IgA Vasculitis: Etiology, Treatment, Biomarkers and Epigenetic Changes
Abstract
:1. Introduction
2. Genetics
3. IgA Structure and Flexibility
3.1. The Structure of IgA
3.2. The Flexibility of IgA
4. Triggers and Pathogenesis of IgA Vasculitis
4.1. Triggers of IgA Vasculitis
4.2. The Pathogenesis of IgA Vasculitis
4.3. The Difference of IgA between Adults and Pediatrics
4.4. The Relationship with Coronavirus Disease 2019 (COVID-19)
4.5. The Relationship with TNF or IL-17 Inhibitors
5. Symptoms
6. Treatment
6.1. Corticosteroids
6.2. Colchicine
6.3. Dapsone
6.4. Intravenous Immunoglobulin
6.5. Rituximab
6.6. Angiotensin-Converting-Enzyme Inhibitor
6.7. Omega-3 Fatty Acids
6.8. Immunosuppressive Agents
6.9. Lectin Pathway Treatment
7. Biomarker
8. Epigenetic Modification
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Mejías, R.; Castañeda, S.; Genre, F.; Remuzgo-Martínez, S.; Carmona, F.D.; Llorca, J.; Blanco, R.; Martín, J.; González-Gay, M.A. Genetics of immunoglobulin-A vasculitis (Henoch-Schönlein purpura): An updated review. Autoimmun. Rev. 2018, 17, 301–315. [Google Scholar] [CrossRef]
- González-Gay, M.A.; López-Mejías, R.; Pina, T.; Blanco, R.; Castañeda, S. IgA Vasculitis: Genetics and Clinical and Therapeutic Management. Curr. Rheumatol. Rep. 2018, 20, 24. [Google Scholar] [CrossRef]
- López-Mejías, R.; Genre, F.; Pérez, B.S.; Castañeda, S.; Ortego-Centeno, N.; Llorca, J.; Ubilla, B.; Remuzgo-Martínez, S.; Mijares, V.; Pina, T.; et al. HLA-DRB1 association with Henoch-Schonlein purpura. Arthritis Rheumatol. 2015, 67, 823–827. [Google Scholar] [CrossRef] [Green Version]
- López-Mejías, R.; Genre, F.; Pérez, B.S.; Castañeda, S.; Ortego-Centeno, N.; Llorca, J.; Ubilla, B.; Remuzgo-Martínez, S.; Mijares, V.; Pina, T.; et al. Association of HLA-B*41:02 with Henoch-Schönlein Purpura (IgA Vasculitis) in Spanish individuals irrespective of the HLA-DRB1 status. Arthritis Res. Ther. 2015, 17, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Mejías, R.; Carmona, F.D.; Castañeda, S.; Genre, F.; Remuzgo-Martínez, S.; Sevilla-Perez, B.; Ortego-Centeno, N.; Llorca, J.; Ubilla, B.; Mijares, V.; et al. A genome-wide association study suggests the HLA Class II region as the major susceptibility locus for IgA vasculitis. Sci. Rep. 2017, 7, 5088. [Google Scholar] [CrossRef] [PubMed]
- Amoli, M.M.; Thomson, W.; Hajeer, A.H.; Calviño, M.C.; Garcia-Porrua, C.; Ollier, W.E.; Gonzalez-Gay, M.A. Interleukin 1 receptor antagonist gene polymorphism is associated with severe renal involvement and renal sequelae in Henoch-Schönlein purpura. J. Rheumatol. 2002, 29, 1404–1407. [Google Scholar]
- Amoli, M.M.; Thomson, W.; Hajeer, A.H.; Calviño, M.C.; Garcia-Porrua, C.; Ollier, W.E.; Gonzalez-Gay, M.A. Interleukin 8 gene polymorphism is associated with increased risk of nephritis in cutaneous vasculitis. J. Rheumatol. 2002, 29, 2367–2370. [Google Scholar] [PubMed]
- Carmona, E.G.; García-Giménez, J.A.; López-Mejías, R.; Khor, C.C.; Lee, J.K.; Taskiran, E.; Ozen, S.; Hocevar, A.; Liu, L.; Gorenjak, M.; et al. Identification of a shared genetic risk locus for Kawasaki disease and IgA vasculitis by a cross-phenotype meta-analysis. Rheumatology 2021. [Google Scholar] [CrossRef]
- Bakema, J.E.; van Egmond, M. Immunoglobulin A: A next generation of therapeutic antibodies? MAbs 2011, 3, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Van Egmond, M.; Damen, C.A.; van Spriel, A.B.; Vidarsson, G.; van Garderen, E.; van de Winkel, J.G. IgA and the IgA Fc receptor. Trends Immunol. 2001, 22, 205–211. [Google Scholar] [CrossRef]
- Fuller, A.O.; Spear, P.G. Specificities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. J. Virol. 1985, 55, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slack, E.; Balmer, M.L.; Fritz, J.H.; Hapfelmeier, S. Functional flexibility of intestinal IgA—Broadening the fine line. Front. Immunol. 2012, 3, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pabst, O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol. 2012, 12, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Sano, K.; Suzuki, T.; Ainai, A.; Taga, Y.; Ueno, T.; Tabata, K.; Saito, K.; Wada, Y.; Ohara, Y.; et al. IgA tetramerization improves target breadth but not peak potency of functionality of anti-influenza virus broadly neutralizing antibody. PLoS Pathog. 2019, 15, e1007427. [Google Scholar] [CrossRef] [Green Version]
