Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp.
Abstract
:1. Introduction
2. Results
2.1. General Genome Features of Sphingobacterium sp. (S2), P. aeruginosa (S3) and Geobacillus sp. (EC-3)
2.2. Genetic Relatedness Based on ANI
2.3. MAUVE and MeDuSa Alignments
2.4. Genetic Systems and Metabolism
2.5. Xenobiotic Biodegradation Metabolism
2.6. Lactate Metabolism
2.7. Genetic Determinants for Biofilm Formation and Regulation
2.8. Enzymes
3. Discussion
4. Materials and Methods
4.1. Strains and Media
4.2. DNA Extraction
4.3. Genome Sequencing
4.4. Sequence Assembly, Annotation, and Analysis
4.5. Average Nucleotide Identity (ANI) for Species Delineation
4.6. Comparative Alignments Using MeDuSa and MAUVE
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorgan, J.R.; Lehermeier, H.J.; Palade, L.I.; Cicero, J. Macromolecular symposia. In Polylactides: Properties and Prospects of an Environmentally Benign Plastic from Renewable Resources; Wiley Online Library: Hackensack, NJ, USA, 2001; pp. 55–66. [Google Scholar]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Ren, Y.; Wang, X. New advances in the biodegradation of Poly (lactic) acid. Int. Biodeterior. Biodegrad. 2017, 117, 215–223. [Google Scholar] [CrossRef]
- Copinet, A.; Legin-Copinet, E.; Erre, D. Compostability of co-extruded starch/poly (lactic acid) polymeric material degradation in an activated inert solid medium. Materials 2009, 2, 749–764. [Google Scholar] [CrossRef] [Green Version]
- Jarerat, A.; Pranamuda, H.; Tokiwa, Y. Poly (l-lactide)-degrading activity in various actinomycetes. Macromol. Biosci. 2002, 2, 420–428. [Google Scholar] [CrossRef]
- Jarerat, A.; Tokiwa, Y. Degradation of Poly (l-lactide) by a Fungus. Macromol. Biosci. 2001, 1, 136–140. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Masaki, K.; Kamini, N.R.; Ikeda, H.; Iefuji, H. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl. Environ. Microbiol. 2005, 71, 7548–7550. [Google Scholar] [CrossRef] [Green Version]
- Saadi, Z.; Rasmont, A.; Cesar, G.; Bewa, H.; Benguigui, L. Fungal degradation of poly (l-lactide) in soil and in compost. J. Polym. Environ. 2012, 20, 273–282. [Google Scholar] [CrossRef]
- Watanabe, M.; Kawai, F.; Tsuboi, S.; Nakatsu, S.; Ohara, H. Study on enzymatic hydrolysis of polylactic acid by endogenous depolymerization model. Macromol. Theory Simul. 2007, 16, 619–626. [Google Scholar] [CrossRef]
- Satti, S.M.; Shah, A.A.; Auras, R.; Marsh, T.L. Isolation and characterization of bacteria capable of degrading poly (lactic acid) at ambient temperature. Polym. Degrad. Stab. 2017, 144, 392–400. [Google Scholar] [CrossRef]
- Satti, S.M.; Shah, A.A.; Marsh, T.L.; Auras, R. Biodegradation of Poly(lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation. J. Polym. Environ. 2018, 26, 3848–3857. [Google Scholar] [CrossRef]
- Sreenivas, A.; Reddy, G.S.; Shivaji, S. Draft genome sequence of a psychrophilic bacterium, Sphingomonas antarcticum, isolated from the soils of Schirmacher oasis, Antarctica. Genome Announc. 2014, 2, e00696-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabuuchi, E.; Kaneko, T.; Yano, I.; Moss, C.W.; Miyoshi, N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int. J. Syst. Evol. Microbiol. 1983, 33, 580–598. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xiao, T.; Kuang, H.; Lan, X.; Tudahong, M.; Osman, G.; Fang, C.; Rahman, E. Sphingobacterium shayense sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 2010, 60, 2377–2381. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liu, H.; Zhang, C.-X.; Yang, S.-Y.; Liu, X.-H.; Zhang, K.-Y.; Lai, R. Sphingobacterium siyangense sp. nov., isolated from farm soil. Int. J. Syst. Evol. Microbiol. 2008, 58, 1458–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Ehsan, M.; Sin, Y.; Paek, J.; Khalid, N.; Hayat, R.; Chang, Y.H. Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. Antonie Van Leeuwenhoek 2014, 105, 325–333. [Google Scholar] [CrossRef]
