Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics
Abstract
:1. Introduction
2. Botulinum Neurotoxins
3. BoNT Detection Assays
3.1. Rodent Bioassays
3.1.1. In Vivo Bioassay
3.1.2. Ex Vivo Assays
3.2. Cell-Based Assays
3.2.1. CBAs Based on Immortalized Cell Lines
3.2.2. CBAs Based on Neuronal Primary Cultures
4. Emerging Cell-Based Assays Using Human iPSCs Derivatives
4.1. Human Induced Pluripotent Stem Cells
4.2. Human iPSCs for BoNT Research and Development
5. Challenges and Future Perspectives
5.1. Functional Studies
5.2. Towards More Relevant hiPSC-Based Models for BoNT Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erbguth, F.J. Botulinum Toxin, a Historical Note. Lancet 1998, 351, 1820. [Google Scholar] [CrossRef]
- Erbguth, F.J. Historical Notes on Botulism, Clostridium Botulinum, Botulinum Toxin, and the Idea of the Therapeutic Use of the Toxin. Mov. Disord. 2004, 19, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Erbguth, F.J.; Naumann, M. Historical Aspects of Botulinum Toxin: Justinus Kerner (1786–1862) and the “Sausage Poison”. Neurology 1999, 53, 1850. [Google Scholar] [CrossRef]
- Van Ermengem, E. Ueber Einen Neuen Anaeroben Bacillus und Seine Beziehungen zum Botulismus; Z Hyg Infektionskrankh: Leipzig, Germany, 1897; Volume 26. [Google Scholar]
- Erbguth, F.J. From Poison to Remedy: The Chequered History of Botulinum Toxin. J. Neural Transm. 2008, 115, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Burke, G.S. Notes on Bacillus Botulinus. J. Bacteriol. 1919, 4, 555–570. [Google Scholar] [CrossRef] [Green Version]
- Foster, K.A. Molecular Aspects of Botulinum Neurotoxin; Springer: New York, NY, USA, 2014; Volume 4, ISBN 978-1-4614-9453-9. [Google Scholar]
- Montecucco, C.; Schiavo, G.; Tugnoli, V.; de Grandis, D. Botulinum Neurotoxins: Mechanism of Action and Therapeutic Applications. Mol. Med. Today 1996, 2, 418–424. [Google Scholar] [CrossRef]
- Hauschild, A.H.W.; Dodds, K.L. (Eds.) Clostridium Botulinum: Ecology and Control in Foods; Food Science and Technology; M. Dekker: New York, NY, USA, 1993; ISBN 978-0-8247-8748-6. [Google Scholar]
- Lamanna, C.; Eklund, H.W.; McElroy, O.E. Botulinum Toxin (Type A); Including a Study of Shaking with Chloroform as a Step in the Isolation Procedure. J. Bacteriol. 1946, 52, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sommer, E.W.; Sommer, H.; Meyer, K.F. The Purification of Botulinum Toxin. J. Infect. Dis. 1926, 39, 345. [Google Scholar] [CrossRef]
- Escher, C.M.; Paracka, L.; Dressler, D.; Kollewe, K. Botulinum Toxin in the Management of Chronic Migraine: Clinical Evidence and Experience. Ther. Adv. Neurol. Disord. 2017, 10, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Fonfria, E.; Maignel, J.; Lezmi, S.; Martin, V.; Splevins, A.; Shubber, S.; Kalinichev, M.; Foster, K.; Picaut, P.; Krupp, J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins 2018, 10, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbari, B. History of Botulinum Toxin Treatment in Movement Disorders. Tremor Other Hyperkinetic Mov. 2016, 6, 394. [Google Scholar] [CrossRef]
- Pelletier-Cameron, A.; Cox, L. OnabotulinumtoxinA for the Treatment of Overactive Bladder. Res. Rep. Urol. 2014, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Satriyasa, B.K. Botulinum Toxin (Botox) A for Reducing the Appearance of Facial Wrinkles: A Literature Review of Clinical Use and Pharmacological Aspect. Clin. Cosmet. Investig. Dermatol. 2019, 12, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibasaki, M.; Davis, S.L.; Cui, J.; Low, D.A.; Keller, D.M.; Crandall, C.G. Botulinum Toxin Abolishes Sweating via Impaired Sweat Gland Responsiveness to Exogenous Acetylcholine. Br. J. Dermatol. 2009, 161, 757–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; David, B.T.; Trawczynski, M.; Fessler, R.G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev. Rep. 2020, 16, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J.; et al. An Analysis of the Attrition of Drug Candidates from Four Major Pharmaceutical Companies. Nat. Rev. Drug Discov. 2015, 14, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Burgen, A.S.V.; Dickens, F.; Zatman, L.J. The Action of Botulinum Toxin on the Neuro-Muscular Junction. J. Physiol. 1949, 109, 10–24. [Google Scholar] [CrossRef]
- Sellin, L.C. The Action of Batulinum Toxin at the Neuromuscular Junction. Med. Biol. 1981, 59, 11–20. [Google Scholar] [PubMed]
- Dolly, J.O.; Aoki, K.R. The Structure and Mode of Action of Different Botulinum Toxins. Eur. J. Neurol. 2006, 13, 1–9. [Google Scholar] [CrossRef]
- Dong, M.; Stenmark, P. The Structure and Classification of Botulinum Toxins. In Botulinum Toxin Therapy; Whitcup, S.M., Hallett, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 263, pp. 11–33. ISBN 978-3-030-66305-6. [Google Scholar]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum Neurotoxins: Genetic, Structural and Mechanistic Insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Rumpel, S.; Zhou, J.; Strotmeier, J.; Bigalke, H.; Perry, K.; Shoemaker, C.B.; Rummel, A.; Jin, R. Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex. Science 2012, 335, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, S.-I.; Sagane, Y.; Suzuki, T.; Matsumoto, T.; Niwa, K.; Watanabe, T. “Non-Toxic” Proteins of the Botulinum Toxin Complex Exert In-Vivo Toxicity. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal Structure of Botulinum Neurotoxin Type A and Implications for Toxicity. Nat. Struct. Biol. 1998, 5, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Montal, M. Botulinum Neurotoxin: A Marvel of Protein Design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.; Barbieri, J. Light Chain Diversity among the Botulinum Neurotoxins. Toxins 2018, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Peng Chen, Z.; Morris, J.; Rodriguez, R.; Shukla, A.; Tapia-Núñez, J.; Okun, M. Emerging Opportunities for Serotypes of Botulinum Neurotoxins. Toxins 2012, 4, 1196–1222. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J.; Lou, J.; Geren, I.N.; Forsyth, C.M.; Tsai, R.; LaPorte, S.L.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Smith, L.A.; et al. Sequence Variation within Botulinum Neurotoxin Serotypes Impacts Antibody Binding and Neutralization. Infect. Immun. 2005, 73, 5450–5457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuyer, G.; Zhang, S.; Barkho, S.; Shen, Y.; Henriksson, L.; Košenina, S.; Dong, M.; Stenmark, P. Structural Characterisation of the Catalytic Domain of Botulinum Neurotoxin X—High Activity and Unique Substrate Specificity. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and Characterization of a Novel Botulinum Neurotoxin. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef]
