Pushing the Limits of Medical Management in HCM: A Review of Current Pharmacological Therapy Options
Abstract
:1. Introduction
2. Current Practice and Recent Attempts
3. Myosin Inhibitors—Biomolecular Bases
3.1. Applicability in Obstructive HCM
3.2. Applicability in Non-Obstructive HCM
4. Discussions and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marian, A.J.; Braunwald, E. Hypertrophic Cardiomyopathy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef]
- Maron, B.J. Clinical Course and Management of Hypertrophic Cardiomyopathy. N. Engl. J. Med. 2018, 379, 655–668. [Google Scholar] [CrossRef]
- Richard, P.; Charron, P.; Carrier, L.; Ledeuil, C.; Cheav, T.; Pichereau, C.; Benaiche, A.; Isnard, R.; Dubourg, O.; Burban, M.; et al. Hypertrophic Cardiomyopathy. Circulation 2003, 107, 2227–2232. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.M.; Will, M.L.; Gersh, B.J.; Kruisselbrink, T.M.; Ommen, S.R.; Ackerman, M.J. Characterization of a Phenotype-Based Genetic Test Prediction Score for Unrelated Patients With Hypertrophic Cardiomyopathy. Mayo Clin. Proc. 2014, 89, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Geske, J.B.; Ommen, S.R.; Gersh, B.J. Hypertrophic Cardiomyopathy. JACC Heart Fail. 2018, 6, 364–375. [Google Scholar] [CrossRef]
- Ho, C.Y.; Day, S.M.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Jacoby, D.; Cirino, A.L.; Fox, J.C.; Lakdawala, N.K.; Ware, J.S.; et al. Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy. Circulation 2018, 138, 1387–1398. [Google Scholar] [CrossRef]
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [CrossRef]
- Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P.; Evanovich, L.L.; Hung, J.; Joglar, J.A.; Kantor, P.; et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy. Circulation 2020, 142, 558. [Google Scholar] [CrossRef]
- Wells, S.; Rowin, E.J.; Boll, G.; Rastegar, H.; Wang, W.; Maron, M.S.; Maron, B.J. Clinical Profile of Nonresponders to Surgical Myectomy with Obstructive Hypertrophic Cardiomyopathy. Am. J. Med. 2018, 131, e235–e239. [Google Scholar] [CrossRef]
- Spoladore, R.; Maron, M.S.; D’Amato, R.; Camici, P.G.; Olivotto, I. Pharmacological treatment options for hypertrophic cardiomyopathy: High time for evidence. Eur. Heart J. 2012, 33, 1724–1733. [Google Scholar] [CrossRef] [Green Version]
- Maron, M.S.; Chan, R.H.; Kapur, N.K.; Jaffe, I.Z.; McGraw, A.P.; Kerur, R.; Maron, B.J.; Udelson, J.E. Effect of Spironolactone on Myocardial Fibrosis and Other Clinical Variables in Patients with Hypertrophic Cardiomyopathy. Am. J. Med. 2018, 131, 837–841. [Google Scholar] [CrossRef]
- Marian, A. Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet 2000, 355, 58–60. [Google Scholar] [CrossRef]
- Lim, D.-S.; Lutucuta, S.; Bachireddy, P.; Youker, K.; Evans, A.; Entman, M.; Roberts, R.; Marian, A.J. Angiotensin II Blockade Reverses Myocardial Fibrosis in a Transgenic Mouse Model of Human Hypertrophic Cardiomyopathy. Circulation 2001, 103, 789–791. [Google Scholar] [CrossRef] [Green Version]
- Shimada, Y.; Passeri, J.J.; Baggish, A.L.; O’Callaghan, C.; Lowry, P.A.; Yannekis, G.; Abbara, S.; Ghoshhajra, B.; Rothman, R.D.; Ho, C.Y.; et al. Effects of Losartan on Left Ventricular Hypertrophy and Fibrosis in Patients With Nonobstructive Hypertrophic Cardiomyopathy. JACC Heart Fail. 2013, 1, 480–487. [Google Scholar] [CrossRef]