- Abraham, J.; Silambarasan, S. Biodegradation of chlorpyrifos and its hydrolyzing metabolite 3,5,6-trichloro-2-pyridinol by Sphingobacterium sp. JAS3. Process. Biochem. 2013, 48, 1559–1564. [Google Scholar] [CrossRef]
- Haiyan, R.; Shulan, J.; ud din Ahmad, N.; Dao, W.; Chengwu, C. Degradation characteristics and metabolic pathway of 17α-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere 2007, 66, 340–346. [Google Scholar] [CrossRef]
- Noparat, P.; Maneerat, S.; Saimmai, A. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil. Appl. Biochem. Biotechnol. 2014, 172, 3949–3963. [Google Scholar] [CrossRef]
- Campa, M.; Bendinelli, M.; Friedman, H. Pseudomonas aeruginosa as an Opportunistic Pathogen; Plenum Press: New York, NY, USA, 1993. [Google Scholar]
- Govan, J.R.; Deretic, V. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 1996, 60, 539–574. [Google Scholar] [CrossRef] [PubMed]
- Bodey, G.P.; Bolivar, R.; Fainstein, V.; Jadeja, L. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 1983, 5, 279–313. [Google Scholar] [CrossRef]
- Kung, V.L.; Ozer, E.A.; Hauser, A.R. The accessory genome of Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 2010, 74, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Baruah, R.; Roy, A.S.; Singh, A.K.; Boruah, H.P.D.; Kalita, J.; Bora, T.C. Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics 2015, 105, 182–190. [Google Scholar] [CrossRef]
- Das, N.; Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011, 2011, 13. [Google Scholar] [CrossRef] [Green Version]
- Howard, G.T. Biodegradation of polyurethane: A review. Int. Biodeterior. Biodegrad. 2002, 49, 245–252. [Google Scholar] [CrossRef]
- Kahraman, H.; Geckil, H. Degradation of benzene, toluene and xylene by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene. Eng. Life Sci. 2005, 5, 363–368. [Google Scholar] [CrossRef]
- Nachiyar, C.V.; Rajkumar, G.S. Degradation of a tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2003, 19, 609–614. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Auras, R.; Selke, S.; Rubino, M.; Marsh, T. Enhancing the biodegradation rate of poly (lactic acid) films and PLA bio-nanocomposites in simulated composting through bioaugmentation. Polym. Degrad. Stab. 2018, 154, 46–54. [Google Scholar] [CrossRef]
- Hussein, A.H.; Lisowska, B.K.; Leak, D.J. The genus Geobacillus and their biotechnological potential. Adv. Appl. Microbiol. 2015, 92, 1–48. [Google Scholar] [PubMed] [Green Version]
- Margaryan, A.; Shahinyan, G.; Hovhannisyan, P.; Panosyan, H.; Birkeland, N.-K.; Trchounian, A. Geobacillus and Anoxybacillus spp. from terrestrial geothermal springs worldwide: Diversity and biotechnological applications. In Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 119–166. [Google Scholar]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef]
- Qin, Q.L.; Xie, B.B.; Yu, Y.; Shu, Y.L.; Rong, J.C.; Zhang, Y.J.; Zhao, D.L.; Chen, X.L.; Zhang, X.Y.; Chen, B. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation. Environ. Microbiol. 2014, 16, 1642–1653. [Google Scholar] [CrossRef]
- Rodriguez-R, L.M.; Castro, J.C.; Kyrpides, N.C.; Cole, J.R.; Tiedje, J.M.; Konstantinidis, K.T. How much do rRNA gene surveys underestimate extant bacterial diversity? Appl. Environ. Microbiol. 2018, 84, e00014-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freney, J.; Hansen, W.; Ploton, C.; Meugnier, H.; Madier, S.; Bornstein, N.; Fleurette, J. Septicemia caused by Sphingobacterium multivorum. J. Clin. Microbiol. 1987, 25, 1126–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambiase, A.; Rossano, F.; Piazza, O.; Del Pezzo, M.; Catania, M.R.; Tufano, R. Typing of Pseudomonas aeruginosa isolated from patients with VAP in an intensive care unit. New Microbiol. 2009, 32, 277. [Google Scholar]
- Sakaff, M.K.L.M.; Rahman, A.Y.A.; Saito, J.A.; Hou, S.; Alam, M. Complete genome sequence of the thermophilic bacterium Geobacillus thermoleovorans CCB_US3_UF5. Am. Soc. Microbiol. 2012, 194. [Google Scholar] [CrossRef] [Green Version]