- Dong, M.; Tepp, W.H.; Liu, H.; Johnson, E.A.; Chapman, E.R. Mechanism of Botulinum Neurotoxin B and G Entry into Hippocampal Neurons. J. Cell Biol. 2007, 179, 1511–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giménez, D.F.; Giménez, J.A. The Typing of Botulinal Neurotoxins. Int. J. Food Microbiol. 1995, 27, 1–9. [Google Scholar] [CrossRef]
- Peck, M.; Smith, T.; Anniballi, F.; Austin, J.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.; Derman, Y.; Dorner, B.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Poulain, B.; Humeau, Y. Le mode d’action des neurotoxines botuliques: Aspects pathologiques, cellulaires et moléculaires. Ann. De Réadaptation Et De Médecine Phys. 2003, 46, 265–275. [Google Scholar] [CrossRef]
- Singh, B.R.; Kukreja, R. The Botulinum Toxin as a Therapeutic Agent: Molecular and Pharmacological Insights. Res. Rep. Biochem. 2015, 5, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Dong, M. SV2 Is the Protein Receptor for Botulinum Neurotoxin A. Science 2006, 312, 592–596. [Google Scholar] [CrossRef]
- Mahrhold, S.; Rummel, A.; Bigalke, H.; Davletov, B.; Binz, T. The Synaptic Vesicle Protein 2C Mediates the Uptake of Botulinum Neurotoxin A into Phrenic Nerves. FEBS Lett. 2006, 580, 2011–2014. [Google Scholar] [CrossRef] [Green Version]
- Blasi, J.; Chapman, E.R.; Yamasaki, S.; Binz, T.; Niemann, H.; Jahn, R. Botulinum Neurotoxin C1 Blocks Neurotransmitter Release by Means of Cleaving HPC-1/Syntaxin. EMBO J. 1993, 12, 4821–4828. [Google Scholar] [CrossRef]
- Schiavo, G.; Santucci, A.; Dasgupta, B.R.; Mehta, P.P.; Jontes, J.; Benfenati, F.; Wilson, M.C.; Montecucco, C. Botulinum Neurotoxins Serotypes A and E Cleave SNAP-25 at Distinct COOH-Terminal Peptide Bonds. FEBS Lett. 1993, 335, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Binz, T.; Blasi, J.; Yamasaki, S.; Baumeister, A.; Link, E.; Südhof, T.C.; Jahn, R.; Niemann, H. Proteolysis of SNAP-25 by Types E and A Botulinal Neurotoxins. J. Biol. Chem. 1994, 269, 1617–1620. [Google Scholar] [CrossRef]
- Washbourne, P.; Pellizzari, R.; Baldini, G.; Wilson, M.C.; Montecucco, C. Botulinum Neurotoxin Types A and E Require the SNARE Motif in SNAP-25 for Proteolysis. FEBS Lett. 1997, 418, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Richards, D.A.; Goodnough, M.C.; Tepp, W.H.; Johnson, E.A.; Chapman, E.R. Synaptotagmins I and II Mediate Entry of Botulinum Neurotoxin B into Cells. J. Cell Biol. 2003, 162, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- Rummel, A.; Eichner, T.; Weil, T.; Karnath, T.; Gutcaits, A.; Mahrhold, S.; Sandhoff, K.; Proia, R.L.; Acharya, K.R.; Bigalke, H.; et al. Identification of the Protein Receptor Binding Site of Botulinum Neurotoxins B and G Proves the Double-Receptor Concept. Proc. Natl. Acad. Sci. USA 2007, 104, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Stenmark, P.; Dong, M.; Dupuy, J.; Chapman, E.R.; Stevens, R.C. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding. J. Mol. Biol. 2010, 397, 1287–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, H.; Ida, T.; Tsutsuki, H.; Mori, M.; Matsumoto, T.; Kohda, T.; Mukamoto, M.; Goshima, N.; Kozaki, S.; Ihara, H. Specificity of Botulinum Protease for Human VAMP Family Proteins: Specificity of Botulinum Protease. Microbiol. Immunol. 2012, 56, 245–253. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Kohda, T.; Mukamoto, M.; Takeuchi, K.; Ihara, H.; Saito, M.; Kozaki, S. Binding of Clostridium botulinum Type C and D Neurotoxins to Ganglioside and Phospholipid: Novel insights into the receptor for clostridial neurotoxins. J. Biol. Chem. 2005, 280, 35164–35171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foran, P.; Lawrence, G.W.; Shone, C.C.; Foster, K.A.; Dolly, J.O. Botulinum Neurotoxin C1 Cleaves Both Syntaxin and SNAP-25 in Intact and Permeabilized Chromaffin Cells: Correlation with Its Blockade of Catecholamine Release. Biochemistry 1996, 35, 2630–2636. [Google Scholar] [CrossRef] [PubMed]
- Williamson, L.C.; Halpern, J.L.; Montecucco, C.; Brown, J.E.; Neale, E.A. Clostridial Neurotoxins and Substrate Proteolysis in Intact Neurons. J. Biol. Chem. 1996, 271, 7694–7699. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Tepp, W.H.; Johnson, E.A.; Dong, M. Botulinum Neurotoxin D Uses Synaptic Vesicle Protein SV2 and Gangliosides as Receptors. PLoS Pathog. 2011, 7, e1002008. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, S.; Binz, T.; Hayashi, T.; Szabo, E.; Yamasaki, N.; Eklund, M.; Jahn, R.; Niemann, H. Botulinum Neurotoxin Type G Proteolyses the Ala81-Ala82 Bond of Rat Synaptobrevin 2. Biochem. Biophys. Res. Commun. 1994, 200, 829–835. [Google Scholar] [CrossRef]
- Dong, M.; Liu, H.; Tepp, W.H.; Johnson, E.A.; Janz, R.; Chapman, E.R. Glycosylated SV2A and SV2B Mediate the Entry of Botulinum Neurotoxin E into Neurons. Mol. Biol. Cell 2008, 19, 5226–5237. [Google Scholar] [CrossRef] [Green Version]
- Rummel, A.; Häfner, K.; Mahrhold, S.; Darashchonak, N.; Holt, M.; Jahn, R.; Beermann, S.; Karnath, T.; Bigalke, H.; Binz, T. Botulinum Neurotoxins C, E and F Bind Gangliosides via a Conserved Binding Site Prior to Stimulation-Dependent Uptake with Botulinum Neurotoxin F Utilising the Three Isoforms of SV2 as Second Receptor. J. Neurochem. 2009, 110, 1942–1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Chen, C.; Barbieri, J.T.; Kim, J.-J.P.; Baldwin, M.R. Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F. Biochemistry 2009, 48, 5631–5641. [Google Scholar] [CrossRef] [Green Version]
- Rummel, A.; Karnath, T.; Henke, T.; Bigalke, H.; Binz, T. Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G. J. Biol. Chem. 2004, 279, 30865–30870. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, J.; Karalewitz, A.; Benefield, D.A.; Mushrush, D.J.; Pruitt, R.N.; Spiller, B.W.; Barbieri, J.T.; Lacy, D.B. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding. Biochemistry 2010, 49, 5200–5205. [Google Scholar] [CrossRef] [Green Version]
- Willjes, G.; Mahrhold, S.; Strotmeier, J.; Eichner, T.; Rummel, A.; Binz, T. Botulinum Neurotoxin G Binds Synaptotagmin-II in a Mode Similar to That of Serotype B: Tyrosine 1186 and Lysine 1191 Cause Its Lower Affinity. Biochemistry 2013, 52, 3930–3938. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Malizio, C.; Trimble, W.S.; Polverino de Laureto, P.; Milan, G.; Sugiyama, H.; Johnson, E.A.; Montecucco, C. Botulinum G Neurotoxin Cleaves VAMP/Synaptobrevin at a Single Ala-Ala Peptide Bond. J. Biol. Chem. 1994, 269, 20213–20216. [Google Scholar] [CrossRef]
- Yao, G.; Lam, K.; Perry, K.; Weisemann, J.; Rummel, A.; Jin, R. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H. Toxins 2017, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Kalb, S.R.; Baudys, J.; Raphael, B.H.; Dykes, J.K.; Lúquez, C.; Maslanka, S.E.; Barr, J.R. Functional Characterization of Botulinum Neurotoxin Serotype H as a Hybrid of Known Serotypes F and A (BoNT F/A). Anal. Chem. 2015, 87, 3911–3917. [Google Scholar] [CrossRef] [Green Version]