- Correa, A.; Trajtenberg, F.; Obal, G.; Pritsch, O.; Dighiero, G.; Oppezzo, P.; Buschiazzo, A. Structure of a human IgA1 Fab fragment at 1.55 Å resolution: Potential effect of the constant domains on antigen-affinity modulation. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, Y.; Swaminathan, C.P.; Smith-Gill, S.J.; Mariuzza, R.A. Magnitude of the hydrophobic effect at central versus peripheral sites in protein-protein interfaces. Structure 2005, 13, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Worobec, E.A.; Paranchych, W.; Parker, J.M.; Taneja, A.K.; Hodges, R.S. Antigen-antibody interaction. The immunodominant region of EDP208 pili. J. Biol. Chem. 1985, 260, 938–943. [Google Scholar] [CrossRef]
- Novak, J.; Vu, H.L.; Novak, L.; Julian, B.A.; Mestecky, J.; Tomana, M. Interactions of human mesangial cells with IgA and IgA-containing immune complexes. Kidney Int. 2002, 62, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, M.; Inoue, Y.; Azuma, N.; Kanno, C. Natural polyreactive immunoglobulin A antibodies produced in mouse Peyer’s patches. Immunology 1999, 97, 9–17. [Google Scholar] [CrossRef]
- Quan, C.P.; Berneman, A.; Pires, R.; Avrameas, S.; Bouvet, J.P. Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect. Immun. 1997, 65, 3997–4004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; van Oostrom, D.; Li, J.; Savelkoul, H.F.J. Innate Mechanisms in Selective IgA Deficiency. Front. Immunol. 2021, 12, 649112. [Google Scholar] [CrossRef]
- Nakatsuka, K. Serum anti-streptococcal IgA, IgG and IgM antibodies in IgA-associated diseases. Acta Paediatr. Jpn. 1993, 35, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Akagi, M.; Iwanaga, N.; Torisu, Y.; Fujita, H.; Kawahara, C.; Horai, Y.; Izumi, Y.; Kawakami, A. IgA Vasculitis Triggered by Infective Endocarditis of Pulmonary Artery with Congenitally Corrected Transposition of the Great Arteries. Int. Heart J. 2020, 61, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Montoliu, J.; Miró, J.M.; Campistol, J.M.; Trilla, A.; Mensa, J.; Torras, A.; Revert, L. Henoch-Schönlein purpura complicating staphylococcal endocarditis in a heroin addict. Am. J. Nephrol. 1987, 7, 137–139. [Google Scholar] [CrossRef]
- Temkiatvises, K.; Nilanont, Y.; Poungvarin, N. Stroke in Henoch-Schönlein purpura associated with methicillin-resistant Staphylococcus aureus septicemia: Report of a case and review of the literature. J. Med. Assoc. Thail. 2008, 91, 1296–1301. [Google Scholar]
- Uggeri, S.; Fabbian, F.; Catizone, L. Henoch-Schönlein purpura due to methicillin-sensitive Staphylococcus aureus bacteremia from central venous catheterization. Clin. Exp. Nephrol. 2008, 12, 219–223. [Google Scholar] [CrossRef]
- Kitamura, T.; Nakase, H.; Iizuka, H. Henoch-Schönlein purpura after postoperative Staphylococcus aureus infection with hepatic IgA nephropathy. J. Nephrol. 2006, 19, 687–690. [Google Scholar] [PubMed]
- Hirayama, K.; Kobayashi, M.; Muro, K.; Yoh, K.; Yamagata, K.; Koyama, A. Specific T-cell receptor usage with cytokinemia in Henoch-Schönlein purpura nephritis associated with Staphylococcus aureus infection. J. Intern. Med. 2001, 249, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.I.; Koh, H.; Lee, J.S. Henoch-Schönlein purpura associated with helicobacter pylori infection: The pathogenic roles of IgA, C3, and cryoglobulins? Pediatr. Dermatol. 2009, 26, 768–769. [Google Scholar] [CrossRef] [PubMed]
- Novák, J.; Szekanecz, Z.; Sebesi, J.; Takáts, A.; Demeter, P.; Bene, L.; Sipka, S.; Csiki, Z. Elevated levels of anti-Helicobacter pylori antibodies in Henoch-Schönlein purpura. Autoimmunity 2003, 36, 307–311. [Google Scholar] [CrossRef]
- Häusler, M.G.; Ramaekers, V.T.; Reul, J.; Meilicke, R.; Heimann, G. Early and late onset manifestations of cerebral vasculitis related to varicella zoster. Neuropediatrics 1998, 29, 202–207. [Google Scholar] [CrossRef]
- Ushigome, Y.; Yamazaki, Y.; Shiohara, T. IgA vasculitis with severe gastrointestinal symptoms may be an unusual manifestation of varicella zoster virus reactivation. Br. J. Dermatol. 2017, 176, 1103–1105. [Google Scholar] [CrossRef] [PubMed]
