Determination of Diosmin in Pharmaceutical Products with Chemically Modified Voltammetric Sensors
Abstract
:1. Introduction
2. Results and Discussions
2.1. The Voltammetric Behaviour of the Electrodes in KCl Solution
2.2. The Voltammetric Behaviour of the Electrodes in Potassium Ferrocyanide-KCl Solution
- Ipa—anodic peak current (A);
- n—number of electrons transferred in the redox process, 1 for ferrocyanide ion;
- A—electrode area (cm2);
- D—coefficient of diffusion (cm2·s−1);
- c—concentration (mol·cm−3);
- v—scan rate (V·s−1);
2.3. The Study of Voltammetric Detection of Diosmin
- Γ—surface coverage, mol·cm−2;
- ipa—the current of the peak, A;
- A—electrode surface, cm2;
- n—the number of electrons transferred during the redox processes, (two for diosmin);
- F—Faraday’s constant, 96,485 C·mol−1;
- R—universal gas constant, 8.314 J·mol−1·K−1;
- T—absolute temperature, K.
2.4. The Voltammetric Detection of Diosmin in the Pharmaceutical Product Fluxiv
2.5. The Study of Voltammetric Detection of Diosmin in the Pharmaceutical Product Fluxiv
2.6. Sensor Repeatability and Reproducibility
2.7. The Quantification of Diosmin in Pharmaceutical Products
3. Materials and Methods
3.1. Reagents and Solutions
3.2. Electrochemical Measurements
3.3. The Analysis of Pharmaceutical Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, R.; Chandradhara, D.; De Tommasi, N. Comparative Bioavailability of Two Diosmin Formulations after Oral Administration to Healthy Volunteers. Molecules 2018, 23, 2174. [Google Scholar] [CrossRef] [Green Version]
- Bozdağ, M.; Eraslan, G. The effect of diosmin against lead exposure in rats ‡. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 393, 639–649. [Google Scholar] [CrossRef]
- Kocka, A.B.; Woźniak, M.; Feldo, M.; Kocki, J.; Szewczyk, K. Diosmin—Isolation Techniques, Determination in Plant Material and Pharmaceutical Formulations, and Clinical Use. Nat. Prod. Commun. 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Mirshekar, M.A.; Fanaei, H.; Keikhaei, F.; Javan, F.S. Diosmin improved cognitive deficit and amplified brain electrical activity in the rat model of traumatic brain injury. Biomed. Pharmacother. 2017, 93, 1220–1229. [Google Scholar] [CrossRef]
- Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med. 2013, 19, 792–800. [Google Scholar] [CrossRef]
- Russo, R.; Mancinelli, A.; Ciccone, M.; Terruzzi, F.; Pisano, C.; Severino, L. Pharmacokinetic Profile of μSMIN Plus™, a new Micronized Diosmin Formulation, after Oral Administration in Rats. Nat. Prod. Commun. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Giannini, I.; Amato, A.; Basso, L.; Tricomi, N.; Marranci, M.; La Pecorella, G.; Tafuri, S.; Pennisi, D.; Altomare, D.F. Flavonoids mixture (diosmin, troxerutin, hesperidin) in the treatment of acute hemorrhoidal disease: A prospective, randomized, triple-blind, controlled trial. Tech. Coloproctol. 2015, 19, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Bush, R.; Comerota, A.; Meissner, M.; Raffetto, J.D.; Hahn, S.R.; Freeman, K. Recommendations for the medical management of chronic venous disease: The role of Micronized Purified Flavanoid Fraction (MPFF): Recommendations from the Working Group in Chronic Venous Disease (CVD) 2016. Phlebology 2017, 32, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-C.; Lin, M.H.; Cheng, J.T.; Wu, M.C. Antihyperglycaemic action of diosmin, a citrus flavonoid, is induced through endogenous β-endorphin in type I-like diabetic rats. Clin. Exp. Pharmacol. Physiol. 2017, 44, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Shabani, S.; Mirshekar, M.A. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed. Pharmacother. 2018, 108, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Cook, N. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Lewinska, A.; Siwak, J.; Rzeszutek, I.; Wnuk, M. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Toxicol. Vitr. 2015, 29, 417–425. [Google Scholar] [CrossRef]
- Lewinska, A.; Adamczyk-Grochala, J.; Kwasniewicz, E.; Deregowska, A.; Wnuk, M. Diosmin-induced senescence, apoptosis and autophagy in breast cancer cells of different p53 status and ERK activity. Toxicol. Lett. 2017, 265, 117–130. [Google Scholar] [CrossRef]