- Maslanka, S.E.; Lúquez, C.; Dykes, J.K.; Tepp, W.H.; Pier, C.L.; Pellett, S.; Raphael, B.H.; Kalb, S.R.; Barr, J.R.; Rao, A.; et al. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure With Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized With Serotype A Antitoxin. J. Infect. Dis. 2016, 213, 379–385. [Google Scholar] [CrossRef]
- Duman, J.G.; Forte, J.G. What Is the Role of SNARE Proteins in Membrane Fusion? Am. J. Physiol.-Cell Physiol. 2003, 285, C237–C249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martyn, J.A.J.; Fagerlund, M.J.; Eriksson, L.I. Basic Principles of Neuromuscular Transmission. Anaesthesia 2009, 64, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins Affecting Neuroexocytosis. Physiol. Rev. 2000, 80, 717–766. [Google Scholar] [CrossRef]
- Simpson, L.L. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 167–193. [Google Scholar] [CrossRef]
- Dressler, D.; Saberi, F.A.; Barbosa, E.R. Botulinum Toxin: Mechanisms of Action. Arq. Neuro-Psiquiatr. 2005, 63, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Tighe, A.P.; Schiavo, G. Botulinum Neurotoxins: Mechanism of Action. Toxicon 2013, 67, 87–93. [Google Scholar] [CrossRef]
- Davies, J.; Liu, S.; Acharya, K. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins 2018, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M. Structures, Biosynthesis, and Functions of Gangliosides—An Overview. J. Oleo Sci. 2011, 60, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Schnaar, R.L. Gangliosides of the Vertebrate Nervous System. J. Mol. Biol. 2016, 428, 3325–3336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, R.L.; Brown, M.C. Nerve Growth in Botulinum Toxin Poisoned Muscles. Neuroscience 1981, 6, 1167–1179. [Google Scholar] [CrossRef]
- Meunier, F.A.; Schiavo, G.; Molgó, J. Botulinum Neurotoxins: From Paralysis to Recovery of Functional Neuromuscular Transmission. J. Physiol.-Paris 2002, 96, 105–113. [Google Scholar] [CrossRef]
- De Paiva, A.; Meunier, F.A.; Molgo, J.; Aoki, K.R.; Dolly, J.O. Functional Repair of Motor Endplates after Botulinum Neurotoxin Type A Poisoning: Biphasic Switch of Synaptic Activity between Nerve Sprouts and Their Parent Terminals. Proc. Natl. Acad. Sci. USA 1999, 96, 3200–3205. [Google Scholar] [CrossRef] [Green Version]
- Foran, P.G.; Davletov, B.; Meunier, F.A. Getting Muscles Moving Again after Botulinum Toxin: Novel Therapeutic Challenges. Trends Mol. Med. 2003, 9, 291–299. [Google Scholar] [CrossRef]
- Monheit, G.D.; Pickett, A. AbobotulinumtoxinA: A 25-Year History. Aesthetic Surg. J. 2017, 37, S4–S11. [Google Scholar] [CrossRef]
- Walker, T.J.; Dayan, S.H. Comparison and Overview of Currently Available Neurotoxins. J. Clin. Aesthet. Dermatol. 2014, 7, 31–39. [Google Scholar]
- Costantin, L. Antiepileptic Effects of Botulinum Neurotoxin E. J. Neurosci. 2005, 25, 1943–1951. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.O.; Machado, D.; Richardson, D.; Dubey, D.; Jabbari, B. Botulinum Toxin in Parkinson Disease Tremor. Mayo Clin. Proc. 2017, 92, 1359–1367. [Google Scholar] [CrossRef]
- Kwak, C.H.; Hanna, P.A.; Jankovic, J. Botulinum Toxin in the Treatment of Tics. Arch. Neurol. 2000, 57, 1190. [Google Scholar] [CrossRef] [PubMed]
- Parsaik, A.K.; Mascarenhas, S.S.; Hashmi, A.; Prokop, L.J.; John, V.; Okusaga, O.; Singh, B. Role of Botulinum Toxin in Depression. J. Psychiatr. Pract. 2016, 22, 99–110. [Google Scholar] [CrossRef]
- Tandon, H.K.; Stratton, P.; Sinaii, N.; Shah, J.; Karp, B.I. Botulinum Toxin for Chronic Pelvic Pain in Women with Endometriosis: A Cohort Study of a Pain-Focused Treatment. Reg. Anesth. Pain Med. 2019, 44, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Trevan, J.W. The Error of Determination of Toxicity. Proc. R. Soc. Lond. Ser. B Contain. Pap. A Biol. Character 1927, 101, 483–514. [Google Scholar] [CrossRef] [Green Version]
- Dorner, M.B.; Schulz, K.M.; Kull, S.; Dorner, B.G. Complexity of Botulinum Neurotoxins: Challenges for Detection Technology. In Botulinum Neurotoxins; Rummel, A., Binz, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 364, pp. 219–255. ISBN 978-3-642-33569-3. [Google Scholar]
- Ferreira, J.L.; Eliasberg, S.J.; Edmonds, P.; Harrison, M.A. Comparison of the Mouse Bioassay and Enzyme-Linked Immunosorbent Assay Procedures for the Detection of Type A Botulinal Toxin in Food. J. Food Prot. 2004, 67, 203–206. [Google Scholar] [CrossRef]
- Dunning, F.M.; Piazza, T.M.; Zeytin, F.N.; Tucker, W.C. Isolation and Quantification of Botulinum Neurotoxin from Complex Matrices Using the BoTest Matrix Assays. J. Vis. Exp. 2014. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, R.J.; Thomas, C.A.; Halliwell, J.; Gwenin, C.D. Rapid Detection of Botulinum Neurotoxins—A Review. Toxins 2019, 11, 418. [Google Scholar] [CrossRef] [Green Version]
- Nepal, M.R.; Jeong, T.C. Alternative Methods for Testing Botulinum Toxin: Current Status and Future Perspectives. Biomol. Ther. 2020, 28, 302–310. [Google Scholar] [CrossRef]
- Kang, M.; Han, A.; Kim, D.; Seidle, T.; Lim, K.-M.; Bae, S. Mental Stress from Animal Experiments: A Survey with Korean Researchers. Toxicol. Res. 2018, 34, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Pellett, S. Progress in Cell Based Assays for Botulinum Neurotoxin Detection. In Botulinum Neurotoxins; Rummel, A., Binz, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 364, pp. 257–285. ISBN 978-3-642-33569-3. [Google Scholar]
- Sesardic, D.; Leung, T.; Gaines Das, R. Role for Standards in Assays of Botulinum Toxins: International Collaborative Study of Three Preparations of Botulinum Type A Toxin. Biologicals 2003, 31, 265–276. [Google Scholar] [CrossRef]
- Stern, D.; Skiba, M.; Dorner, M.B.; Dorner, B.G.; von Berg, L. Replacing the Mouse Bioassay for Diagnostics and Potency Testing of Botulinum Neurotoxins—Progress and Challenges. Berl Münch Tierärztl Wochensch 2018. [Google Scholar] [CrossRef]
- Wilder-Kofie, T.D.; Lúquez, C.; Adler, M.; Dykes, J.K.; Coleman, J.D.; Maslanka, S.E. An Alternative in Vivo Method to Refine the Mouse Bioassay for Botulinum Toxin Detection. Comp. Med. 2011, 61, 235–242. [Google Scholar] [PubMed]
- Elliott, M.; Favre-Guilmard, C.; Liu, S.M.; Maignel, J.; Masuyer, G.; Beard, M.; Boone, C.; Carré, D.; Kalinichev, M.; Lezmi, S.; et al. Engineered Botulinum Neurotoxin B with Improved Binding to Human Receptors Has Enhanced Efficacy in Preclinical Models. Sci. Adv. 2019, 5, eaau7196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.; Peng, L.; Berntsson, R.P.-A.; Liu, S.M.; Park, S.; Yu, F.; Boone, C.; Palan, S.; Beard, M.; Chabrier, P.-E.; et al. Engineered Botulinum Neurotoxin B with Improved Efficacy for Targeting Human Receptors. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Cobb, S.P.; Hogg, R.A.; Challoner, D.J.; Sharpe, R.T.; Brett, M.M.; Livesey, C.T.; Jones, T.O. Suspected Botulism in Dairy Cows and Its Implications for the Safety of Human Food. Vet. Rec. 2002, 150, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Woudstra, C.; Skarin, H.; Anniballi, F.; Fenicia, L.; Bano, L.; Drigo, I.; Koene, M.; Bäyon-Auboyer, M.-H.; Buffereau, J.-P.; De Medici, D.; et al. Neurotoxin Gene Profiling of Clostridium Botulinum Types C and D Native to Different Countries within Europe. Appl. Environ. Microbiol. 2012, 78, 3120–3127. [Google Scholar] [CrossRef] [Green Version]