- Bosi, E.; Donati, B.; Galardini, M.; Brunetti, S.; Sagot, M.-F.; Lió, P.; Crescenzi, P.; Fani, R.; Fondi, M. MeDuSa: A multi-draft based scaffolder. Bioinformatics 2015, 31, 2443–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darling, A.E.; Mau, B.; Perna, N.T. ProgressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef] [Green Version]
- Oztug, M.; Cebeci, A.; Mumcu, H.; Akgoz, M.; Karaguler, N.G. Whole-Genome Sequence of Geobacillus thermoleovorans ARTRW1, Isolated from Armutlu Geothermal Spring, Turkey. Microbiol. Resour. Announc. 2020, 9, e00269-20. [Google Scholar] [CrossRef]
- Naka, T.; Fujiwara, N.; Yano, I.; Maeda, S.; Doe, M.; Minamino, M.; Ikeda, N.; Kato, Y.; Watabe, K.; Kumazawa, Y. Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2003, 1635, 83–92. [Google Scholar] [CrossRef]
- Sagripanti, J.-L.; Bonifacino, A. Resistance of Pseudomonas aeruginosa to liquid disinfectants on contaminated surfaces before formation of biofilms. J. AOAC Int. 2000, 83, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Banat, I.M.; Marchant, R. Geobacillus activities in soil and oil contamination remediation. In Endospore-Forming Soil Bacteria; Springer: Berlin/Heidelberg, Germany, 2011; pp. 259–270. [Google Scholar]
- Giedraityte, G.; Kalėdienė, L. Catechol 1, 2-dioxygenase from α-naphthol degrading thermophilic Geobacillus sp. strain: Purification and properties. Cent. Eur. J. Biol. 2009, 4, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Leja, K.; Lewandowicz, G. Polymer biodegradation and biodegradable polymers-a review. Pol. J. Environ. Stud. 2010, 19, 255–266. [Google Scholar]
- Sugiura, W.; Yoda, T.; Matsuba, T.; Tanaka, Y.; Suzuki, Y. Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Biosci. Biotechnol. Biochem. 2006, 70, 1655–1665. [Google Scholar] [CrossRef] [Green Version]
- Carmona, M.; Zamarro, M.T.; Blázquez, B.; Durante-Rodríguez, G.; Juárez, J.F.; Valderrama, J.A.; Barragán, M.J.; García, J.L.; Díaz, E. Anaerobic catabolism of aromatic compounds: A genetic and genomic view. Microbiol. Mol. Biol. Rev. 2009, 73, 71–133. [Google Scholar] [CrossRef] [Green Version]
- Eio, E.J.; Kawai, M.; Tsuchiya, K.; Yamamoto, S.; Toda, T. Biodegradation of bisphenol A by bacterial consortia. Int. Biodeterior. Biodegrad. 2014, 96, 166–173. [Google Scholar] [CrossRef]
- Erwin, A.; Gotschlich, E. Oxidation of D-lactate and L-lactate by Neisseria meningitidis: Purification and cloning of meningococcal D-lactate dehydrogenase. J. Bacteriol. 1993, 175, 6382–6391. [Google Scholar] [CrossRef] [Green Version]
- Garvie, E.I. Bacterial lactate dehydrogenases. Microbiol. Rev. 1980, 44, 106. [Google Scholar] [CrossRef] [PubMed]
- Gibello, A.; Collins, M.; Dominguez, L.; Fernandez-Garayzabal, J.; Richardson, P. Cloning and analysis of the L-lactate utilization genes from Streptococcus iniae. Appl. Environ. Microbiol. 1999, 65, 4346–4350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, T.; Gao, C.; Ma, C.; Xu, P. Microbial lactate utilization: Enzymes, pathogenesis, and regulation. Trends Microbiol. 2014, 22, 589–599. [Google Scholar] [CrossRef]
- Ma, C.; Gao, C.; Qiu, J.; Hao, J.; Liu, W.; Wang, A.; Zhang, Y.; Wang, M.; Xu, P. Membrane-bound l-and d-lactate dehydrogenase activities of a newly isolated Pseudomonas stutzeri strain. Appl. Microbiol. Biotechnol. 2007, 77, 91–98. [Google Scholar] [CrossRef]
- Núñez, M.A.F.; Kwon, O.; Wilson, T.H.; Aguilar, J.; Baldoma, L.; Lin, E.C. Transport of l-lactate, d-lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli. Biochem. Biophys. Res. Commun. 2002, 290, 824–829. [Google Scholar] [CrossRef]