- Maggiore, G.; Martini, A.; Grifeo, S.; De Giacomo, C.; Scotta, M.S. Hepatitis B virus infection and Schönlein-Henoch purpura. Am. J. Dis. Child. 1984, 138, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Veraldi, S.; Mancuso, R.; Rizzitelli, G.; Gianotti, R.; Ferrante, P. Henoch-Schönlein syndrome associated with human Parvovirus B19 primary infection. Eur. J. Dermatol. 1999, 9, 232–233. [Google Scholar] [PubMed]
- Cioc, A.M.; Sedmak, D.D.; Nuovo, G.J.; Dawood, M.R.; Smart, G.; Magro, C.M. Parvovirus B19 associated adult Henoch Schönlein purpura. J. Cutan. Pathol. 2002, 29, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Brandy-García, A.M.; Santos-Juanes, J.; Suarez, S.; Caminal-Montero, L. IgA vasculitis as a presentation of human immunodeficiency virus infection. Reumatol. Clin. 2020, 16, 298–299. [Google Scholar] [CrossRef]
- Matsumura, M.; Komeda, Y.; Watanabe, T.; Kudo, M. Purpura-free small intestinal IgA vasculitis complicated by cytomegalovirus reactivation. BMJ Case Rep. 2020, 13. [Google Scholar] [CrossRef]
- Kounatidis, D.; Vadiaka, M.; Kouvidou, C.; Sampaziotis, D.; Skourtis, A.; Panagopoulos, F.; Konstantinou, F.; Vallianou, N.G. Clostridioides difficile infection in a patient with immunoglobulin A vasculitis: A triggering factor or a rare complication of the disease? A case-based review. Rheumatol. Int. 2020, 40, 997–1000. [Google Scholar] [CrossRef]
- Roos, A.; Bouwman, L.H.; van Gijlswijk-Janssen, D.J.; Faber-Krol, M.C.; Stahl, G.L.; Daha, M.R. Human IgA activates the complement system via the mannan-binding lectin pathway. J. Immunol. 2001, 167, 2861–2868. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, P.S.; Gorter, A.; Stuurman, M.E.; Van Es, L.A.; Daha, M.R. Activation of the alternative pathway of complement by human serum IgA. Eur. J. Immunol. 1987, 17, 321–326. [Google Scholar] [CrossRef]
- Novak, J.; Moldoveanu, Z.; Renfrow, M.B.; Yanagihara, T.; Suzuki, H.; Raska, M.; Hall, S.; Brown, R.; Huang, W.Q.; Goepfert, A.; et al. IgA nephropathy and Henoch-Schoenlein purpura nephritis: Aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib. Nephrol. 2007, 157, 134–138. [Google Scholar]
- Noval Rivas, M.; Wakita, D.; Franklin, M.K.; Carvalho, T.T.; Abolhesn, A.; Gomez, A.C.; Fishbein, M.C.; Chen, S.; Lehman, T.J.; Sato, K.; et al. Intestinal Permeability and IgA Provoke Immune Vasculitis Linked to Cardiovascular Inflammation. Immunity 2019, 51, 508–521.e6. [Google Scholar] [CrossRef]
- Chorzelski, T.P.; Jabłońska, S.; Maciejowska, E. Linear IgA bullous dermatosis of adults. Clin. Dermatol. 1991, 9, 383–392. [Google Scholar] [CrossRef]
- Van Gool, M.M.J.; van Egmond, M. IgA and FcαRI: Versatile Players in Homeostasis, Infection, and Autoimmunity. Immunotargets Ther. 2020, 9, 351–372. [Google Scholar] [CrossRef]
- Aleyd, E.; Heineke, M.H.; van Egmond, M. The era of the immunoglobulin A Fc receptor FcαRI; Its function and potential as target in disease. Immunol. Rev. 2015, 268, 123–138. [Google Scholar] [CrossRef]
- Davis, S.K.; Selva, K.J.; Kent, S.J.; Chung, A.W. Serum IgA Fc effector functions in infectious disease and cancer. Immunol. Cell Biol. 2020, 98, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Breedveld, A.; van Egmond, M. IgA and FcαRI: Pathological Roles and Therapeutic Opportunities. Front. Immunol. 2019, 10, 553. [Google Scholar] [CrossRef]
- Van Egmond, M.; van Garderen, E.; van Spriel, A.B.; Damen, C.A.; van Amersfoort, E.S.; van Zandbergen, G.; van Hattum, J.; Kuiper, J.; van de Winkel, J.G. FcalphaRI-positive liver Kupffer cells: Reappraisal of the function of immunoglobulin A in immunity. Nat. Med. 2000, 6, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Van der Steen, L.; Tuk, C.W.; Bakema, J.E.; Kooij, G.; Reijerkerk, A.; Vidarsson, G.; Bouma, G.; Kraal, G.; de Vries, H.E.; Beelen, R.H.; et al. Immunoglobulin A: Fc(alpha)RI interactions induce neutrophil migration through release of leukotriene B4. Gastroenterology 2009, 137, e1–e3. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M.; Gerlach, M.; Gerlach, H.; Brett, J.; Wang, F.; Familletti, P.C.; Pan, Y.C.; Olander, J.V.; Connolly, D.T.; Stern, D. Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J. Exp. Med. 1990, 172, 1535–1545. [Google Scholar] [CrossRef]
