. Eur. J. Pharmacol. 2015, 758, 177–187. [Google Scholar] [CrossRef]
- Wu, S.N.; Huang, Y.M.; Liao, Y.K. Effects of ibandronate sodium, a nitrogen-containing bisphosphonate, on intermediate-conductance calcium-activated potassium channels in osteoclast precursor cells (RAW 264.7). J. Membr. Biol. 2015, 248, 103–115. [Google Scholar] [CrossRef]
- Wulff, H.; Kolski-Andreaco, A.; Sankaranarayanan, A.; Sabatier, J.M.; Shakkottai, V. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr. Med. Chem. 2007, 14, 1437–1457. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Lam, J.; Gregory, C.R.; Schrepfer, S.; Wulff, H. The Ca(2)(+)-activated K(+) channel KCa3.1 as a potential new target for the prevention of allograft vasculopathy. PLoS ONE 2013, 8, e81006. [Google Scholar]
- Koshy, S.; Wu, D.; Hu, X.; Tajhya, R.; Huq, R.; Khan, F.S.; Pennington, M.W.; Wulff, H.; Yotnda, P.; Beeton, C. Blocking KCa3.1 Channels Increases Tumor Cell Killing by a Subpopulation of Human Natural Killer Lymphocytes. PLoS ONE 2013, 8, e76740. [Google Scholar] [CrossRef]
- Chimote, A.; Hajdu, P.; Kucher, V.; Boiko, N.; Kuras, Z.; Szilagyi, O.; Yun, Y.-H.; Conforti, L. Selective Inhibition of KCa3.1 Channels Mediates Adenosine Regulation of the Motility of Human T Cells. J. Immunol. 2013, 191, 6273–6280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Yu, P.; Chen, H.; Geller, H.M. Targeted inhibition of KCa3.1 attenuates TGF-beta-induced reactive astrogliosis through the Smad2/3 signaling pathway. J. Neurochem. 2014, 130, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leanza, L.; Zoratti, M.; Gulbins, E.; Szabo, I. Induction of Apoptosis in Macrophages via Kv1.3 and Kv1.5 Potassium Channels. Curr. Med. Chem. 2012, 19, 5394–5404. [Google Scholar] [CrossRef]
- Szabó, I.; Bock, J.; Grassmé, H.; Soddemann, M.; Wilker, B.; Lang, F.; Zoratti, M.; Gulbins, E. Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc. Natl. Acad. Sci. USA 2008, 105, 14861–14866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, R.D.; Grover, V.; Goulding, J.; Godlee, A.; Gurney, S.; Snelgrove, R.; Ma, D.; Singh, S.; Maze, M.; Hussell, T. Immune cell expression of GABAA receptors and the effects of diazepam on influenza infection. J. Neuroimmunol. 2015, 282, 97–103. [Google Scholar] [CrossRef]
- Leanza, L.; Trentin, L.; Becker, K.A.; Frezzato, F.; Zoratti, M.; Semenzato, G.; Gulbins, E.; Szabo, I.L. Clofazimine, Psora-4 and PAP-1, inhibitors of the potassium channel Kv1.3, as a new and selective therapeutic strategy in chronic lymphocytic leukemia. Leukemia 2013, 27, 1782–1785. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.Y.-J.; Yao, J.F.; Brar, S.S.; Jorgensen, M.B.; Chen, W. Racial/Ethnic Differences in the Risk of Intracranial Hemorrhage Among Patients With Atrial Fibrillation. J. Am. Coll. Cardiol. 2007, 50, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.N.; So, E.C.; Liao, Y.K.; Huang, Y.M. Reversal by ranolazine of doxorubicin-induced prolongation in the inactivation of late sodium current in rat dorsal root ganglion neurons. Pain Med. 2015, 16, 1032–1034. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Park, M.-H.; Choi, S.-Y.; Jo, S.-H. Cortisone and hydrocortisone inhibit human Kv1.3 activity in a non-genomic manner. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015, 388, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Felipe, A.; Soler, C.; Comes, N. Kv1.5 in the Immune System: The Good, the Bad, or the Ugly? Front. Physiol. 2010, 1, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smaili, S.S.; Russell, J.T. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors. Cell Calcium 1999, 26, 121–130. [Google Scholar] [CrossRef] [PubMed]