- Broide, R.S.; Rubino, J.; Nicholson, G.S.; Ardila, M.C.; Brown, M.S.; Aoki, K.R.; Francis, J. The Rat Digit Abduction Score (DAS) Assay: A Physiological Model for Assessing Botulinum Neurotoxin-Induced Skeletal Muscle Paralysis. Toxicon 2013, 71, 18–24. [Google Scholar] [CrossRef]
- Cornet, S.; Périer, C.; Kalinichev, M. Optimization of the Rat Digit Abduction Score (DAS) Assay: Evaluation of Botulinum Neurotoxin Activity in the Gastrocnemius Lateralis, Peronei, and Extensor Digitorum Longus. Toxicon X 2020, 6, 100029. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.L. Studies on the Binding of Botulinum Toxin Type a to the Rat Phrenic Nerve-Hemidiaphragm Preparation. Neuropharmacology 1974, 13, 683–691. [Google Scholar] [CrossRef]
- Bigalke, H.; Rummel, A. Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN). Toxins 2015, 7, 4895–4905. [Google Scholar] [CrossRef]
- Maignel-Ludop, J.; Huchet, M.; Krupp, J. Botulinum Neurotoxins Serotypes A and B Induce Paralysis of Mouse Striated and Smooth Muscles with Different Potencies. Pharmacol. Res. Perspect. 2017, 5, e00289. [Google Scholar] [CrossRef] [Green Version]
- Kiris, E.; Kota, K.P.; Burnett, J.C.; Soloveva, V.; Kane, C.D.; Bavari, S. Recent Developments in Cell-Based Assays and Stem Cell Technologies for Botulinum Neurotoxin Research and Drug Discovery. Expert Rev. Mol. Diagn. 2014, 14, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.G.A.; Ochiai, M.; Liu, Y.; Ekong, T.; Sesardic, D. Development of Improved SNAP25 Endopeptidase Immuno-Assays for Botulinum Type A and E Toxins. J. Immunol. Methods 2008, 329, 92–101. [Google Scholar] [CrossRef]
- Yadirgi, G.; Stickings, P.; Rajagopal, S.; Liu, Y.; Sesardic, D. Immuno-Detection of Cleaved SNAP-25 from Differentiated Mouse Embryonic Stem Cells Provides a Sensitive Assay for Determination of Botulinum A Toxin and Antitoxin Potency. J. Immunol. Methods 2017, 451, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Doellgast, G.J.; Triscott, M.X.; Beard, G.A.; Bottoms, J.D.; Cheng, T.; Roh, B.H.; Roman, M.G.; Hall, P.A.; Brown, J.E. Sensitive Enzyme-Linked Immunosorbent Assay for Detection of Clostridium Botulinum Neurotoxins A, B, and E Using Signal Amplification via Enzyme-Linked Coagulation Assay. J. Clin. Microbiol. 1993, 31, 2402–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasooly, R.; Do, P.M. Development of an In Vitro Activity Assay as an Alternative to the Mouse Bioassay for Clostridium Botulinum Neurotoxin Type A. Appl. Environ. Microbiol. 2008, 74, 4309–4313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiris, E.; Nuss, J.E.; Burnett, J.C.; Kota, K.P.; Koh, D.C.; Wanner, L.M.; Torres-Melendez, E.; Gussio, R.; Tessarollo, L.; Bavari, S. Embryonic Stem Cell-Derived Motoneurons Provide a Highly Sensitive Cell Culture Model for Botulinum Neurotoxin Studies, with Implications for High-Throughput Drug Discovery. Stem Cell Res. 2011, 6, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhéaume, C.; Cai, B.; Wang, J.; Fernández-Salas, E.; Aoki, K.; Francis, J.; Broide, R. A Highly Specific Monoclonal Antibody for Botulinum Neurotoxin Type A-Cleaved SNAP25. Toxins 2015, 7, 2354–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti, G.; Sikorra, S.; Rummel, A.; Krez, N.; Duregotti, E.; Negro, S.; Henke, T.; Rossetto, O.; Binz, T.; Pirazzini, M. Botulinum Neurotoxin C Mutants Reveal Different Effects of Syntaxin or SNAP-25 Proteolysis on Neuromuscular Transmission. PLoS Pathog. 2017, 13, e1006567. [Google Scholar] [CrossRef] [Green Version]
- Escargueil, C.R.; Machado, C.B.; Blanc, R.P.; Fleck, R.A.; Sesardic, D. Enhanced Sensitivity to Botulinum Type A Neurotoxin of Human Neuroblastoma SH-SY5Y Cells after Differentiation into Mature Neuronal Cells. Botulinum J. 2011, 2, 30. [Google Scholar] [CrossRef]
- Ray, P. Botulinum Toxin a Inhibits Acetylcholine Release from Cultured Neurons in Vitro. In Vitro Cell. Dev. Biol. Anim. 1993, 29, 456–460. [Google Scholar] [CrossRef]
- Rust, A.; Doran, C.; Hart, R.; Binz, T.; Stickings, P.; Sesardic, D.; Peden, A.A.; Davletov, B. A Cell Line for Detection of Botulinum Neurotoxin Type B. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Yowler, B.C.; Kensinger, R.D.; Schengrund, C.-L. Botulinum Neurotoxin A Activity Is Dependent upon the Presence of Specific Gangliosides in Neuroblastoma Cells Expressing Synaptotagmin I. J. Biol. Chem. 2002, 277, 32815–32819. [Google Scholar] [CrossRef] [Green Version]
- Purkiss, J.R.; Friis, L.M.; Doward, S.; Quinn, C.P. Clostridium Botulinum Neurotoxins Act with a Wide Range of Potencies on SH-SY5Y Human Neuroblastoma Cells. Neurotoxicology 2001, 22, 447–453. [Google Scholar] [CrossRef]
- Fernández-Salas, E.; Wang, J.; Molina, Y.; Nelson, J.B.; Jacky, B.P.S.; Aoki, K.R. Botulinum Neurotoxin Serotype a Specific Cell-Based Potency Assay to Replace the Mouse Bioassay. PLoS ONE 2012, 7, e49516. [Google Scholar] [CrossRef] [Green Version]
- Verderio, C.; Rossetto, O.; Grumelli, C.; Frassoni, C.; Montecucco, C.; Matteoli, M. Entering Neurons: Botulinum Toxins and Synaptic Vesicle Recycling. EMBO Rep. 2006, 7, 995–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Restani, L.; Giribaldi, F.; Manich, M.; Bercsenyi, K.; Menendez, G.; Rossetto, O.; Caleo, M.; Schiavo, G. Botulinum Neurotoxins A and E Undergo Retrograde Axonal Transport in Primary Motor Neurons. PLoS Pathog. 2012, 8, e1003087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, A.M.; Ruthel, G.; Torres-Melendez, E.; Kenny, T.A.; Panchal, R.G.; Bavari, S. Primary Cultures of Embryonic Chicken Neurons for Sensitive Cell-Based Assay of Botulinum Neurotoxin: Implications for Therapeutic Discovery. J. Biomol. Screen. 2007, 12, 370–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, M.J.; Purkiss, J.R.; Foster, K.A. Sensitivity of Embryonic Rat Dorsal Root Ganglia Neurons to Clostridium Botulinum Neurotoxins. Toxicon 2000, 38, 245–258. [Google Scholar] [CrossRef]
- Kroken, A.R.; Blum, F.C.; Zuverink, M.; Barbieri, J.T. Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [Green Version]