- Topaloglu, R.; Sungur, A.; Baskin, E.; Besbas, N.; Saatci, U.; Bakkaloglu, A. Vascular endothelial growth factor in Henoch-Schonlein purpura. J. Rheumatol. 2001, 28, 2269–2273. [Google Scholar] [PubMed]
- Yang, Y.H.; Tsai, I.J.; Chang, C.J.; Chuang, Y.H.; Hsu, H.Y.; Chiang, B.L. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schönlein Purpura. PLoS ONE 2015, 10, e0120411. [Google Scholar] [CrossRef]
- Lhotta, K.; Neumayer, H.P.; Joannidis, M.; Geissler, D.; König, P. Renal expression of intercellular adhesion molecule-1 in different forms of glomerulonephritis. Clin. Sci. 1991, 81, 477–481. [Google Scholar] [CrossRef]
- Pillebout, E.; Jamin, A.; Ayari, H.; Housset, P.; Pierre, M.; Sauvaget, V.; Viglietti, D.; Deschenes, G.; Monteiro, R.C.; Berthelot, L. Biomarkers of IgA vasculitis nephritis in children. PLoS ONE 2017, 12, e0188718. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, L.; Jamin, A.; Viglietti, D.; Chemouny, J.M.; Ayari, H.; Pierre, M.; Housset, P.; Sauvaget, V.; Hurtado-Nedelec, M.; Vrtovsnik, F.; et al. Value of biomarkers for predicting immunoglobulin A vasculitis nephritis outcome in an adult prospective cohort. Nephrol. Dial. Transpl. 2018, 33, 1579–1590. [Google Scholar] [CrossRef]
- Kuret, T.; Lakota, K.; Žigon, P.; Ogrič, M.; Sodin-Šemrl, S.; Čučnik, S.; Tomšič, M.; Hočevar, A. Insight into inflammatory cell and cytokine profiles in adult IgA vasculitis. Clin. Rheumatol. 2019, 38, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Rostoker, G.; Rymer, J.C.; Bagnard, G.; Petit-Phar, M.; Griuncelli, M.; Pilatte, Y. Imbalances in serum proinflammatory cytokines and their soluble receptors: A putative role in the progression of idiopathic IgA nephropathy (IgAN) and Henoch-Schönlein purpura nephritis, and a potential target of immunoglobulin therapy? Clin. Exp. Immunol. 1998, 114, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Lv, X.; Liu, Y.; Zhang, J.; Guan, J.; Gai, Z. Circulating midkine in children with Henoch-Schönlein purpura: Clinical implications. Int. Immunopharmacol. 2016, 39, 246–250. [Google Scholar] [CrossRef]
- Purevdorj, N.; Mu, Y.; Gu, Y.; Zheng, F.; Wang, R.; Yu, J.; Sun, X. Clinical significance of the serum biomarker index detection in children with Henoch-Schonlein purpura. Clin. Biochem. 2018, 52, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Takeuchi, S.; Soma, Y.; Kawakami, T. Raised serum levels of interleukins 6 and 8 and antiphospholipid antibodies in an adult patient with Henoch-Schönlein purpura. Clin. Exp. Dermatol. 2013, 38, 730–736. [Google Scholar] [CrossRef] [PubMed]
- De Sousa-Pereira, P.; Woof, J.M. IgA: Structure, Function, and Developability. Antibodies 2019, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Hastings, M.C.; Rizk, D.V.; Kiryluk, K.; Nelson, R.; Zahr, R.S.; Novak, J.; Wyatt, R.J. IgA vasculitis with nephritis: Update of pathogenesis with clinical implications. Pediatr. Nephrol. 2021. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Zhai, S.; Zhang, H.; Lu, J.; Chen, X. Effects of hemoperfusion in the treatment of childhood Henoch-Schönlein purpura nephritis. Int. J. Artif. Organs 2013, 36, 489–497. [Google Scholar] [CrossRef]
- Du, L.; Wang, P.; Liu, C.; Li, S.; Yue, S.; Yang, Y. Multisystemic manifestations of IgA vasculitis. Clin. Rheumatol. 2021, 40, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Schäfer-Elinder, L.; Owman, H.; Lorentzen, J.C.; Rönnelid, J.; Frostegård, J. Induction of IL-4 by platelet-activating factor. Clin. Exp. Immunol. 1996, 106, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Allansmith, M.; McClellan, B.H.; Butterworth, M.; Maloney, J.R. The development of immunoglobulin levels in man. J. Pediatr. 1968, 72, 276–290. [Google Scholar] [CrossRef]
- Van Twillert, I.; van Gaans-van den Brink, J.A.; Poelen, M.C.; Helm, K.; Kuipers, B.; Schipper, M.; Boog, C.J.; Verheij, T.J.; Versteegh, F.G.; van Els, C.A. Age related differences in dynamics of specific memory B cell populations after clinical pertussis infection. PLoS ONE 2014, 9, e85227. [Google Scholar] [CrossRef] [PubMed]