- Axelsson, A.; Iversen, K.; Vejlstrup, N.; Ho, C.; Norsk, J.; Langhoff, L.; Ahtarovski, K.; Corell, P.; Havndrup, O.; Jensen, M.K.; et al. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: The INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2015, 3, 123–131. [Google Scholar] [CrossRef]
- Axelsson, A.; Iversen, K.; Vejlstrup, N.; Ho, C.Y.; Havndrup, O.; Kofoed, K.; Norsk, J.; Jensen, M.K.; Bundgaard, H. Functional effects of losartan in hypertrophic cardiomyopathy—A randomised clinical trial. Heart 2016, 102, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.A.; Shi, L.; Day, S.M.; Russell, M.; Zahka, K.; Lever, H.; Colan, S.D.; Margossian, R.; Hall, E.K.; Becker, J.; et al. Baseline Characteristics of the VANISH Cohort. Circ. Heart Fail. 2019, 12, 006231. [Google Scholar] [CrossRef]
- Coppini, R.; Ferrantini, C.; Yao, L.; Fan, P.; Del Lungo, M.; Stillitano, F.; Sartiani, L.; Tosi, B.; Suffredini, S.; Tesi, C.; et al. Late Sodium Current Inhibition Reverses Electromechanical Dysfunction in Human Hypertrophic Cardiomyopathy. Circulation 2013, 127, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Coppini, R.; Mazzoni, L.; Ferrantini, C.; Gentile, F.; Pioner, J.M.; Laurino, A.; Santini, L.; Bargelli, V.; Rotellini, M.; Bartolucci, G.; et al. Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2017, 10, 003565. [Google Scholar] [CrossRef] [PubMed]
- Olivotto, I.; Camici, P.G.; Merlini, P.A.; Rapezzi, C.; Patten, M.; Climent, V.; Sinagra, G.; Tomberli, B.; Marin, F.; Ehlermann, P.; et al. Efficacy of Ranolazine in Patients With Symptomatic Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2018, 11, e004124. [Google Scholar] [CrossRef]
- Olivotto, I.; Hellawell, J.L.; Farzaneh-Far, R.; Blair, C.; Coppini, R.; Myers, J.; Belardinelli, L.; Maron, M.S. Novel Approach Targeting the Complex Pathophysiology of Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2016, 9, e002764. [Google Scholar] [CrossRef] [Green Version]
- Crilley, J.G.; A Boehm, E.; Blair, E.; Rajagopalan, B.; Blamire, A.M.; Styles, P.; McKenna, W.J.; Östman-Smith, I.; Clarke, K.; Watkins, H. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 2003, 41, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Gehmlich, K.; Dodd, M.; Allwood, J.W.; Kelly, M.; Bellahcene, M.; Lad, H.V.; Stockenhuber, A.; Hooper, C.; Ashrafian, H.; Redwood, C.S.; et al. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy. Mol. BioSyst. 2014, 11, 564–573. [Google Scholar] [CrossRef]
- Abozguia, K.; Elliott, P.; McKenna, W.J.; Phan, T.T.; Nallur-Shivu, G.; Ahmed, I.; Maher, A.R.; Kaur, K.; Taylor, J.; Henning, A.; et al. Metabolic Modulator Perhexiline Corrects Energy Deficiency and Improves Exercise Capacity in Symptomatic Hypertrophic Cardiomyopathy. Circulation 2010, 122, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Coats, C.J.; Pavlou, M.; Watkinson, O.T.; Protonotarios, A.; Moss, L.; Hyland, R.; Rantell, K.; Pantazis, A.A.; Tome, M.; McKenna, W.J.; et al. Effect of Trimetazidine Dihydrochloride Therapy on Exercise Capacity in Patients With Nonobstructive Hypertrophic Cardiomyopathy. JAMA Cardiol. 2019, 4, 230–235. [Google Scholar] [CrossRef]