- Brown, P.; Tata, R. Glycollate inhibition of growth of Pseudomonas aeruginosa on lactate medium. Microbiology 1987, 133, 1521–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Hu, C.; Zheng, Z.; Ma, C.; Jiang, T.; Dou, P.; Zhang, W.; Che, B.; Wang, Y.; Lv, M. Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. J. Bacteriol. 2012, 194, 2687–2692. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R. Metabolism of D-and L-lactate by Pseudomonas putida. Aust. J. Biol. Sci. 1977, 30, 553–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Yang, L.-L.; Xu, C.-K.; Xi, J.-Q.; Yang, F.-X.; Zhou, F.; Zhou, Y.; Mo, M.-H.; Li, W.-J. Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int. J. Syst. Evol. Microbiol. 2012, 62, 1809–1813. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, K.K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 2004, 236, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.J.; Ceri, H.; Turner, R.J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 2007, 5, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Paul, A. Microbial extracellular polymeric substances: Central elements in heavy metal bioremediation. Indian J. Microbiol. 2008, 48, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, H.R.; Das, S. Bioremediation potential of mercury by Bacillus species isolated from marine environment and wastes of steel industry. Bioremediat. J. 2014, 18, 204–212. [Google Scholar] [CrossRef]
- Decho, A.W. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 2000, 20, 1257–1273. [Google Scholar] [CrossRef]
- Mangwani, N.; Shukla, S.; Kumari, S.; Rao, T.; Das, S. Characterization of Stenotrophomonas acidaminiphila NCW-702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons. J. Appl. Microbiol. 2014, 117, 1012–1024. [Google Scholar] [CrossRef]
- Shimada, K.; Itoh, Y.; Washio, K.; Morikawa, M. Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms. Chemosphere 2012, 87, 226–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Paul, D.; Jain, R.K. Biofilms: Implications in bioremediation. Trends Microbiol. 2006, 14, 389–397. [Google Scholar] [CrossRef]
- Barkay, T.; Schaefer, J. Metal and radionuclide bioremediation: Issues, considerations and potentials. Curr. Opin. Microbiol. 2001, 4, 318–323. [Google Scholar] [CrossRef]
- Kyaw, B.M.; Champakalakshmi, R.; Sakharkar, M.K.; Lim, C.S.; Sakharkar, K.R. Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J. Microbiol. 2012, 52, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Ryder, C.; Byrd, M.; Wozniak, D.J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr. Opin. Microbiol. 2007, 10, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Richert, A.; Walczak, M.; Brzezinska, M.S. The influence of modified polyhexamethylene guanidine PHMG on the biodegradation of polylactide. Int. Biodeterior. Biodegrad. 2013, 84, 97–103. [Google Scholar] [CrossRef]
- Walczak, M.; Brzezinska, M.S.; Sionkowska, A.; Michalska, M.; Jankiewicz, U.; Deja-Sikora, E. Biofilm formation on the surface of polylactide during its biodegradation in different environments. Colloids Surf. B Biointerfaces 2015, 136, 340–345. [Google Scholar] [CrossRef]
- Ghafoor, A.; Hay, I.D.; Rehm, B.H. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl. Environ. Microbiol. 2011, 77, 5238–5246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 2003, 57, 677–701. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Conover, M.; Lu, H.; Parsek, M.R.; Bayles, K.; Wozniak, D.J. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009, 5, e1000354. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Jackson, K.D.; Landry, R.M.; Parsek, M.R.; Wozniak, D.J. Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J. Bacteriol. 2006, 188, 8213–8221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Lu, H.; Sprinkle, A.; Parsek, M.R.; Wozniak, D.J. Pseudomonas aeruginosa Psl is a galactose-and mannose-rich exopolysaccharide. J. Bacteriol. 2007, 189, 8353–8356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Hu, Y.; Liu, Y.; Zhang, J.; Ulstrup, J.; Molin, S. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ. Microbiol. 2011, 13, 1705–1717. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, L.Z. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2013, 14, 20983–21005. [Google Scholar] [CrossRef]
- Friedman, L.; Kolter, R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 2004, 186, 4457–4465. [Google Scholar] [CrossRef] [Green Version]
- Friedman, L.; Kolter, R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 2004, 51, 675–690. [Google Scholar] [CrossRef]