- Szelc, C.M.; Mitcheltree, C.; Roberts, R.L.; Stiehm, E.R. Deficient polymorphonuclear cell and mononuclear cell antibody-dependent cellular cytotoxicity in pediatric and adult human immunodeficiency virus infection. J. Infect. Dis. 1992, 166, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Vakkila, J.; Jaffe, R.; Michelow, M.; Lotze, M.T. Pediatric cancers are infiltrated predominantly by macrophages and contain a paucity of dendritic cells: A major nosologic difference with adult tumors. Clin. Cancer Res. 2006, 12, 2049–2054. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.K.; Wyatt, R.J.; Moldoveanu, Z.; Tomana, M.; Julian, B.A.; Hogg, R.J.; Lee, J.Y.; Huang, W.Q.; Mestecky, J.; Novak, J. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr. Nephrol. 2007, 22, 2067–2072. [Google Scholar] [CrossRef]
- Suso, A.S.; Mon, C.; Oñate Alonso, I.; Galindo Romo, K.; Juarez, R.C.; Ramírez, C.L.; Sánchez Sánchez, M.; Mercado Valdivia, V.; Ortiz Librero, M.; Oliet Pala, A.; et al. IgA Vasculitis with Nephritis (Henoch-Schönlein Purpura) in a COVID-19 Patient. Kidney Int. Rep. 2020, 5, 2074–2078. [Google Scholar] [CrossRef]
- Hoskins, B.; Keeven, N.; Dang, M.; Keller, E.; Nagpal, R. A Child with COVID-19 and Immunoglobulin A Vasculitis. Pediatr. Ann. 2021, 50, e44–e48. [Google Scholar] [CrossRef]
- Allez, M.; Denis, B.; Bouaziz, J.D.; Battistella, M.; Zagdanski, A.M.; Bayart, J.; Lazaridou, I.; Gatey, C.; Pillebout, E.; Chaix Baudier, M.L.; et al. COVID-19-Related IgA Vasculitis. Arthritis Rheumatol. 2020, 72, 1952–1953. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, S.; Chand, S.; Bhatnagar, A.; Dabas, R.; Bhat, S.; Kumar, H.; Dixit, P.K. Possible association between IgA vasculitis and COVID-19. Dermatol. Ther. 2021, 34, e14551. [Google Scholar] [CrossRef]
- AlGhoozi, D.A.; AlKhayyat, H.M. A child with Henoch-Schonlein purpura secondary to a COVID-19 infection. BMJ Case Rep. 2021, 14, e239910. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, M.; Lancrei, H.M.; Brosh-Nissimov, T.; Yeshayahu, Y. Purpurona: A Novel Report of COVID-19-Related Henoch-Schonlein Purpura in a Child. Pediatr. Infect. Dis. J. 2021, 40, e93–e94. [Google Scholar] [CrossRef]
- Li, N.L.; Papini, A.B.; Shao, T.; Girard, L. Immunoglobulin-A Vasculitis with Renal Involvement in a Patient With COVID-19: A Case Report and Review of Acute Kidney Injury Related to SARS-CoV-2. Can. J. Kidney Health Dis. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Kandel, N.; Chungong, S.; Omaar, A.; Xing, J. Health security capacities in the context of COVID-19 outbreak: An analysis of International Health Regulations annual report data from 182 countries. Lancet 2020, 395, 1047–1053. [Google Scholar] [CrossRef]
- Saint Marcoux, B.; De Bandt, M. Vasculitides induced by TNFalpha antagonists: A study in 39 patients in France. Jt. Bone Spine 2006, 73, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Villatoro-Villar, M.; Crowson, C.S.; Warrington, K.J.; Makol, A.; Koster, M.J. Immunoglobulin A vasculitis associated with inflammatory bowel disease: A retrospective cohort study. Scand. J. Rheumatol. 2021, 50, 40–47. [Google Scholar] [CrossRef]
- Perkovic, D.; Simac, P.; Katic, J. IgA vasculitis during secukinumab therapy. Clin. Rheumatol. 2021, 40, 2071–2073. [Google Scholar] [CrossRef]
- Sawada, Y.; Nakamura, M.; Hama, K.; Hino, R.; Tokura, Y. A high serum concentration of chemerin in pustular dermatitis paradoxically induced by etanercept. J. Am. Acad. Dermatol. 2012, 66, e182–e184. [Google Scholar] [CrossRef]
- Pirard, D.; Arco, D.; Debrouckere, V.; Heenen, M. Anti-tumor necrosis factor alpha-induced psoriasiform eruptions: Three further cases and current overview. Dermatology 2006, 213, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Saulsbury, F.T. Clinical update: Henoch-Schönlein purpura. Lancet 2007, 369, 976–978. [Google Scholar] [CrossRef]
- Esaki, M.; Matsumoto, T.; Nakamura, S.; Kawasaki, M.; Iwai, K.; Hirakawa, K.; Tarumi, K.; Yao, T.; Iida, M. GI involvement in Henoch-Schönlein purpura. Gastrointest. Endosc. 2002, 56, 920–923. [Google Scholar] [CrossRef]
- Blanco, R.; Martínez-Taboada, V.M.; Rodríguez-Valverde, V.; García-Fuentes, M.; González-Gay, M.A. Henoch-Schönlein purpura in adulthood and childhood: Two different expressions of the same syndrome. Arthritis Rheum. 1997, 40, 859–864. [Google Scholar] [CrossRef]