- Baudenbacher, F.; Schober, T.; Pinto, J.R.; Sidorov, V.Y.; Hilliard, F.; Solaro, R.J.; Potter, J.D.; Knollmann, B.C. Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J. Clin. Investig. 2008, 118, 3893–3903. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.L.; Dias, F.A.; Gaffin, R.D.; Simon, J.N.; Montminy, E.M.; Biesiadecki, B.J.; Hinken, A.C.; Warren, C.M.; Utter, M.S.; Davis, R.T.; et al. Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins. Circ. Cardiovasc. Genet. 2014, 7, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Tadano, N.; Du, C.-K.; Yumoto, F.; Morimoto, S.; Ohta, M.; Xie, M.-F.; Nagata, K.; Zhan, N.-Y.; Lu, Q.-W.; Miwa, Y.; et al. Biological actions of green tea catechins on cardiac troponin C. Br. J. Pharmacol. 2010, 161, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Warren, C.M.; Karam, C.N.; Wolska, B.M.; Kobayashi, T.; De Tombe, P.P.; Arteaga, G.M.; Bos, J.M.; Ackerman, M.J.; Solaro, R.J. Green Tea Catechin Normalizes the Enhanced Ca2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy–Associated Mutation in Human Cardiac Troponin I (K206I). Circ. Cardiovasc. Genet. 2015, 8, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, F.W.; Flenner, F.; Nasib, M.; Eschenhagen, T.; Carrier, L. Epigallocatechin-3-Gallate Accelerates Relaxation and Ca2+ Transient Decay and Desensitizes Myofilaments in Healthy and Mybpc3-Targeted Knock-in Cardiomyopathic Mice. Front. Physiol. 2016, 7, 607. [Google Scholar] [CrossRef] [Green Version]
- Zeitz, O.; Rahman, A.; Hasenfuss, G.; Janssen, P.M. Impact of β-Adrenoceptor Antagonists on Myofilament Calcium Sensitivity of Rabbit and Human Myocardium. J. Cardiovasc. Pharmacol. 2000, 36, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Stücker, S.; Kresin, N.; Carrier, L.; Friedrich, F.W. Nebivolol Desensitizes Myofilaments of a Hypertrophic Cardiomyopathy Mouse Model. Front. Physiol. 2017, 8, 558. [Google Scholar] [CrossRef] [Green Version]
- Marian, A.J.; Senthil, V.; Chen, S.N.; Lombardi, R. Antifibrotic Effects of Antioxidant N-Acetylcysteine in a Mouse Model of Human Hypertrophic Cardiomyopathy Mutation. J. Am. Coll. Cardiol. 2006, 47, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, R.; Rodriguez, G.; Chen, S.N.; Ripplinger, C.M.; Li, W.; Chen, J.; Willerson, J.T.; Betocchi, S.; Wickline, S.A.; Efimov, I.; et al. Resolution of Established Cardiac Hypertrophy and Fibrosis and Prevention of Systolic Dysfunction in a Transgenic Rabbit Model of Human Cardiomyopathy Through Thiol-Sensitive Mechanisms. Circulation 2009, 119, 1398–1407. [Google Scholar] [CrossRef]
- Wilder, T.; Ryba, D.; Wieczorek, D.F.; Wolska, B.M.; Solaro, R.J. N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy. Am. J. Physiol. Circ. Physiol. 2015, 309, H1720–H1730. [Google Scholar] [CrossRef] [Green Version]
- Marian, A.J.; Tan, Y.; Li, L.; Chang, J.T.; Syrris, P.; Hessabi, M.; Rahbar, M.H.; Willerson, J.T.; Cheong, B.Y.; Liu, C.-Y.; et al. Hypertrophy Regression With N-Acetylcysteine in Hypertrophic Cardiomyopathy (HALT-HCM). Circ. Res. 2018, 122, 1109–1118. [Google Scholar] [CrossRef]
- Wilson, I.B.; Ginsburg, S. A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. Biophys. Acta Bioenerg. 1955, 18, 168–170. [Google Scholar] [CrossRef]
- Sellers, J.R. Myosins: A diverse superfamily. Biochim. Biophys. Acta Bioenerg. 2000, 1496, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, H.L.; Houdusse, A. Structural and Functional Insights into the Myosin Motor Mechanism. Annu. Rev. Biophys. 2010, 39, 539–557. [Google Scholar] [CrossRef]
- Cheung, A.; Dantzig, J.A.; Hollingworth, S.; Baylor, S.M.; Goldman, Y.; Mitchison, T.J.; Straight, A.F. A small-molecule inhibitor of skeletal muscle myosin II. Nat. Cell Biol. 2001, 4, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, B.; Yengo, C.M.; Straight, A.F.; Mitchison, T.J.; Sweeney, H.L. Kinetic Mechanism of Blebbistatin Inhibition of Nonmuscle Myosin IIB. Biochem. 2004, 43, 14832–14839. [Google Scholar] [CrossRef]