- Pier, C.L.; Chen, C.; Tepp, W.H.; Lin, G.; Janda, K.D.; Barbieri, J.T.; Pellett, S.; Johnson, E.A. Botulinum Neurotoxin Subtype A2 Enters Neuronal Cells Faster than Subtype A1. FEBS Lett. 2011, 585, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donald, S.; Elliott, M.; Gray, B.; Hornby, F.; Lewandowska, A.; Marlin, S.; Favre-Guilmard, C.; Périer, C.; Cornet, S.; Kalinichev, M.; et al. A Comparison of Biological Activity of Commercially Available Purified Native Botulinum Neurotoxin Serotypes A1 to F1 in Vitro, Ex Vivo, and in Vivo. Pharmacol. Res. Perspect. 2018, 6, e00446. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.E.; Cai, F.; Neale, E.A. Uptake of Botulinum Neurotoxin into Cultured Neurons. Biochemistry 2004, 43, 526–532. [Google Scholar] [CrossRef]
- Whitemarsh, R.C.M.; Tepp, W.H.; Bradshaw, M.; Lin, G.; Pier, C.L.; Scherf, J.M.; Johnson, E.A.; Pellett, S. Characterization of Botulinum Neurotoxin A Subtypes 1 Through 5 by Investigation of Activities in Mice, in Neuronal Cell Cultures, and In Vitro. Infect. Immun. 2013, 81, 3894–3902. [Google Scholar] [CrossRef] [Green Version]
- Pellett, S.; Tepp, W.H.; Clancy, C.M.; Borodic, G.E.; Johnson, E.A. A Neuronal Cell-Based Botulinum Neurotoxin Assay for Highly Sensitive and Specific Detection of Neutralizing Serum Antibodies. FEBS Lett. 2007, 581, 4803–4808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Berntsson, R.P.-A.; Tepp, W.H.; Pitkin, R.M.; Johnson, E.A.; Stenmark, P.; Dong, M. Botulinum Neurotoxin D-C Uses Synaptotagmin I and II as Receptors, and Human Synaptotagmin II Is Not an Effective Receptor for Type B, D-C and G Toxins. J. Cell Sci. 2012, 125, 3233–3242. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.A. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced Pluripotent Stem Cell Technology: A Decade of Progress. Nat. Rev. Drug Discov. 2017, 16, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Lefort, N.; Feyeux, M.; Bas, C.; Féraud, O.; Bennaceur-Griscelli, A.; Tachdjian, G.; Peschanski, M.; Perrier, A.L. Human Embryonic Stem Cells Reveal Recurrent Genomic Instability at 20q11.21. Nat. Biotechnol. 2008, 26, 1364–1366. [Google Scholar] [CrossRef] [PubMed]
- Merkle, F.T.; Ghosh, S.; Kamitaki, N.; Mitchell, J.; Avior, Y.; Mello, C.; Kashin, S.; Mekhoubad, S.; Ilic, D.; Charlton, M.; et al. Human Pluripotent Stem Cells Recurrently Acquire and Expand Dominant Negative P53 Mutations. Nature 2017, 545, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Taapken, S.M.; Nisler, B.S.; Newton, M.A.; Sampsell-Barron, T.L.; Leonhard, K.A.; McIntire, E.M.; Montgomery, K.D. Karyotypic Abnormalities in Human Induced Pluripotent Stem Cells and Embryonic Stem Cells. Nat. Biotechnol. 2011, 29, 313–314. [Google Scholar] [CrossRef]
- Chambers, S.M.; Fasano, C.A.; Papapetrou, E.P.; Tomishima, M.; Sadelain, M.; Studer, L. Highly Efficient Neural Conversion of Human ES and IPS Cells by Dual Inhibition of SMAD Signaling. Nat. Biotechnol. 2009, 27, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Espuny-Camacho, I.; Michelsen, K.A.; Gall, D.; Linaro, D.; Hasche, A.; Bonnefont, J.; Bali, C.; Orduz, D.; Bilheu, A.; Herpoel, A.; et al. Pyramidal Neurons Derived from Human Pluripotent Stem Cells Integrate Efficiently into Mouse Brain Circuits In Vivo. Neuron 2013, 77, 440–456. [Google Scholar] [CrossRef] [Green Version]
- Gribaudo, S.; Tixador, P.; Bousset, L.; Fenyi, A.; Lino, P.; Melki, R.; Peyrin, J.-M.; Perrier, A.L. Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network. Stem Cell Rep. 2019, 12, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Kirwan, P.; Smith, J.; Robinson, H.P.C.; Livesey, F.J. Human Cerebral Cortex Development from Pluripotent Stem Cells to Functional Excitatory Synapses. Nat. Neurosci. 2012, 15, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Kirkeby, A.; Grealish, S.; Wolf, D.A.; Nelander, J.; Wood, J.; Lundblad, M.; Lindvall, O.; Parmar, M. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions. Cell Rep. 2012, 1, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Kriks, S.; Shim, J.-W.; Piao, J.; Ganat, Y.M.; Wakeman, D.R.; Xie, Z.; Carrillo-Reid, L.; Auyeung, G.; Antonacci, C.; Buch, A.; et al. Dopamine Neurons Derived from Human ES Cells Efficiently Engraft in Animal Models of Parkinson’s Disease. Nature 2011. [Google Scholar] [CrossRef]
- Nolbrant, S.; Heuer, A.; Parmar, M.; Kirkeby, A. Generation of High-Purity Human Ventral Midbrain Dopaminergic Progenitors for in Vitro Maturation and Intracerebral Transplantation. Nat. Protoc. 2017, 12, 1962–1979. [Google Scholar] [CrossRef]
- Aubry, L.; Bugi, A.; Lefort, N.; Rousseau, F.; Peschanski, M.; Perrier, A.L. Striatal Progenitors Derived from Human ES Cells Mature into DARPP32 Neurons in Vitro and in Quinolinic Acid-Lesioned Rats. Proc. Natl. Acad. Sci. USA 2008, 105, 16707–16712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Hu, B.; Liu, Y.; Vermilyea, S.C.; Liu, H.; Gao, L.; Sun, Y.; Zhang, X.; Zhang, S.-C. Human Embryonic Stem Cell-Derived GABA Neurons Correct Locomotion Deficits in Quinolinic Acid-Lesioned Mice. Cell Stem Cell 2012, 10, 455–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoleau, C.; Varela, C.; Bonnefond, C.; Maury, Y.; Bugi, A.; Aubry, L.; Viegas, P.; Bourgois-Rocha, F.; Peschanski, M.; Perrier, A.L. Embryonic Stem Cells Neural Differentiation Qualifies the Role of Wnt/β-Catenin Signals in Human Telencephalic Specification and Regionalization: Human ESC Telencephalic Differentiation. Stem Cells 2013, 31, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Pomeshchik, Y.; Klementieva, O.; Gil, J.; Martinsson, I.; Hansen, M.G.; de Vries, T.; Sancho-Balsells, A.; Russ, K.; Savchenko, E.; Collin, A.; et al. Human IPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Rep. 2020, 15, 256–273. [Google Scholar] [CrossRef]
- Yu, D.X.; Di Giorgio, F.P.; Yao, J.; Marchetto, M.C.; Brennand, K.; Wright, R.; Mei, A.; Mchenry, L.; Lisuk, D.; Grasmick, J.M.; et al. Modeling Hippocampal Neurogenesis Using Human Pluripotent Stem Cells. Stem Cell Rep. 2014, 2, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Malboubi, M.; Li, Y.; George, J.H.; Jerusalem, A.; Szele, F.; Thompson, M.S.; Ye, H. Rapid and Efficient Differentiation of Functional Motor Neurons from Human IPSC for Neural Injury Modelling. Stem Cell Res. 2018, 32, 126–134. [Google Scholar] [CrossRef]
- Maury, Y.; Côme, J.; Piskorowski, R.A.; Salah-Mohellibi, N.; Chevaleyre, V.; Peschanski, M.; Martinat, C.; Nedelec, S. Combinatorial Analysis of Developmental Cues Efficiently Converts Human Pluripotent Stem Cells into Multiple Neuronal Subtypes. Nat. Biotechnol. 2015, 33, 89. [Google Scholar] [CrossRef]
- Eiges, R.; Urbach, A.; Malcov, M.; Frumkin, T.; Schwartz, T.; Amit, A.; Yaron, Y.; Eden, A.; Yanuka, O.; Benvenisty, N.; et al. Developmental Study of Fragile X Syndrome Using Human Embryonic Stem Cells Derived from Preimplantation Genetically Diagnosed Embryos. Cell Stem Cell 2007, 1, 568–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marteyn, A.; Maury, Y.; Gauthier, M.M.; Lecuyer, C.; Vernet, R.; Denis, J.A.; Pietu, G.; Peschanski, M.; Martinat, C. Mutant Human Embryonic Stem Cells Reveal Neurite and Synapse Formation Defects in Type 1 Myotonic Dystrophy. Cell Stem Cell 2011, 8, 434–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateizel, I.; De Temmerman, N.; Ullmann, U.; Cauffman, G.; Sermon, K.; Van de Velde, H.; De Rycke, M.; Degreef, E.; Devroey, P.; Liebaers, I.; et al. Derivation of Human Embryonic Stem Cell Lines from Embryos Obtained after IVF and after PGD for Monogenic Disorders. Hum. Reprod. 2006, 21, 503–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbach, A.; Benvenisty, N. Studying Early Lethality of 45,XO (Turner’s Syndrome) Embryos Using Human Embryonic Stem Cells. PLoS ONE 2009, 4, e4175. [Google Scholar] [CrossRef]