- Ronkainen, J.; Koskimies, O.; Ala-Houhala, M.; Antikainen, M.; Merenmies, J.; Rajantie, J.; Ormälä, T.; Turtinen, J.; Nuutinen, M. Early prednisone therapy in Henoch-Schönlein purpura: A randomized, double-blind, placebo-controlled trial. J. Pediatr. 2006, 149, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.M.; King, J.; McLaine, P.; Klassen, T.; Pothos, M. A randomized, placebo-controlled trial of prednisone in early Henoch Schönlein Purpura [ISRCTN85109383]. BMC Med. 2004, 2, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozzi, C.; Bolasco, P.G.; Fogazzi, G.B.; Andrulli, S.; Altieri, P.; Ponticelli, C.; Locatelli, F. Corticosteroids in IgA nephropathy: A randomised controlled trial. Lancet 1999, 353, 883–887. [Google Scholar] [CrossRef]
- Nuki, G. Colchicine: Its mechanism of action and efficacy in crystal-induced inflammation. Curr. Rheumatol. Rep. 2008, 10, 218–227. [Google Scholar] [CrossRef]
- Chia, E.W.; Grainger, R.; Harper, J.L. Colchicine suppresses neutrophil superoxide production in a murine model of gouty arthritis: A rationale for use of low-dose colchicine. Br. J. Pharmacol. 2008, 153, 1288–1295. [Google Scholar] [CrossRef] [Green Version]
- Caner, J.E. Colchicine inhibition of chemotaxis. Arthritis Rheum. 1965, 8, 757–764. [Google Scholar] [CrossRef]
- Wright, D.G.; Malawista, S.E. Mobilization and extracellular release of granular enzymes from human leukocytes during phagocytosis: Inhibition by colchicine and cortisol but not by salicylate. Arthritis Rheum. 1973, 16, 749–758. [Google Scholar] [CrossRef]
- Lee, K.H.; Hong, S.H.; Jun, J.; Jo, Y.; Jo, W.; Choi, D.; Joo, J.; Jung, G.; Ahn, S.; Kronbichler, A.; et al. Treatment of refractory IgA vasculitis with dapsone: A systematic review. Clin. Exp. Pediatr. 2020, 63, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.; Matz, H.; Orion, E.; Tuzun, B.; Tuzun, Y. Dapsone. Dermatol. Online J. 2002, 8, 2. [Google Scholar] [CrossRef]
- Lee, K.H.; Park, J.H.; Kim, D.H.; Hwang, J.; Lee, G.; Hyun, J.S.; Heo, S.T.; Choi, J.H.; Kim, M.; Kim, M.; et al. Dapsone as a potential treatment option for Henoch-Schönlein Purpura (HSP). Med. Hypotheses 2017, 108, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Bech, A.P.; Reichert, L.J.; Cohen Tervaert, J.W. Dapsone for the treatment of chronic IgA vasculitis (Henoch-Schonlein). Neth. J. Med. 2013, 71, 220–221. [Google Scholar] [PubMed]
- Iqbal, H.; Evans, A. Dapsone therapy for Henoch-Schönlein purpura: A case series. Arch. Dis. Child. 2005, 90, 985–986. [Google Scholar] [CrossRef] [Green Version]
- Hoffbrand, B.I. Dapsone in Henoch-Schönlein purpura—Worth a trial. Postgrad. Med. J. 1991, 67, 961–962. [Google Scholar] [CrossRef] [Green Version]
- Roman, C.; Dima, B.; Muyshont, L.; Schurmans, T.; Gilliaux, O. Indications and efficiency of dapsone in IgA vasculitis (Henoch-Schonlein purpura): Case series and a review of the literature. Eur. J. Pediatr. 2019, 178, 1275–1281. [Google Scholar] [CrossRef]
- Hartung, H.P. Advances in the understanding of the mechanism of action of IVIg. J. Neurol. 2008, 255 (Suppl. 3), 3–6. [Google Scholar] [CrossRef] [PubMed]
- Amagai, M.; Ikeda, S.; Hashimoto, T.; Mizuashi, M.; Fujisawa, A.; Ihn, H.; Matsuzaki, Y.; Ohtsuka, M.; Fujiwara, H.; Furuta, J.; et al. A randomized double-blind trial of intravenous immunoglobulin for bullous pemphigoid. J. Dermatol. Sci. 2017, 85, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sordé, L.; Spindeldreher, S.; Palmer, E.; Karle, A. Tregitopes and impaired antigen presentation: Drivers of the immunomodulatory effects of IVIg? Immun. Inflamm. Dis. 2017, 5, 400–415. [Google Scholar] [CrossRef] [PubMed]
- Mitrevski, M.; Marrapodi, R.; Camponeschi, A.; Lazzeri, C.; Todi, L.; Quinti, I.; Fiorilli, M.; Visentini, M. Intravenous immunoglobulin replacement therapy in common variable immunodeficiency induces B cell depletion through differentiation into apoptosis-prone CD21(low) B cells. Immunol. Res. 2014, 60, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Nagelkerke, S.Q.; Dekkers, G.; Kustiawan, I.; van de Bovenkamp, F.S.; Geissler, J.; Plomp, R.; Wuhrer, M.; Vidarsson, G.; Rispens, T.; van den Berg, T.K.; et al. Inhibition of FcγR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcγRIIb in human macrophages. Blood 2014, 124, 3709–3718. [Google Scholar] [CrossRef] [Green Version]