- Kovács, M.; Tóth, J.; Hetényi, C.; Malnasi-Csizmadia, A.; Sellers, J.R. Mechanism of Blebbistatin Inhibition of Myosin II. J. Biol. Chem. 2004, 279, 35557–35563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allingham, J.S.; Smith, R.; Rayment, I. The structural basis of blebbistatin inhibition and specificity for myosin II. Nat. Struct. Mol. Biol. 2005, 12, 378–379. [Google Scholar] [CrossRef]
- Straight, A.F.; Cheung, A.; Limouze, J.; Chen, I.; Westwood, N.; Sellers, J.R.; Mitchison, T.J. Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor. Science 2003, 299, 1743–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limouze, J.; Straight, A.F.; Mitchison, T.; Sellers, J.R. Specificity of blebbistatin, an inhibitor of myosin II. J. Muscle Res. Cell Motil. 2004, 25, 337–341. [Google Scholar] [CrossRef]
- Roman, B.I.; Verhasselt, S.; Stevens, C.V. Medicinal Chemistry and Use of Myosin II Inhibitor (S)-Blebbistatin and Its Derivatives. J. Med. Chem. 2018, 61, 9410–9428. [Google Scholar] [CrossRef] [PubMed]
- Green, E.; Wakimoto, H.; Anderson, R.L.; Evanchik, M.J.; Gorham, J.M.; Harrison, B.C.; Henze, M.; Kawas, R.; Oslob, J.D.; Rodriguez, H.M.; et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 2016, 351, 617–621. [Google Scholar] [CrossRef] [Green Version]
- Kawas, R.F.; Anderson, R.L.; Ingle, S.R.B.; Song, Y.; Sran, A.S.; Rodriguez, H.M. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J. Biol. Chem. 2017, 292, 16571–16577. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.Y.; Sweitzer, N.K.; McDonough, B.; Maron, B.J.; Casey, S.A.; Seidman, J.; Seidman, C.E.; Solomon, S.D. Assessment of Diastolic Function With Doppler Tissue Imaging to Predict Genotype in Preclinical Hypertrophic Cardiomyopathy. Circulation 2002, 105, 2992–2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsey, J.; Benson, L.; Rozenblyum, E.; Friedberg, M.K.; Mertens, L. Early Changes in Apical Rotation in Genotype Positive Children with Hypertrophic Cardiomyopathy Mutations without Hypertrophic Changes on Two-Dimensional Imaging. J. Am. Soc. Echocardiogr. 2014, 27, 215–221. [Google Scholar] [CrossRef]
- Rüssel, I.K.; Brouwer, W.P.; Germans, T.; Knaapen, P.; Marcus, T.J.; Van Der Velden, J.; Götte, M.J.; Van Rossum, A.C. Increased left ventricular torsion in hypertrophic cardiomyopathy mutation carriers with normal wall thickness. J. Cardiovasc. Magn. Reson. 2011, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Stern, J.A.; Markova, S.; Ueda, Y.; Kim, J.B.; Pascoe, P.; Evanchik, M.J.; Green, E.M.; Harris, S.P. A Small Molecule Inhibitor of Sarcomere Contractility Acutely Relieves Left Ventricular Outflow Tract Obstruction in Feline Hypertrophic Cardiomyopathy. PLoS ONE 2016, 11, e0168407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitner, S.B.; Jacoby, D.; Lester, S.J.; Owens, A.; Wang, A.; Zhang, D.; Lambing, J.; Lee, J.; Semigran, M.; Sehnert, A.J. Mavacamten Treatment for Obstructive Hypertrophic Cardiomyopathy. Ann. Intern. Med. 2019, 170, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.; Olivotto, I.; Jacoby, D.; Lester, S.J.; Roe, M.; Wang, A.; Waldman, C.B.; Zhang, D.; Sehnert, A.J.; Heitner, S.B. Study Design and Rationale of EXPLORER-HCM. Circ. Heart Fail. 2020, 13, e006853. [Google Scholar] [CrossRef]