- Halevy, T.; Urbach, A. Comparing ESC and IPSC—Based Models for Human Genetic Disorders. J. Clin. Med. 2014, 3, 1146–1162. [Google Scholar] [CrossRef] [Green Version]
- Tulpule, A.; Lensch, M.W.; Miller, J.D.; Austin, K.; D’Andrea, A.; Schlaeger, T.M.; Shimamura, A.; Daley, G.Q. Knockdown of Fanconi Anemia Genes in Human Embryonic Stem Cells Reveals Early Developmental Defects in the Hematopoietic Lineage. Blood 2010, 115, 3453–3462. [Google Scholar] [CrossRef] [Green Version]
- Urbach, A. Modeling for Lesch-Nyhan Disease by Gene Targeting in Human Embryonic Stem Cells. Stem Cells 2004, 22, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, N.; Kumanchik, L.; Guo, X.; Sommerhage, F.; Cai, Y.; Jackson, M.; Martin, C.; Saad, G.; McAleer, C.W.; Wang, Y.; et al. Stem Cell Derived Phenotypic Human Neuromuscular Junction Model for Dose Response Evaluation of Therapeutics. Biomaterials 2018, 166, 64–78. [Google Scholar] [CrossRef]
- Duchesne de Lamotte, J.; Roqueviere, S.; Gautier, H.; Raban, E.; Bouré, C.; Fonfria, E.; Krupp, J.; Nicoleau, C. HiPSC-Derived Neurons Provide a Robust and Physiologically Relevant In Vitro Platform to Test Botulinum Neurotoxins. Front. Pharmacol. 2021, 11. [Google Scholar] [CrossRef]
- Denham, M.; Dottori, M. Neural Differentiation of Induced Pluripotent Stem Cells. In Neurodegeneration; Manfredi, G., Kawamata, H., Eds.; Humana Press: Totowa, NJ, USA, 2011; Volume 793, pp. 99–110. ISBN 978-1-61779-327-1. [Google Scholar]
- Tao, Y.; Zhang, S.-C. Neural Subtype Specification from Human Pluripotent Stem Cells. Cell Stem Cell 2016, 19, 573–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoleau, C.; De Lamotte, J.D.; Raban, E.; Boude, E.; Noirmain, F.; Krupp, J. Assessment of Multiple HiPSC-Derived Models for Botulinum Neurotoxin Testing. Toxicon 2018, 156, S85. [Google Scholar] [CrossRef]
- Pellett, S.; Tepp, W.H.; Johnson, E.A. Botulinum Neurotoxins A, B, C, E, and F Preferentially Enter Cultured Human Motor Neurons Compared to Other Cultured Human Neuronal Populations. FEBS Lett. 2019. [Google Scholar] [CrossRef]
- Schenke, M.; Schjeide, B.-M.; Püschel, G.P.; Seeger, B. Analysis of Motor Neurons Differentiated from Human Induced Pluripotent Stem Cells for the Use in Cell-Based Botulinum Neurotoxin Activity Assays. Toxins 2020, 12, 276. [Google Scholar] [CrossRef] [PubMed]
- Whitemarsh, R.C.M.; Strathman, M.J.; Chase, L.G.; Stankewicz, C.; Tepp, W.H.; Johnson, E.A.; Pellett, S. Novel Application of Human Neurons Derived from Induced Pluripotent Stem Cells for Highly Sensitive Botulinum Neurotoxin Detection. Toxicol. Sci. 2012, 126, 426–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNutt, P.; Beske, P.; Thirunavukkarsu, N. Cell-Based Assays for Neurotoxins. In Biological Toxins and Bioterrorism; Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 247–271. ISBN 978-94-007-5868-1. [Google Scholar]
- Kuijlaars, J.; Oyelami, T.; Diels, A.; Rohrbacher, J.; Versweyveld, S.; Meneghello, G.; Tuefferd, M.; Verstraelen, P.; Detrez, J.R.; Verschuuren, M.; et al. Sustained Synchronized Neuronal Network Activity in a Human Astrocyte Co-Culture System. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherf, J.M.; Hu, X.S.; Tepp, W.H.; Ichtchenko, K.; Johnson, E.A.; Pellett, S. Analysis of Gene Expression in Induced Pluripotent Stem Cell-Derived Human Neurons Exposed to Botulinum Neurotoxin A Subtype 1 and a Type A Atoxic Derivative. PLoS ONE 2014, 9, e111238. [Google Scholar] [CrossRef] [Green Version]
- Pellett, S.; Tepp, W.H.; Scherf, J.M.; Johnson, E.A. Botulinum Neurotoxins Can Enter Cultured Neurons Independent of Synaptic Vesicle Recycling. PLoS ONE 2015, 10, e0133737. [Google Scholar] [CrossRef] [Green Version]
- Pellett, S.; Schwartz, M.P.; Tepp, W.H.; Josephson, R.; Scherf, J.M.; Pier, C.L.; Thomson, J.A.; Murphy, W.L.; Johnson, E.A. Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin. Sci. Rep. 2015, 5, 14566. [Google Scholar] [CrossRef] [Green Version]
- Pellett, S.; Tepp, W.H.; Scherf, J.M.; Pier, C.L.; Johnson, E.A. Activity of Botulinum Neurotoxin Type D (Strain 1873) in Human Neurons. Toxicon 2015, 101, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellett, S.; Tepp, W.H.; Johnson, E.A.; Sesardic, D. Assessment of ELISA as Endpoint in Neuronal Cell-Based Assay for BoNT Detection Using HiPSC Derived Neurons. J. Pharmacol. Toxicol. Methods 2017, 88, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bremer, P.T.; Pellett, S.; Carolan, J.P.; Tepp, W.H.; Eubanks, L.M.; Allen, K.N.; Johnson, E.A.; Janda, K.D. Metal Ions Effectively Ablate the Action of Botulinum Neurotoxin A. J. Am. Chem. Soc. 2017, 139, 7264–7272. [Google Scholar] [CrossRef] [PubMed]
- Pellett, S.; Tepp, W.H.; Lin, G.; Johnson, E.A. Substrate Cleavage and Duration of Action of Botulinum Neurotoxin Type FA (“H, HA”). Toxicon 2018, 147, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.S.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Pellett, S. Isolation and Characterization of the Novel Botulinum Neurotoxin A Subtype 6. mSphere 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoleau, C.; Donald, S.; Pons, L.; De Lamotte, J.D.; Raban, E.; Fonfria, E.; Krupp, J. Translational Value of HiPSC-Derived Models for Botulinum Neurotoxin Research. Toxicon 2018, 156, S84–S85. [Google Scholar] [CrossRef]
- Dunlop, J.; Bowlby, M.; Peri, R.; Vasilyev, D.; Arias, R. High-Throughput Electrophysiology: An Emerging Paradigm for Ion-Channel Screening and Physiology. Nat. Rev. Drug Discov. 2008, 7, 358–368. [Google Scholar] [CrossRef]
- Yu, H.; Li, M.; Wang, W.; Wang, X. High Throughput Screening Technologies for Ion Channels. Acta Pharmacol. Sin. 2016, 37, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Arezzo, J.C.; Litwak, M.S.; Zotova, E.G. Correlation and Dissociation of Electrophysiology and Histopathology in the Assessment of Toxic Neuropathy. Toxicol. Pathol. 2011, 39, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbard, K.; Beske, P.; Lyman, M.; McNutt, P. Functional Evaluation of Biological Neurotoxins in Networked Cultures of Stem Cell-Derived Central Nervous System Neurons. J. Vis. Exp. 2015. [Google Scholar] [CrossRef] [Green Version]