- Rostoker, G.; Desvaux-Belghiti, D.; Pilatte, Y.; Petit-Phar, M.; Philippon, C.; Deforges, L.; Terzidis, H.; Intrator, L.; André, C.; Adnot, S.; et al. High-dose immunoglobulin therapy for severe IgA nephropathy and Henoch-Schönlein purpura. Ann. Intern. Med. 1994, 120, 476–484. [Google Scholar] [CrossRef]
- Rostoker, G.; Desvaux-Belghiti, D.; Pilatte, Y.; Petit-Phar, M.; Philippon, C.; Deforges, L.; Terzidis, H.; Intrator, L.; André, C.; Adnot, S.; et al. Immunomodulation with low-dose immunoglobulins for moderate IgA nephropathy and Henoch-Schönlein purpura. Preliminary results of a prospective uncontrolled trial. Nephron 1995, 69, 327–334. [Google Scholar] [CrossRef]
- Fenoglio, R.; Naretto, C.; Basolo, B.; Quattrocchio, G.; Ferro, M.; Mesiano, P.; Beltrame, G.; Roccatello, D. Rituximab therapy for IgA-vasculitis with nephritis: A case series and review of the literature. Immunol. Res. 2017, 65, 186–192. [Google Scholar] [CrossRef]
- Maritati, F.; Fenoglio, R.; Pillebout, E.; Emmi, G.; Urban, M.L.; Rocco, R.; Nicastro, M.; Incerti, M.; Goldoni, M.; Trivioli, G.; et al. Brief Report: Rituximab for the Treatment of Adult-Onset IgA Vasculitis (Henoch-Schönlein). Arthritis Rheumatol. 2018, 70, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Rodríguez, J.; Carbonell, C.; Mirón-Canelo, J.A.; Diez-Ruiz, S.; Marcos, M.; Chamorro, A.J. Rituximab treatment for IgA vasculitis: A systematic review. Autoimmun. Rev. 2020, 19, 102490. [Google Scholar] [CrossRef] [PubMed]
- Casas, J.P.; Chua, W.; Loukogeorgakis, S.; Vallance, P.; Smeeth, L.; Hingorani, A.D.; MacAllister, R.J. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: Systematic review and meta-analysis. Lancet 2005, 366, 2026–2033. [Google Scholar] [CrossRef]
- Dagenais, G.R.; Pogue, J.; Fox, K.; Simoons, M.L.; Yusuf, S. Angiotensin-converting-enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: A combined analysis of three trials. Lancet 2006, 368, 581–588. [Google Scholar] [CrossRef]
- Johnston, C.I. Angiotensin receptor antagonists: Focus on losartan. Lancet 1995, 346, 1403–1407. [Google Scholar] [CrossRef]
- Gavras, I.; Manolis, A.; Gavras, H. Effects of ACE inhibition on the heart. J. Hum. Hypertens. 1995, 9, 455–458. [Google Scholar]
- Woo, K.T.; Lau, Y.K.; Zhao, Y.; Liu, F.E.; Tan, H.B.; Tan, E.K.; Stephanie, F.C.; Chan, C.M.; Wong, K.S. Disease progression, response to ACEI/ATRA therapy and influence of ACE gene in IgA nephritis. Cell. Mol. Immunol. 2007, 4, 227–232. [Google Scholar] [PubMed]
- Sawada, Y.; Saito-Sasaki, N.; Nakamura, M. Omega 3 Fatty Acid and Skin Diseases. Front. Immunol. 2020, 11, 623052. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Honda, T.; Nakamizo, S.; Otsuka, A.; Ogawa, N.; Kobayashi, Y.; Nakamura, M.; Kabashima, K. Resolvin E1 attenuates murine psoriatic dermatitis. Sci. Rep. 2018, 8, 11873. [Google Scholar] [CrossRef] [Green Version]
- Saito-Sasaki, N.; Sawada, Y.; Mashima, E.; Yamaguchi, T.; Ohmori, S.; Yoshioka, H.; Haruyama, S.; Okada, E.; Nakamura, M. Maresin-1 suppresses imiquimod-induced skin inflammation by regulating IL-23 receptor expression. Sci. Rep. 2018, 8, 5522. [Google Scholar] [CrossRef]
- Sawada, Y.; Honda, T.; Hanakawa, S.; Nakamizo, S.; Murata, T.; Ueharaguchi-Tanada, Y.; Ono, S.; Amano, W.; Nakajima, S.; Egawa, G.; et al. Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses. J. Exp. Med. 2015, 212, 1921–1930. [Google Scholar] [CrossRef] [Green Version]
- Hamazaki, T.; Tateno, S.; Shishido, H. Eicosapentaenoic acid and IgA nephropathy. Lancet 1984, 1, 1017–1018. [Google Scholar] [CrossRef]
- Alexopoulos, E.; Stangou, M.; Pantzaki, A.; Kirmizis, D.; Memmos, D. Treatment of severe IgA nephropathy with omega-3 fatty acids: The effect of a “very low dose” regimen. Ren. Fail. 2004, 26, 453–459. [Google Scholar] [CrossRef]