- Olivotto, I.; Oreziak, A.; Barriales-Villa, R.; Abraham, T.P.; Masri, A.; Garcia-Pavia, P.; Saberi, S.; Lakdawala, N.K.; Wheeler, M.T.; Owens, A.; et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2020, 396, 759–769. [Google Scholar] [CrossRef]
- Smith, J.R.; Layrisse, V.; Medina-Inojosa, J.R.; Berg, J.D.; Ommen, S.R.; Olson, T.P. Predictors of exercise capacity following septal myectomy in patients with hypertrophic cardiomyopathy. Eur. J. Prev. Cardiol. 2020, 27, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Saberi, S.; Cardim, N.; Yamani, M.H.; Schulz-Menger, J.; Li, W.; Florea, V.; Sehnert, A.J.; Kwong, R.Y.; Jerosch-Herold, M.; Masri, A.; et al. Mavacamten Favorably Impacts Cardiac Structure in Obstructive Hypertrophic Cardiomyopathy. Circulation 2021, 143, 606–608. [Google Scholar] [CrossRef]
- Geske, J.B.; McKie, P.M.; Ommen, S.R.; Sorajja, P. B-Type Natriuretic Peptide and Survival in Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2013, 61, 2456–2460. [Google Scholar] [CrossRef] [Green Version]
- Sascău, R.; Zota, I.M.; Stătescu, C.; Boișteanu, D.; Roca, M.; Maștaleru, A.; Constantin, M.M.L.; Vasilcu, T.F.; Gavril, R.S.; Mitu, F. Review of Echocardiographic Findings in Patients with Obstructive Sleep Apnea. Can. Respir. J. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, C.L.; Ueyama, Y.; Dale, B.; Dalton, S.; Laurence, L.; Philip, J.; Olivier, B.; Lambing, J.; Evanchik, M.J.; Green, E.M. Abstract 20593: In vivo Cardiac Effects of Mavacamten (MYK-461): Evidence for Negative Inotropy and Improved Compliance. Circulation 2017, 136 (Suppl. S1), A20593. [Google Scholar] [CrossRef]
- Anderson, R.L.; Trivedi, D.V.; Sarkar, S.S.; Henze, M.; Ma, W.; Gong, H.; Rogers, C.S.; Gorham, J.M.; Wong, F.L.; Morck, M.M.; et al. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc. Natl. Acad. Sci. USA 2018, 115, E8143–E8152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.Y.; Mealiffe, M.E.; Bach, R.G.; Bhattacharya, M.; Choudhury, L.; Edelberg, J.M.; Hegde, S.M.; Jacoby, D.; Lakdawala, N.K.; Lester, S.J.; et al. Evaluation of Mavacamten in Symptomatic Patients With Nonobstructive Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2020, 75, 2649–2660. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Sakai, C.; Harimoto, K.; Yamano, M.; Miki, S.; Kamitani, T. Usefulness of High-Sensitivity Cardiac Troponin T and Brain Natriuretic Peptide as Biomarkers of Myocardial Fibrosis in Patients with Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2013, 112, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Bostan, M.-M.; Stătescu, C.; Anghel, L.; Șerban, I.-L.; Cojocaru, E.; Sascău, R. Post-Myocardial Infarction Ventricular Remodeling Biomarkers—The Key Link between Pathophysiology and Clinic. Biomolecules 2020, 10, 1587. [Google Scholar] [CrossRef]
- Heitner, S.B.; Lester, S.; Wang, A.; Hegde, S.M.; Fang, L.; Balaratnam, G.; Sehnert, A.J.; Jacoby, D. Abstract 13962: Precision Pharmacological Treatment for Obstructive Hypertrophic Cardiomyopathy with Mavacamten: One-Year Results From PIONEER-OLE. Circulation 2019, 140 (Suppl. 1), A13962. [Google Scholar] [CrossRef]
- Cytokinetics Announces Progression of REDWOOD-HCM to Cohort 2. Available online: https://www.globenewswire.com/news-release/2020/12/09/2142115/0/en/Cytokinetics-Announces-Progression-of-REDWOOD-HCM-to-Cohort-2.html (accessed on 14 March 2021).