- Beske, P.H.; Bradford, A.B.; Hoffman, K.M.; Mason, S.J.; McNutt, P.M. In Vitro and Ex Vivo Screening of Candidate Therapeutics to Restore Neurotransmission in Nerve Terminals Intoxicated by Botulinum Neurotoxin Serotype A1. Toxicon 2018, 147, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Beske, P.H.; Bradford, A.B.; Grynovicki, J.O.; Glotfelty, E.J.; Hoffman, K.M.; Hubbard, K.S.; Tuznik, K.M.; McNutt, P.M. Botulinum and Tetanus Neurotoxin-Induced Blockade of Synaptic Transmission in Networked Cultures of Human and Rodent Neurons. Toxicol. Sci. 2016, 149, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Beske, P.H.; Scheeler, S.M.; Adler, M.; McNutt, P.M. Accelerated Intoxication of GABAergic Synapses by Botulinum Neurotoxin A Disinhibits Stem Cell-Derived Neuron Networks Prior to Network Silencing. Front. Cell. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkinson, S.P.; Grandgirard, D.; Heidemann, M.; Tscherter, A.; Avondet, M.-A.; Leib, S.L. Embryonic Stem Cell-Derived Neurons Grown on Multi-Electrode Arrays as a Novel In Vitro Bioassay for the Detection of Clostridium Botulinum Neurotoxins. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Odawara, A.; Matsuda, N.; Ishibashi, Y.; Yokoi, R.; Suzuki, I. Toxicological Evaluation of Convulsant and Anticonvulsant Drugs in Human Induced Pluripotent Stem Cell-Derived Cortical Neuronal Networks Using an MEA System. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-Timescale, Genetically Targeted Optical Control of Neural Activity. Nat. Neurosci. 2005, 8, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.K.; Lakshminarayananan, V. Optical Techniques in Optogenetics. J. Mod. Opt. 2015, 62, 949–970. [Google Scholar] [CrossRef]
- Montagni, E.; Resta, F.; Mascaro, A.L.A.; Pavone, F.S. Optogenetics in Brain Research: From a Strategy to Investigate Physiological Function to a Therapeutic Tool. Photonics 2019, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Sinnen, B.L.; Boxer, E.E.; Schneider, M.W.; Grybko, M.J.; Buchta, W.C.; Gibson, E.S.; Wysoczynski, C.L.; Ford, C.P.; Gottschalk, A.; et al. A Photoactivatable Botulinum Neurotoxin for Inducible Control of Neurotransmission. Neuron 2019, 101, 863–875. [Google Scholar] [CrossRef] [Green Version]
- Paavilainen, T.; Pelkonen, A.; Mäkinen, M.E.-L.; Peltola, M.; Huhtala, H.; Fayuk, D.; Narkilahti, S. Effect of Prolonged Differentiation on Functional Maturation of Human Pluripotent Stem Cell-Derived Neuronal Cultures. Stem Cell Res. 2018, 27, 151–161. [Google Scholar] [CrossRef]
- Odawara, A.; Katoh, H.; Matsuda, N.; Suzuki, I. Physiological Maturation and Drug Responses of Human Induced Pluripotent Stem Cell-Derived Cortical Neuronal Networks in Long-Term Culture. Sci. Rep. 2016, 6, 26181. [Google Scholar] [CrossRef] [Green Version]
- Lam, R.S.; Töpfer, F.M.; Wood, P.G.; Busskamp, V.; Bamberg, E. Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures. PLoS ONE 2017, 12, e0169506. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhou, L.; Wagner, A.M.; Marchetto, M.C.N.; Muotri, A.R.; Gage, F.H.; Chen, G. Astroglial Cells Regulate the Developmental Timeline of Human Neurons Differentiated from Induced Pluripotent Stem Cells. Stem Cell Res. 2013, 11, 743–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, S.K.; Jordan-Sciutto, K.L.; Anderson, S.A. Protocol for Tri-Culture of HiPSC-Derived Neurons, Astrocytes, and Microglia. STAR Protoc. 2020, 1, 100190. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.B.; Poulsen, J.N.; Arendt-Nielsen, L.; Gazerani, P. Botulinum Neurotoxin Type A Modulates Vesicular Release of Glutamate from Satellite Glial Cells. J. Cell. Mol. Med. 2015, 19, 1900–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojewska, E.; Piotrowska, A.; Popiolek-Barczyk, K.; Mika, J. Botulinum Toxin Type A—A Modulator of Spinal Neuron–Glia Interactions under Neuropathic Pain Conditions. Toxins 2018, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska, A.; Popiolek-Barczyk, K.; Pavone, F.; Mika, J. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures. Front. Cell. Infect. Microbiol. 2017, 7, 141. [Google Scholar] [CrossRef]
- Kim, J.; Koo, B.-K.; Knoblich, J.A. Human Organoids: Model Systems for Human Biology and Medicine. Nat. Rev. Mol. Cell Biol. 2020, 21, 571–584. [Google Scholar] [CrossRef]
- Liu, C.; Oikonomopoulos, A.; Sayed, N.; Wu, J.C. Modeling Human Diseases with Induced Pluripotent Stem Cells: From 2D to 3D and Beyond. Development 2018, 145, dev156166. [Google Scholar] [CrossRef] [Green Version]
- Takebe, T.; Zhang, B.; Radisic, M. Synergistic Engineering: Organoids Meet Organs-on-a-Chip. Cell Stem Cell 2017, 21, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Dutta, D.; Heo, I.; Clevers, H. Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends Mol. Med. 2017, 23, 393–410. [Google Scholar] [CrossRef]
- Kim, H.; Park, H.J.; Choi, H.; Chang, Y.; Park, H.; Shin, J.; Kim, J.; Lengner, C.J.; Lee, Y.K.; Kim, J. Modeling G2019S-LRRK2 Sporadic Parkinson’s Disease in 3D Midbrain Organoids. Stem Cell Rep. 2019, 12, 518–531. [Google Scholar] [CrossRef] [Green Version]
- Völkner, M.; Zschätzsch, M.; Rostovskaya, M.; Overall, R.W.; Busskamp, V.; Anastassiadis, K.; Karl, M.O. Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis. Stem Cell Rep. 2016, 6, 525–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaziotis, F.; de Brito, M.C.; Madrigal, P.; Bertero, A.; Saeb-Parsy, K.; Soares, F.A.C.; Schrumpf, E.; Melum, E.; Karlsen, T.H.; Bradley, J.A.; et al. Cholangiocytes Derived from Human Induced Pluripotent Stem Cells for Disease Modeling and Drug Validation. Nat. Biotechnol. 2015, 33, 845–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, D.C.; Alva-Ornelas, J.A.; Sucre, J.M.S.; Vijayaraj, P.; Durra, A.; Richardson, W.; Jonas, S.J.; Paul, M.K.; Karumbayaram, S.; Dunn, B.; et al. Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling: Three-Dimensional Bioengineered Lung Tissue. Stem Cells Transl. Med. 2017, 6, 622–633. [Google Scholar] [CrossRef]
- Freedman, B.S.; Brooks, C.R.; Lam, A.Q.; Fu, H.; Morizane, R.; Agrawal, V.; Saad, A.F.; Li, M.K.; Hughes, M.R.; Werff, R.V.; et al. Modelling Kidney Disease with CRISPR-Mutant Kidney Organoids Derived from Human Pluripotent Epiblast Spheroids. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, D.J.; Li, Y.; Kerr, C.M.; Yao, J.; Beeson, G.C.; Coyle, R.C.; Chen, X.; Jia, J.; Damon, B.; Wilson, R.; et al. Human Cardiac Organoids for the Modelling of Myocardial Infarction and Drug Cardiotoxicity. Nat. Biomed. Eng. 2020, 4, 446–462. [Google Scholar] [CrossRef]
- Barbeau, S.; Tahraoui-Bories, J.; Legay, C.; Martinat, C. Building Neuromuscular Junctions in Vitro. Development 2020, 147, dev193920. [Google Scholar] [CrossRef]
- Faustino Martins, J.-M.; Fischer, C.; Urzi, A.; Vidal, R.; Kunz, S.; Ruffault, P.-L.; Kabuss, L.; Hube, I.; Gazzerro, E.; Birchmeier, C.; et al. Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell 2020, 26, 172–186. [Google Scholar] [CrossRef]