- Perumal, S.; Langeshwaran, K.; Selvaraj, J.; Ponnulakshmi, R.; Shyamaladevi, B.; Balasubramanian, M.P. Effect of diosmin on apoptotic signaling molecules in N-nitrosodiethylamine-induced hepatocellular carcinoma in experimental rats. Mol. Cell. Biochem. 2018, 449, 27–37. [Google Scholar] [CrossRef]
- Soares, J.M.; De Faria, B.M.; Ascari, L.M.; Alves-Leon, S.V.; De Souza, J.M.; Soares, A.G.; Cordeiro, Y.; Romão, L.F. Diosmin induces caspase-dependent apoptosis in human glioblastoma cells. An. Acad. Bras. Ciênc. 2019, 91, e20191031. [Google Scholar] [CrossRef]
- Sammani, M.S.; Clavijo, S.; Portugal, L.; Suárez, R.; Seddik, H.; Cerdà, V. Use of multiresponse statistical techniques to optimize the separation of diosmin, hesperidin, diosmetin and hesperitin in different pharmaceutical preparations by high performance liquid chromatography with UV-DAD. Talanta 2017, 167, 695–702. [Google Scholar] [CrossRef]
- Piponski, M.; Stoimenova, T.B.; Topkoska, M.; Stefov, S.; Piponska, M.; Serafimovska, G.T. Development and validation of a fast and simple RP-HPLC method for the determination of diosmin and hesperidin in combined tablet dosage form. Maced. J. Chem. Chem. Eng. 2018, 37. [Google Scholar] [CrossRef]
- Szymański, M.; Młynarek, D.; Szymański, A.; Matławska, I. Simultaneous Determination of Diosmin and Hesperidin in Pharmaceuticals by RPLC using Ionic Liquids as Mobile Phase Modifiers. Iran. J. Pharm. Res. IJPR 2016, 15, 141–148. [Google Scholar] [PubMed]
- Adouani, I.; Du, M.; Hang, T.-J. Identification and Determination of Related Substances in Diosmin Bulk Drug and Pharmaceutical Formulations by HPLC and HPLC–MS. Chromatographia 2013, 76, 499–508. [Google Scholar] [CrossRef]
- Shawky, E. Development and validation of an HPTLC method for the simultaneous determination of diosmin and hesperidin in different citrus fruit extracts and pharmaceutical formulations. J. Planar Chromatogr. Mod. TLC 2012, 25, 138–144. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alam, P.; Anwer, K.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Shakeel, F. A Green RP-HPTLC-Densitometry Method for the Determination of Diosmin in Pharmaceutical Formulations. Processes 2020, 8, 817. [Google Scholar] [CrossRef]
- Chang, C.; Hsiu, S.; Wu, P.; Kuo, S.; Chao, P. HPLC assays of naringin and hesperidin in Chinese herbs and serum. J. Food Drug Anal. 1997, 5, 8. [Google Scholar] [CrossRef]
- Cova, D.; De Angelis, L.; Giavarini, F.; Palladini, G.; Perego, R. Pharmacokinetics and metabolism of oral diosmin in healthy volunteers. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992, 30, 29–33. [Google Scholar]
- El-Shafae, A.M.; El-Domiaty, M.M. Improved LC methods for the determination of diosmin and/or hesperidin in plant extracts and pharmaceutical formulations. J. Pharm. Biomed. Anal. 2001, 26, 539–545. [Google Scholar] [CrossRef]
- Moldovan, Z.; Aboul-Enein, H.Y. A Sensitive Spectrophotometric Method for Determination of Diosmin Using Sodium Nitroprusside as a Chromogenic Reagent. Instrum. Sci. Technol. 2011, 39, 135–148. [Google Scholar] [CrossRef]
- Srilatha, D.; Nasare, M.; Nagasandhya, B.; Prasad, V.; Diwan, P.V. Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Hesperidin and Diosmin in the Pharmaceutical Dosage Form. ISRN Spectrosc. 2013, 2013, 534830. [Google Scholar] [CrossRef] [Green Version]
- Mir, S.A.; Ahangar, A.A.; Bhat, A.S. A new, simple colorimetric method for assaying diosmin, and flavonoids in daflon tablets and orange peel extracts. Int. J. PharmTech Res. 2013, 5, 341–348. [Google Scholar]
- Mohamed, D.; Tawakkol, S.M. Fluorimetric determination of diosmin and hesperidin in combined dosage forms and in plasma through complex formation with terbium. Bull. Fac. Pharmacy Cairo Univ. 2013, 51, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Bunaciu, A.A.; Udristioiu, G.E.; Ruta, L.L.; Fleschin, S.; Aboul-Enein, H.Y. Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry. Saudi Pharm. J. 2009, 17, 303–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Shahawi, M.S.; Bashammakh, A.S.; El-Mogy, T. Determination of Trace Levels of Diosmin in a Pharmaceutical Preparation by Adsorptive Stripping Voltammetry at a Glassy Carbon Electrode. Anal. Sci. 2006, 22, 1351–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, V.; Mikelova, R.; Hubalek, J.; Hanustiak, P.; Beklova, M.; Hodek, P.; Horna, A.; Trnkova, L.; Stiborova, M.; Zeman, L.; et al. Utilizing of Square Wave Voltammetry to Detect Flavonoids in the Presence of Human Urine. Sensors 2007, 7, 2402–2418. [Google Scholar] [CrossRef] [Green Version]