- Sutherland, I.W. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology 2001, 147, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteley, M.; Bangera, M.G.; Bumgarner, R.E.; Parsek, M.R.; Teitzel, G.M.; Lory, S.; Greenberg, E. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001, 413, 860–864. [Google Scholar] [CrossRef]
- Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 2009, 7, 263–273. [Google Scholar] [CrossRef]
- Wu, Y.; Arumugam, K.; Tay, M.Q.X.; Seshan, H.; Mohanty, A.; Cao, B. Comparative genome analysis reveals genetic adaptation to versatile environmental conditions and importance of biofilm lifestyle in Comamonas testosteroni. Appl. Microbiol. Biotechnol. 2015, 99, 3519–3532. [Google Scholar] [CrossRef]
- Fuqua, C.; Winans, S.C.; Greenberg, E.P. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 1996, 50, 727–751. [Google Scholar] [CrossRef] [PubMed]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, M.; Greenberg, E.P. A network of networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 2006, 296, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Venturi, V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 2006, 30, 274–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carabetta, V.J.; Tanner, A.W.; Greco, T.M.; Defrancesco, M.; Cristea, I.M.; Dubnau, D. A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Mol. Microbiol. 2013, 88, 283–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoya, S.; Asai, K.; Ogasawara, N.; Takeuchi, M.; Sato, T. Mutation in yaaT leads to significant inhibition of phosphorelay during sporulation in Bacillus subtilis. J. Bacteriol. 2002, 184, 5545–5553. [Google Scholar] [CrossRef] [Green Version]
- Levipan, H.A.; Avendaño-Herrera, R. Different phenotypes of mature biofilm in Flavobacterium psychrophilum share a potential for virulence that differs from planktonic state. Front. Cell. Infect. Microbiol. 2017, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Somerton, B.; Flint, S.; Palmer, J.; Brooks, J.; Lindsay, D. Preconditioning with cations increases the attachment of Anoxybacillus flavithermus and Geobacillus species to stainless steel. Appl. Environ. Microbiol. 2013, 79, 4186–4190. [Google Scholar] [CrossRef]
- Zhao, Y.; Caspers, M.P.; Metselaar, K.I.; de Boer, P.; Roeselers, G.; Moezelaar, R.; Groot, M.N.; Montijn, R.C.; Abee, T.; Kort, R. Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers. Appl. Environ. Microbiol. 2013, 79, 5652–5660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor, H.; Satti, S.M.; ud Din, S.; Farman, M.; Hasan, F.; Khan, S.; Badshah, M.; Shah, A.A. Insight on esterase from Pseudomonas aeruginosa strain S3 that depolymerize poly (lactic acid) (PLA) at ambient temperature. Polym. Degrad. Stab. 2020, 174, 109096. [Google Scholar] [CrossRef]
- Satti, S.M.; Abbasi, A.M.; Marsh, T.L.; Auras, R.; Hasan, F.; Badshah, M.; Farman, M.; Shah, A.A. Statistical optimization of lipase production from Sphingobacterium sp. strain S2 and evaluation of enzymatic depolymerization of poly (lactic acid) at mesophilic temperature. Polym. Degrad. Stab. 2019, 160, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Davlieva, M.; Reyes, J.; Panesso, D.; Arias, C.A.; Shamoo, Y. A novel phosphodiesterase of the GdpP family modulates cyclic di-AMP levels in response to cell membrane stress in daptomycin-resistant enterococci. Antimicrob. Agents Chemother. 2017, 61, e01422-16. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.-D. Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. Int. Biodeterior. Biodegrad. 2003, 52, 69–91. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Albertsson, A.-C. The shape of the biodegradation curve for low and high density polyethenes in prolonged series of experiments. Eur. Polym. J. 1980, 16, 623–630. [Google Scholar] [CrossRef]
- Albertsson, A.C.; Barenstedt, C.; Karlsson, S. Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym. 1994, 45, 97–103. [Google Scholar] [CrossRef]