- Andersen, J.; Revah, O.; Miura, Y.; Thom, N.; Amin, N.D.; Kelley, K.W.; Singh, M.; Chen, X.; Thete, M.V.; Walczak, E.M.; et al. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell 2020, 183, 1913–1929. [Google Scholar] [CrossRef]
- Bellmann, J.; Goswami, R.Y.; Girardo, S.; Rein, N.; Hosseinzadeh, Z.; Hicks, M.R.; Busskamp, V.; Pyle, A.D.; Werner, C.; Sterneckert, J. A Customizable Microfluidic Platform for Medium-Throughput Modeling of Neuromuscular Circuits. Biomaterials 2019, 225, 119537. [Google Scholar] [CrossRef] [PubMed]
- Osaki, T.; Uzel, S.G.M.; Kamm, R.D. On-Chip 3D Neuromuscular Model for Drug Screening and Precision Medicine in Neuromuscular Disease. Nat. Protoc. 2020, 15, 421–449. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.C.; Cabral, J.M.S. Organoids for cell therapy and drug discovery. In Precision Medicine for Investigators, Practitioners and Providers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 461–471. ISBN 978-0-12-819178-1. [Google Scholar]
- Takahashi, T. Organoids for Drug Discovery and Personalized Medicine. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 447–462. [Google Scholar] [CrossRef] [PubMed]
Serotype | BoNTs Receptor | Reference | Target | Reference |
---|---|---|---|---|
A | SV2A, SV2B, SV2C | [40,41] | SNAP25 | [42,43,44,45] |
B | SYT-I, SYT-II | [46,47,48] | VAMP | [49] |
C | GD1b, GT1b | [50] | SNAP25, Syntaxin | [42,51,52] |
D | SV2A, SV2B, SV2C | [53] | VAMP | [43,49,54] |
E | SV2A, SV2B | [55,56] | SNAP25 | [43,44,45] |
F | SV2A, SV2B, SV2C | [57] | VAMP | [43,49,54] |
G | SYT-I, SYT-II | [47,48,58,59,60] | VAMP | [61] |
H | SV2A, SV2B, SV2C | [62] | VAMP | [63,64] |
X | not identified | VAMP1/2/3/4/5, Ykt6 | [33,34] |
Commercial Name | Formulation | Serotype | Approved Indications | Date |
---|---|---|---|---|
DYSPORT® | Abobotulinumtoxin | A | Blepharospasm | 1990 |
Hemifacial spasm | 1990 | |||
Cervical dystonia | 2009 | |||
Glabellar and lateral canthal lines | 2009 | |||
Adult upper limb spasticity | 2015 | |||
Pediatric lower limb spasticity | 2016 | |||
Adult lower limb spasticity | 2017 | |||
Pediatric upper limb spasticity | 2019 | |||
BOTOX® | Onabotulinumtoxin | A | Blepharospasm | 1989 |
Strabismus | 1989 | |||
Cervical dystonia | 2000 | |||
Glabellar lines | 2002 | |||
Hyperhidrosis | 2004 | |||
Adult upper limb spasticity | 2010 | |||
Chronic migraine | 2010 | |||
Neurogenic overactive bladder | 2011 | |||
Urinary incontinence | 2011 | |||
Idiopathic overactive bladder | 2013 | |||
Adult lower limb spasticity | 2016 | |||
Pediatric upper/lower limb spasticity | 2019 | |||
Pediatric spasticity | 2020 | |||
XEOMIN® | Incobotulinumtoxin | A | Blepharospasm | 2010 |
Strabismus | 2010 | |||
Cervical dystonia | 2010 | |||
Glabellar lines | 2011 | |||
Upper limb spasticity | 2015 | |||
Sialorrhea/Excessive drooling | 2018 | |||
Blepharospasm/Involuntary blinking | 2019 | |||
Chronic sialorrhea | 2020 | |||
MYOBLOC/NEUROBLOC® | Rimabotulinumtoxin | B | Blepharospasm | 2010 |
Strabismus | 2010 | |||
Cervical dystonia | 2010 | |||
Glabellar lines | 2011 | |||
Chronic sialorrhea | 2019 |
hiPSC-d Neuronal Type | Source | Culture Time | BoNT Serotypes Tested | Treatment Duration | Assay/Read-Out | Outcomes | Reference |
---|---|---|---|---|---|---|---|
GABA | Prop | 4, 7 days | A, B, C and E | 6, 16, 24, 48 h | WB/SNARE-cleavage | EC50 | [163] |
GABA | Prop | 2, 14 days | A and catalytically inactive A | 48 h | Transcriptomic analysis | Transcriptomic signature | [166] |
GABA | Prop | 7 days | A, B, D, E and F | 48 h | WB/SNARE-cleavage | EC50 | [167] |
GABA | Prop | 7 days | A | 48 h | WB/SNARE-cleavage | EC50 | [168] |
NSC | Prop | 28 days | A | 48 h | WB/SNARE-cleavage | EC50 | [168] |
GABA | Prop | 7 days | A, B and D | 48 h | WB/SNARE-cleavage | EC50 | [169] |
NSC | Prop | 28 days | A, B and D | 48 h | WB/SNARE-cleavage | EC50 | [169] |
GABA | Prop | 7 days | A | 48 h | WB and ELISA/SNARE-cleavage | EC50 | [170] |
NSC | Prop | 28 days | A | 48 h | WB and ELISA/SNARE-cleavage | EC50 | [170] |
GABA | Prop | 7 days | A | 6 h | WB/SNARE-cleavage | EC50 | [171] |
GABA | Prop | 7 days | FA, F subtypes and B | 48 h | WB/SNARE-cleavage | EC50 | [172] |
GABA | Prop | 7 days | A subtypes | 48 h | WB/SNARE-cleavage | EC50 | [173] |
GABA, Gluta, MN, Peripheric | Prop | 14 days | A and E | 24 h | WB/SNARE-cleavage | EC50 | [160] |
MN | Prop | 14 days | A and E | 24 h | WB/SNARE-cleavage | EC50 | [174] |
GABA | Prop | 14 days | A, B and modified B | 24 h | NT Release assay/Glycine concentration | EC50 | [96] |
GABA, Gluta, MN, Dopa | Prop | 14 days | A, B, C, E and F | 48 h | WB/SNARE-cleavage | EC50 | [161] |
MN/Coculture with human myotubes | Pub | >25 days | A | <1 h | NMJ model in chips/Frequency of myotubes contraction | IC50 | [156] |
MN | Pub | >28 days | A | 48 h | WB/SNARE-cleavage | IC50 | [162] |
GABA, Gluta, MN, Peripheric | Prop | 14 days | A and E | 24 h | WB/SNARE-cleavage | EC50 | [157] |
MN/Coculture with human myotubes | Prop | 14 days | A and catalytically inactive A | 6, 24 h | NMJ model P96/Frequency of myotubes contraction | 3 doses | [157] |
2D Culture | 3D Culture | |
---|---|---|
Culture quality | High reproducibility, long-term culture, simplicity of culture | Low reproducibility, cultures more difficult to carry out |
In vivo modeling | Not mimic the native structure of the tissue | Tissues and organs are in 3D form |
Extracellular environment | No in vivo-like microenvironment and no niches | Environmental niches are created |
Cell characteristics | Loss of diverse phenotype and polarity | Preservation of diverse phenotype and polarity |
Access to essential compounds | Unlimited access to oxygen, nutrients, signaling molecules | Variable access to oxygen, nutrients, signaling molecules |
Cost | Cheap, commercially available medium and products | Expensive, more time-consuming, fewer commercially available products |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchesne de Lamotte, J.; Perrier, A.; Martinat, C.; Nicoleau, C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int. J. Mol. Sci. 2021, 22, 7524. https://doi.org/10.3390/ijms22147524
Duchesne de Lamotte J, Perrier A, Martinat C, Nicoleau C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. International Journal of Molecular Sciences. 2021; 22(14):7524. https://doi.org/10.3390/ijms22147524
Chicago/Turabian StyleDuchesne de Lamotte, Juliette, Anselme Perrier, Cécile Martinat, and Camille Nicoleau. 2021. "Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics" International Journal of Molecular Sciences 22, no. 14: 7524. https://doi.org/10.3390/ijms22147524
APA StyleDuchesne de Lamotte, J., Perrier, A., Martinat, C., & Nicoleau, C. (2021). Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. International Journal of Molecular Sciences, 22(14), 7524. https://doi.org/10.3390/ijms22147524