- Hanuštiak, P.; Mikelová, R.; Potěšil, D.; Hodek, P.; Stiborová, M.; Kizek, R. Electrochemical Behaviour of Flavonoids on a Surface of a Carbon Paste Electrode. Biomed Pap. 2005, 149, 44–47. [Google Scholar]
- Li, H.; Liu, Y.; Wang, L.; Sheng, K.; Zou, L.; Ye, B. Electrochemical behavior of Diosmin and its sensitive determination on ZrO2-NPs-coated poly(diallyldimethylammonium chloride)-functionalized graphene modified electrode. Microchem. J. 2018, 143, 430–440. [Google Scholar] [CrossRef]
- Teradal, N.L.; Satpati, A.K.; Seetharamappa, J. Unzipped carbon nanotubes: Analytical and binding applications of semisynthetic phlebotropic flavonoid, diosmin. RSC Adv. 2015, 5, 55550–55560. [Google Scholar] [CrossRef]
- David, I.; Oancea, A.-G.; Buleandră, M.; Popa, D.; Iorgulescu, E.; Ciobanu, A. Disposable Pencil Graphite Electrode for Diosmin Voltammetric Analysis. Micromachines 2021, 12, 351. [Google Scholar] [CrossRef]
- Karyakin, A. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis 2001, 13, 813–819. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. A modified nanostructured graphene-gold nanoparticle carbon screen-printed electrode for the sensitive voltammetric detection of rutin. Measurement 2018, 114, 37–43. [Google Scholar] [CrossRef]
- Gewirth, A.A. Inorganic Electrochemistry: Theory, Practice and Application by Piero Zanello (University of Siena, Italy). Royal Society of Chemistry: Cambridge. 2003. xiv + 616 pp. $199.00. ISBN 0-85404-661-5. J. Am. Chem. Soc. 2004, 126, 4743–4744. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Voltammetric determination of melatonin using a graphene-based sensor in pharmaceutical products. Int. J. Nanomed. 2016, 11, 1859–1866. [Google Scholar] [CrossRef] [Green Version]
- Bonacin, J.A.; Dos Santos, P.L.; Katic, V.; Foster, C.W.; Banks, C.E. Use of Screen-printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine. Electroanalysis 2018, 30, 170–179. [Google Scholar] [CrossRef]
- Díaz, P.; González, Z.; Santamaría, R.; Granda, M.; Menéndez, R.; Blanco, C. Enhancing energy density of carbon-based supercapacitors using Prussian Blue modified positive electrodes. Electrochimica Acta 2016, 212, 848–855. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Li, W.; Chen, K.; Nie, L.; Yao, S. Improved electrochemical properties of Prussian blue by multi-walled carbon nanotubes. J. Electroanal. Chem. 2007, 603, 59–66. [Google Scholar] [CrossRef]
- Apetrei, C.; Rodriguez-Mendez, M.L.; De Saja, J. Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds. Electrochim. Acta 2011, 56, 8919–8925. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors. Chemosensors 2020, 8, 113. [Google Scholar] [CrossRef]
- Brubaker, J.P. A Diffusion Model for Cyclic Voltammetry with Nanostructured Electrode Surfaces. Master’s Thesis, University of Dayton, Dayton, OH, USA, 2014. [Google Scholar]
- Karim-Nezhad, G.; Hasanzadeh, M.; Saghatforoush, L.; Shadjou, N.; Earshad, S.; Khalilzadeh, B. Kinetic study of electrocatalytic oxidation of carbohydrates on cobalt hydroxide modified glassy carbon electrode. J. Braz. Chem. Soc. 2009, 20, 141–151. [Google Scholar] [CrossRef]
- Şengül, Ümit Comparing determination methods of detection and quantification limits for aflatoxin analysis in hazelnut. J. Food Drug Anal. 2016, 24, 56–62. [CrossRef] [PubMed] [Green Version]
- Mallah, M.A.; Sherazi, S.T.H.; Bhanger, M.I.; Mahesar, S.A.; Bajeer, M.A. A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Fale, P.; Altharawi, A.; Chan, K.A. In situ Fourier transform infrared analysis of live cells’ response to doxorubicin. Biochim. Biophys. Acta (BBA) Bioenerg. 2015, 1853, 2640–2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.scbt.com/p/diosmin-520-27-4 (accessed on 11 June 2021).