- So, E.C.; Chang, Y.-T.; Hsing, C.-H.; Poon, P.W.-F.; Leu, S.-F.; Huang, B.-M. The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicol. Lett. 2010, 192, 169–178. [Google Scholar] [CrossRef]
- Miyawaki, T.; Sogawa, N.; Maeda, S.; Kohjitani, A.; Shimada, M. Effect of midazolam on interleukin-6 mRNA expression in human peripheral blood mononuclear cells in the absence of lipopolysaccharide. Cytokine 2001, 15, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Kozawa, O.; Iida, H. Midazolam suppresses interleukin-1beta-induced interleukin-6 release from rat glial cells. J. Neuroinflamm. 2011, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.N.; Son, S.C.; Lee, S.M.; Kim, C.S.; Yoo, D.G.; Lee, S.K.; Hur, G.M.; Park, J.B.; Jeon, B.H. Midazolam inhibits proinflammatory mediators in the lipopolysaccharide-activated macrophage. Anesthesiology 2006, 105, 105–110. [Google Scholar] [CrossRef]
- Takaono, M.; Yogosawa, T.; Okawa-Takatsuji, M.; Aotsuka, S. Effects of intravenous anesthetics on interleukin (IL)-6 and IL-10 production by lipopolysaccharide-stimulated mononuclear cells from healthy volunteers. Acta Anaesthesiol. Scand. 2002, 46, 176–179. [Google Scholar] [CrossRef]
- Helmy, S.A.K.; Al-Attiyah, R.J. The immunomodulatory effects of prolonged intravenous infusion of propofol versus midazolam in critically ill surgical patients. Anaesthesia 2001, 56, 4–8. [Google Scholar] [CrossRef]
- Kazama, I. Roles of lymphocyte kv1.3-channels in the pathogenesis of renal diseases and novel therapeutic implica-tions of targeting the channels. Mediat. Inflamm. 2015, 2015, 436572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.W.; Wang, Y.J.; Liu, S.I.; Lin, A.A.; Lo, Y.C.; Wu, S.N. Characterization of aconitine-induced block of delayed rectifier K+ current in differentiated NG108-15 neuronal cells. Neuropharmacology 2008, 54, 912–923. [Google Scholar] [CrossRef] [PubMed]
Primer Sequence (5′–3′) | ||
---|---|---|
Forward | Reverse | |
hIL-6 (360 bp) | TTC GGT CCA GTT GCC TCT C | TGG CAT TTG TGG TTG GGT CA |
hIL-8 (300 bp) | AAG AGA GCT CTG TCT GGA CC | GAT ATT CTC TTG GCC CTT GG |
β-actin (520 bp) | GCTGGAAGGTGGACAGCGAG | TGGCATCGTGATGGACTCCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foo, N.-P.; Liu, Y.-F.; Wu, P.-C.; Hsing, C.-H.; Huang, B.-M.; So, E.-C. Midazolam’s Effects on Delayed-Rectifier K+ Current and Intermediate-Conductance Ca2+-Activated K+ Channel in Jurkat T-lymphocytes. Int. J. Mol. Sci. 2021, 22, 7198. https://doi.org/10.3390/ijms22137198
Foo N-P, Liu Y-F, Wu P-C, Hsing C-H, Huang B-M, So E-C. Midazolam’s Effects on Delayed-Rectifier K+ Current and Intermediate-Conductance Ca2+-Activated K+ Channel in Jurkat T-lymphocytes. International Journal of Molecular Sciences. 2021; 22(13):7198. https://doi.org/10.3390/ijms22137198
Chicago/Turabian StyleFoo, Ning-Ping, Yu-Fan Liu, Ping-Ching Wu, Chung-Hsi Hsing, Bu-Miin Huang, and Edmund-Cheung So. 2021. "Midazolam’s Effects on Delayed-Rectifier K+ Current and Intermediate-Conductance Ca2+-Activated K+ Channel in Jurkat T-lymphocytes" International Journal of Molecular Sciences 22, no. 13: 7198. https://doi.org/10.3390/ijms22137198
APA StyleFoo, N. -P., Liu, Y. -F., Wu, P. -C., Hsing, C. -H., Huang, B. -M., & So, E. -C. (2021). Midazolam’s Effects on Delayed-Rectifier K+ Current and Intermediate-Conductance Ca2+-Activated K+ Channel in Jurkat T-lymphocytes. International Journal of Molecular Sciences, 22(13), 7198. https://doi.org/10.3390/ijms22137198