- Muenmee, S.; Chiemchaisri, W.; Chiemchaisri, C. Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int. Biodeterior. Biodegrad. 2015, 102, 172–181. [Google Scholar] [CrossRef]
- Shimpi, N.; Borane, M.; Mishra, S.; Kadam, M. Biodegradation of polystyrene (PS)-poly (lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromol. Res. 2012, 20, 181–187. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xing, Y.-T.; Li, N.; Wang, S.; Sun, J.-Q. Complete genome sequence of Sphingobacterium psychroaquaticum strain SJ-25, an aerobic bacterium capable of suppressing fungal pathogens. Curr. Microbiol. 2020, 77, 115–122. [Google Scholar] [CrossRef]
- Aas, M.J.; Vriesendorp, B.; van de Weijer, A.H.; van der Oost, J.; van Kranenburg, R. Complete genome sequence of Geobacillus thermodenitrificans T12, a potential host for biotechnological applications. Curr. Microbiol. 2018, 75, 49–56. [Google Scholar]
- Wang, J.; Goh, K.M.; Salem, D.R.; Sani, R.K. Genome analysis of a thermophilic exopolysaccharide-producing bacterium-Geobacillus sp. WSUCF1. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chai, Y.; Kolter, R.; Losick, R. A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J. Bacteriol 2009, 191, 2423–2430. [Google Scholar] [CrossRef] [Green Version]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowitz, V.M.; Chen, I.-M.A.; Palaniappan, K.; Chu, K.; Szeto, E.; Grechkin, Y.; Ratner, A.; Jacob, B.; Huang, J.; Williams, P. IMG: The integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 2012, 40, D115–D122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [Green Version]
- Wattam, A.R.; Abraham, D.; Dalay, O.; Disz, T.L.; Driscoll, T.; Gabbard, J.L.; Gillespie, J.J.; Gough, R.; Hix, D.; Kenyon, R. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014, 42, D581–D591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Features | Pseudomonas S3 | Sphingobacterium S2 | Geobacillus EC-3 | Database 1 |
---|---|---|---|---|
Contigs | 63 | 87 | 111 | PATRIC |
G + C Content (%) | 66.26 | 43.66 | 52.18 | PATRIC |
Plasmids | ND 2 | ND | ND | PATRIC |
Contig L50 | 8 | 9 | 12 | PATRIC |
Genome Length | 6,509,961 bp | 5,445,390 bp | 3,397,712 bp | PATRIC |
Contig N50 | 273,159 bp | 267,833 bp | 90,542 bp | PATRIC |
Longest Contig | 658,980 bp | 434,944 bp | 321,190 bp | PATRIC |
Chromosomes | ND2 | ND | ND | PATRIC |
CDS | 6239 | 4951 | 3790 | PATRIC |
tRNA | 60 | 72 | 87 | PATRIC |
Repeat Regions | 60 | 0 | 138 | PATRIC |
rRNA | 7 | 3 | 11 | PATRIC |
Hypothetical proteins | 1307 | 2087 | 984 | PATRIC |
Proteins with functional assignments | 4932 | 2864 | 2806 | PATRIC |
Proteins with EC number assignments | 1287 | 933 | 989 | PATRIC |
Proteins with GO assignments | 1091 | 806 | 750 | PATRIC |
Proteins with Pathway assignments | 970 | 693 | 678 | PATRIC |
Antibiotic Resistance | 51 | 0 | 0 | CARD |
Antibiotic Resistance | 5 | 0 | 0 | NDARO |
Antibiotic Resistance | 100 | 28 | 32 | PATRIC |
Drug Target | 67 | 0 | 25 | DrugBank |
Drug Target | 10 | 0 | 1 | TTD |
Transporter | 186 | 2 | 18 | TCDB |
Virulence Factor | 1 | 0 | 2 | PATRIC_VF |
Virulence Factor | 233 | 0 | 0 | VFDB |
Virulence Factor | 86 | 0 | 2 | Victors |
P. aeruginosa S3 | Sphingobacterium sp. S2 | Geobacillus sp. EC-3 | ||||
---|---|---|---|---|---|---|
Pathway Name | Unique Gene Count | Unique EC Count | Unique Gene Count | Unique EC Count | Unique Gene Count | Unique EC Count |
1- and 2-Methylnaphthalene degradation | 20 | 8 | 8 | 6 | 3 | 1 |
1,4-Dichlorobenzene degradation | 43 | 13 | 18 | 6 | 17 | 6 |
2,4-Dichlorobenzoate degradation | 17 | 9 | 7 | 3 | 5 | 3 |
Atrazine degradation | 10 | 2 | 7 | 2 | 5 | 2 |
Benzoate degradation via hydroxylation | 60 | 25 | 16 | 7 | 19 | 6 |
Biphenyl degradation | 3 | 2 | 3 | 2 | 0 | 0 |
Bisphenol A degradation | 13 | 6 | 4 | 3 | 1 | 1 |
Caprolactam degradation | 21 | 6 | 9 | 4 | 12 | 4 |
Drug metabolism-cytochrome P450 | 19 | 3 | 3 | 2 | 3 | 1 |
Drug metabolism-other enzymes | 9 | 9 | 8 | 8 | 11 | 10 |
Ethylbenzene degradation | 10 | 3 | 6 | 3 | 6 | 2 |