Sensor | Detection Technique | Linear Range | LOD | Reference |
---|---|---|---|---|
Glassy carbon electrode | ASV | 5.0 × 10−8–9.0 × 10−6 M | 3.5 × 10−8 M | [30] |
Carbon paste electrode | SWV | 12.5–200 µM | 2.663 × 10−6 M | [31] |
Carbon paste electrode | SWV | − | 2663 nM | [32] |
ZrO2-NPs-coated poly(diallyldimethylammonium chloride)-functionalized graphene modified electrode | DPV | 5 × 10−9–2 × 10−6 M | 2 × 10−9 M | [33] |
GONRs prepared by unzipping of multiwalled carbon nanotubes | DPV | 51.01–39.21 μM | 0.015 μM | [34] |
SWV | 25–3.48 μM | 0.049 μM | ||
Pencil Graphite Electrode | DPV | 1.00 × 10−6–1.00 × 10−5 M | 2.76 × 10−7 M | [35] |
AdSDPV | 1.00 × 10−7–2.50 × 10−6 M | 7.42 × 10−8 M |
Sensor | Epa (V) | Epc (V) | E1/2 (V) | ΔE (V) | Ipa (µA) | Ipc (µA) | Ipc/Ipa |
---|---|---|---|---|---|---|---|
SPCE | 0.397 | −0.059 | 0.228 | 0.456 | 25.901 | −15.971 | 0.616 |
PB/SPCE | 0.245 | 0.025 | 0.110 | 0.220 | 24.422 | −38.93 | 1.592 |
0.451 | - | - | - | 30.112 | - | - |
Sensor | Equation | R2 | Active Area (cm2) | Roughness Coefficient |
---|---|---|---|---|
SPCE | Ipa = 2.2839 v1/2 + 1.8628 | 0.9978 | 0.315 | 2.52 |
PB/SPCE | Ipa = 3.3957 v1/2 − 8.6513 | 0.9988 | 0.469 | 3.75 |
Electrode | Epa (V) | Epc (V) | E1/2 (V) | Ipa (µA) | Ipc (µA) | Ipc/Ipa |
---|---|---|---|---|---|---|
SPCE | 0.245 | 0.141 | 0.193 | 2.897 | −2.490 | 0.859 |
PB/SPCE | 0.239 | 0.119 | 0.179 | 19.835 | −40.358 | 2.034 |
Pharmaceutical Product | Diosmin Quantity/mg per Tablet | ||
---|---|---|---|
Sensor Method | FTIR Method | Product Label | |
Detralex | 454 ± 2 | 458 ± 5 | 450 |
Fluxiv | 183 ± 1 | 184 ± 2 | 180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunache, R.O.; Apetrei, C. Determination of Diosmin in Pharmaceutical Products with Chemically Modified Voltammetric Sensors. Int. J. Mol. Sci. 2021, 22, 7315. https://doi.org/10.3390/ijms22147315
Gunache RO, Apetrei C. Determination of Diosmin in Pharmaceutical Products with Chemically Modified Voltammetric Sensors. International Journal of Molecular Sciences. 2021; 22(14):7315. https://doi.org/10.3390/ijms22147315
Chicago/Turabian StyleGunache (Roșca), Ramona Oana, and Constantin Apetrei. 2021. "Determination of Diosmin in Pharmaceutical Products with Chemically Modified Voltammetric Sensors" International Journal of Molecular Sciences 22, no. 14: 7315. https://doi.org/10.3390/ijms22147315
APA StyleGunache, R. O., & Apetrei, C. (2021). Determination of Diosmin in Pharmaceutical Products with Chemically Modified Voltammetric Sensors. International Journal of Molecular Sciences, 22(14), 7315. https://doi.org/10.3390/ijms22147315