Study | Type of Study | Population/ Intervention | Primary Endpoint | Key Findings |
---|---|---|---|---|
PIONEER-HCM [53] | Phase II open-label study | 21 symptomatic oHCM: Cohort A: 10–20mg Mavacamten Cohort B: 2–5mg Mavacamten | Post-exercise LVOT gradient | Significant decrease of LVOT gradient (−89.5 mmHg in Cohort A and −25.0 mmHg in Cohort B) Secondary outcomes: - increase in pVO2 - well tolerated |
EXPLORER-HCM [55] | Phase III RCT | 251 symptomatic oHCM patients: Mavacamten vs. Placebo | - Increase in pVO2 with >1.5ml/kg/min and at least one NYHA class reduction Or - Increase in pVO2 of >3ml/kg/min without NYHA class worsening | Primary outcome: 37% vs. 17% of patients (Mavacamten, respectively placebo) Secondary outcomes: - greater reductions in post-exercise LVOT gradient - greater increase in pVO2 - improved symptom scores |
MAVERICK-HCM [62] | Phase II RCT | 59 symptomatic non-oHCM Mavacamten vs. Placebo | Frequency and severity of adverse events | No significant difference in the rate of serious adverse events Secondary outcomes: - important reduction of NT-proBNP and cTnI |
PIONEER-OLE [65] | Phase II open label extension study | 20 (estimated enrollment) Mavacamten as in PIONEER- HCM | Frequency and severity of adverse events up to 260 weeks | Intermediate results at 1 year: - Persistent decrease in LVOT gradient, NT-proBNP, IVS and LAVI - well tolerated |
MAVA-LTE (NCT03723655) | Phase II and III open label extension study | 310 (estimated enrollment) Mavacamten as in EXPLORER-HCM and MAVERICK-HCM | Frequency and severity of adverse events up to 252 weeks | Ongoing study |
VALOR-HCM (NCT04349072) | Phase III RCT | 100 (estimated enrollment): Mavacamten vs. Placebo | No of subjects who remain guideline eligible for SRT at Week 16 | Ongoing study |
REDWOOD-HCM (NCT04219826) | Phase II RCT | 60 (estimated enrollment) CK-3773274 | Incidence of reported adverse events | Ongoing study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stătescu, C.; Enachi, Ș.; Ureche, C.; Țăpoi, L.; Anghel, L.; Șalaru, D.; Pleșoianu, C.; Bostan, M.; Marcu, D.; Ovanez Balasanian, M.; et al. Pushing the Limits of Medical Management in HCM: A Review of Current Pharmacological Therapy Options. Int. J. Mol. Sci. 2021, 22, 7218. https://doi.org/10.3390/ijms22137218
Stătescu C, Enachi Ș, Ureche C, Țăpoi L, Anghel L, Șalaru D, Pleșoianu C, Bostan M, Marcu D, Ovanez Balasanian M, et al. Pushing the Limits of Medical Management in HCM: A Review of Current Pharmacological Therapy Options. International Journal of Molecular Sciences. 2021; 22(13):7218. https://doi.org/10.3390/ijms22137218
Chicago/Turabian StyleStătescu, Cristian, Ștefana Enachi, Carina Ureche, Laura Țăpoi, Larisa Anghel, Delia Șalaru, Carmen Pleșoianu, Mădălina Bostan, Dragoș Marcu, Mircea Ovanez Balasanian, and et al. 2021. "Pushing the Limits of Medical Management in HCM: A Review of Current Pharmacological Therapy Options" International Journal of Molecular Sciences 22, no. 13: 7218. https://doi.org/10.3390/ijms22137218
APA StyleStătescu, C., Enachi, Ș., Ureche, C., Țăpoi, L., Anghel, L., Șalaru, D., Pleșoianu, C., Bostan, M., Marcu, D., Ovanez Balasanian, M., & Sascău, R. A. (2021). Pushing the Limits of Medical Management in HCM: A Review of Current Pharmacological Therapy Options. International Journal of Molecular Sciences, 22(13), 7218. https://doi.org/10.3390/ijms22137218