Fluorobenzoate degradation | 9 | 7 | 1 | 1 | 1 | 1 |
γ-Hexachlorocyclohexane degradation | 9 | 6 | 2 | 2 | 0 | 0 |
Geraniol degradation | 30 | 9 | 9 | 4 | 16 | 4 |
Naphthalene and anthracene degradation | 16 | 7 | 6 | 3 | 4 | 2 |
Styrene degradation | 14 | 7 | 2 | 2 | 3 | 2 |
Tetrachloroethene degradation | 29 | 8 | 6 | 4 | 8 | 2 |
Toluene and xylene degradation | 14 | 6 | 2 | 0 | 0 | |
Trinitrotoluene degradation | 12 | 4 | 10 | 3 | 2 | 2 |
DDT degradation | 5 | 4 | 2 | 2 | 0 | 0 |
Metabolism of xenobiotics by cytochrome P450 | 19 | 3 | 5 | 3 | 3 | 1 |
Styrene degradation | 0 | 0 | 0 | 0 | 3 | 2 |
Fluorobenzoate degradation | 0 | 0 | 0 | 0 | 1 | 1 |
Proteins for Lactate Utilization in Pseudomonas aeruginosa S3 | ||
Description | AA Length | Proteins |
Acetolactate synthase large subunit (EC 2.2.1.6) | 574 | 1 |
Acetolactate synthase small subunit (EC 2.2.1.6) | 163 | 2 |
d-lactate dehydratase (EC 4.2.1.130) | 291 | 1 |
d-lactate dehydrogenase (EC 1.1.1.28) | 329 | 1 |
l-lactate dehydrogenase | 383 | 2 |
l-lactate permease | 560 | 1 |
Lactate-responsive regulator LldR, GntR family | 257 | 1 |
Predicted d-lactate dehydrog., Fe-S protein, FAD/FMN-containing | 938 | 1 |
Proteins for Lactate Utilization in Sphingobacterium sp. S2 | ||
Description | AA Length | Proteins |
Acetolactate synthase large subunit (EC 2.2.1.6) | 606 | 1 |
Acetolactate synthase small subunit (EC 2.2.1.6) | 196 | 1 |
d-lactate dehydratase (EC 4.2.1.130) | 145 | 2 |
d-lactate dehydrogenase (EC 1.1.1.28) | 330 | 1 |
Fe-S protein, homolog of lactate dehydrogenase SO1521 | 974 | 1 |
l-lactate dehydrogenase | 389 | 1 |
Predicted l-lactate dehydrogenase, Fe-S oxidoreductase subunit YkgE | 242 | 1 |
Predicted l-lactate dehydrogenase, hypothetical protein subunit YkgG | 215 | 1 |
Predicted l-lactate dehydrogenase, Iron-sulfur cluster-binding subunit YkgF | 462 | 1 |
Proteins for Lactate Utilization in Geobacillus sp. EC-3 | ||
Description | AA length | Proteins |
l-lactate dehydrogenase (EC 1.1.1.27) | 317 | 1 |
l-lactate permease | 557 | 1 |
Lactate utilization protein LutA | 239 | 1 |
Lactate utilization protein LutB | 476 | 1 |
Lactate utilization protein LutC | 240 | 1 |
Lactate-responsive regulator LutR, GntR family | 241 | 1 |
Probable 2-phosphosulfolactate phosphatase (EC 3.1.3.71) | 260 | 1 |
Factors involved in Biofilm formation and regulation detected in P. aeruginosa S3 | |
---|---|
Extracellular Matrix Components | Pseudomonas Quinolone Signal (PQS) |
Extracellular Matrix protein PslA | PQS biosynthesis protein PqsH, similar to FAD-dependent monooxygenases |
Extracellular Matrix protein PslC | PQS biosynthesis protein PqsA, anthranilate-CoA ligase (EC 6.2.1.32) |
Extracellular Matrix protein PslD | PQS biosynthesis protein PqsB, similar to 3-oxoacyl-[acyl-carrier-protein] synthase III |
Extracellular Matrix protein PslE | PQS biosynthesis protein PqsC, similar to 3-oxoacyl-[acyl-carrier-protein] synthase III |
Extracellular Matrix protein PslF | PQS biosynthesis protein PqsD, similar to 3-oxoacyl-[acyl-carrier-protein] synthase III |
Extracellular Matrix protein PslG | PqsE, quinolone signal response protein |
Extracellular Matrix protein PslL | Anthranilate synthase, aminase component (EC 4.1.3.27) |
Extracellular Matrix protein PslJ | Anthranilate synthase, amidotransferase component (EC 4.1.3.27) |
Extracellular Matrix protein PslK | Multiple virulence factor regulator MvfR/PqsR |
Extracellular Matrix protein PelG | Putative transcriptional regulator near PqsH |
Extracellular matrix protein PelF, glycosyltransferase, group 1 | c-di-GMP |
Extracellular Matrix protein PelE | 3’,5’-cyclic-nucleotide phosphodiesterase (EC 3.1.4.17) |
Extracellular Matrix protein PelD | 5’-nucleotidase/2’,3’-cyclic phosphodiesterase and related esterases |
Extracellular Matrix protein PelC | Acyl carrier protein phosphodiesterase (EC 3.1.4.14) |
Extracellular Matrix protein PelB | diguanylate cyclase/phosphodiesterase (GGDEF & EAL domains) |
Extracellular Matrix protein PelA | Glycerophosphoryl diester phosphodiesterase (EC 3.1.4.46) |
Alginate regulatory protein AlgQ | Phosphodiesterase/alkaline phosphatase D |
Alginate regulatory protein AlgP | Membrane bound c-di-GMP receptor LapD |
Alginate biosynthesis protein AlgZ/FimS | Quorum sensing systems |
Alginate biosynthesis transcriptional regulatory protein algB | N-3-oxododecanoyl-L-homoserine lactone quorum-sensing transcriptional activator |
Alginate biosynthesis protein Alg8 | regulator LasR & regulator RhlR |
Alginate biosynthesis protein Alg44 | N-acyl-L-homoserine lactone synthetase LasI |
Alginate biosynthesis protein AlgK precursor | N-butyryl-L-homoserine lactone quorum-sensing transcriptional activator |
Outer membrane protein AlgE | Factors involved in Biofilm formation and regulation detected in Sphingobacterium sp. S2 |
Alginate biosynthesis protein AlgX | Anthranilate phosphoribosyltransferase (EC 2.4.2.18) |
Alginate lyase precursor (EC 4.2.2.3) | Anthranilate synthase, aminase component (EC 4.1.3.27) |
Alginate biosynthesis protein AlgJ | Carboxymuconolactone decarboxylase (EC 4.1.1.44) |
Alginate o-acetyltransferase AlgF | 5’-nucleotidase (EC 3.1.3.5) |
Alginate biosynthesis transcriptional activator | Acyl carrier protein |
Factors involved in Biofilm formation and regulation detected in Geobacillus sp. EC-3 | Transciptional regulators LysR family & MarR/EmrR family |
2’,3’-cyclic-nucleotide 2’-phosphodiesterase, Bsub YmdB | DNA binding response regulator, LuxR family |
5’-nucleotidase (EC 3.1.3.5) | Sugar transferase |
5’-nucleotidase family protein in cluster with NagD-like phosphatase | Polysaccharide biosynthesis protein |
Acyl carrier protein | Two-component transciptioal response regulator, RprY, OmpR family |
Anthranilate phosphoribosyltransferase (EC 2.4.2.18) | Gliding motility protein precursor GldC, GldJ & GldN |
Anthranilate synthase, aminase component (EC 4.1.3.27) | OmpA domain protein |
Biofilm-associated protein | OmpA family protein |
Carboxymuconolactone decarboxylase (EC 4.1.1.44) | OmpA/MotB |
Cyclic-di-AMP phosphodiesterase GdpP | Glycerophosphoryl diester phosphodiesterase (EC 3.1.4.46) |
Glycerophosphoryl diester phosphodiesterase (EC 3.1.4.46) | Stage 0 sporulation protein YaaT |
Glycerophosphoryl diester phosphodiesterase (EC 3.1.4.46) periplasmic (secreted in GramPositives) | |
Lactate Utilization Protein A | |
Lactate Utilization Protein B | |
Lactate Utilization Protein C |
P. aeruginosa S3 | Sphingobacterium sp. S2 | Geobacillus sp. EC-3 | ||||
---|---|---|---|---|---|---|
Enzyme | Common to Reference Genomes | Unique to Strain S3 | Common to Reference Genomes | Unique to Strain S2 | Common to Reference Genomes | Unique to Strain EC-3 |
Hydrolase | 123 | 51 | 84 | 8 | 173 | 54 |
Lipase | 20 | 5 | 10 | 8 | 15 | 5 |
Protease | 57 | 18 | 22 | 14 | 91 | 36 |
Esterase | 33 | 17 | 25 | 5 | 53 | 19 |
Phospho-diesterase | 8 | 5 | 5 | 4 | 16 | 4 |
Oxygenase | 63 | 19 | 7 | 3 | 45 | 9 |
Catalase | 6 | 6 | 2 | 1 | 5 | 3 |
Phosphatase | 66 | 17 | 25 | 13 | 77 | 33 |
Common + Unique | 514 | 236 | 638 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satti, S.M.; Castro-Aguirre, E.; Shah, A.A.; Marsh, T.L.; Auras, R. Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp. Int. J. Mol. Sci. 2021, 22, 7385. https://doi.org/10.3390/ijms22147385
Satti SM, Castro-Aguirre E, Shah AA, Marsh TL, Auras R. Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp. International Journal of Molecular Sciences. 2021; 22(14):7385. https://doi.org/10.3390/ijms22147385
Chicago/Turabian StyleSatti, Sadia Mehmood, Edgar Castro-Aguirre, Aamer Ali Shah, Terence L. Marsh, and Rafael Auras. 2021. "Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp." International Journal of Molecular Sciences 22, no. 14: 7385. https://doi.org/10.3390/ijms22147385
APA StyleSatti, S. M., Castro-Aguirre, E., Shah, A. A., Marsh, T. L., & Auras, R. (2021). Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp. International Journal of Molecular Sciences, 22(14), 7385. https://doi.org/10.3390/ijms22147385