- Donadio, J.V., Jr.; Bergstralh, E.J.; Offord, K.P.; Spencer, D.C.; Holley, K.E. A controlled trial of fish oil in IgA nephropathy. Mayo Nephrology Collaborative Group. N. Engl. J. Med. 1994, 331, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Filler, G.; Hansen, M.; LeBlanc, C.; Lepage, N.; Franke, D.; Mai, I.; Feber, J. Pharmacokinetics of mycophenolate mofetil for autoimmune disease in children. Pediatr. Nephrol. 2003, 18, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.T.; Smoyer, W.E.; Bunchman, T.E.; Kershaw, D.B.; Sedman, A.B. Treatment of Henoch-Schönlein Purpura glomerulonephritis in children with high-dose corticosteroids plus oral cyclophosphamide. Am. J. Nephrol. 2001, 21, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Foster, B.J.; Bernard, C.; Drummond, K.N.; Sharma, A.K. Effective therapy for severe Henoch-Schonlein purpura nephritis with prednisone and azathioprine: A clinical and histopathologic study. J. Pediatr. 2000, 136, 370–375. [Google Scholar] [CrossRef]
- Endo, M.; Ohi, H.; Ohsawa, I.; Fujita, T.; Matsushita, M. Complement activation through the lectin pathway in patients with Henoch-Schönlein purpura nephritis. Am. J. Kidney Dis. 2000, 35, 401–407. [Google Scholar] [CrossRef]
- Selvaskandan, H.; Kay Cheung, C.; Dormer, J.; Wimbury, D.; Martinez, M.; Xu, G.; Barratt, J. Inhibition of the Lectin Pathway of the Complement System as a Novel Approach in the Management of IgA Vasculitis-Associated Nephritis. Nephron 2020, 144, 453–458. [Google Scholar] [CrossRef]
- Nagy, G.R.; Kemény, L.; Bata-Csörgő, Z. Neutrophil-to-lymphocyte ratio: A biomarker for predicting systemic involvement in adult IgA vasculitis patients. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1033–1037. [Google Scholar] [CrossRef] [Green Version]
- Omma, A.; Colak, S.; Can Sandikci, S.; Yucel, C.; Erden, A.; Sertoglu, E.; Ozgurtas, T. Serum neopterin and ischemia modified albumin levels are associated with the disease activity of adult immunoglobulin A vasculitis (Henoch-Schönlein purpura). Int. J. Rheum. Dis. 2019, 22, 1920–1925. [Google Scholar] [CrossRef]
- Hočevar, A.; Tomšič, M.; Pižem, J.; Bolha, L.; Sodin-Šemrl, S.; Glavač, D. MicroRNA expression in the affected skin of adult patients with IgA vasculitis. Clin. Rheumatol. 2019, 38, 339–345. [Google Scholar] [CrossRef]
- Dyga, K.; Machura, E.; Świętochowska, E.; Szczepańska, M. Analysis of the association between kidney injury biomarkers concentration and nephritis in immunoglobulin A vasculitis: A pediatric cohort study. Int. J. Rheum. Dis. 2020, 23, 1184–1193. [Google Scholar] [CrossRef]
- Kim, J.Y.; Choi, H.; Kim, M.K.; Lee, S.B.; Park, Y.B.; Lee, S.W. Clinical significance of ANCA positivity in patients with IgA vasculitis: A retrospective monocentric study. Rheumatol. Int. 2019, 39, 1927–1936. [Google Scholar] [CrossRef]
- Williams, C.E.C.; Toner, A.; Wright, R.D.; Oni, L. A systematic review of urine biomarkers in children with IgA vasculitis nephritis. Pediatr. Nephrol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, R.M.K.; Balci, S.; Sari Gokay, S.; Yilmaz, H.L.; Dogruel, D.; Altintas, D.U.; Yilmaz, M. Do practical laboratory indices predict the outcomes of children with Henoch-Schönlein purpura? Postgrad. Med. 2019, 131, 295–298. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yin, W.; Ding, Y.; Cui, S.J.; Luan, J.; Zhao, P.; Yue, X.; Yu, C.; Laing, X.; Zhao, Y. Higher Serum Angiotensinogen Is an Indicator of IgA Vasculitis with Nephritis Revealed by Comparative Proteomes Analysis. PLoS ONE 2015, 10, e0130536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyga, K.; Machura, E.; Świętochowska, E.; Ziora, K.; Szczepańska, M. Is adiponectin in children with immunoglobulin A vasculitis a suitable biomarker of nephritis in the course of the disease? Endokrynol. Pol. 2020, 71, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Hočevar, A.; Rotar, Ž.; Žigon, P.; Čučnik, S.; Ostrovršnik, J.; Tomšič, M. Antiphospholipid antibodies in adult IgA vasculitis: Observational study. Clin. Rheumatol. 2019, 38, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Gallo, R.L. Role of Epigenetics in the Regulation of Immune Functions of the Skin. J. Investig. Dermatol. 2021, 141, 1157–1166. [Google Scholar] [CrossRef]
- Sawada, Y.; Nakatsuji, T.; Dokoshi, T.; Kulkarni, N.N.; Liggins, M.C.; Sen, G.; Gallo, R.L. Cutaneous innate immune tolerance is mediated by epigenetic control of MAP2K3 by HDAC8/9. Sci. Immunol. 2021, 6. [Google Scholar] [CrossRef]
- Milillo, A.; Molinario, C.; Costanzi, S.; Vischini, G.; La Carpia, F.; La Greca, F.; Rigante, D.; Gambaro, G.; Gurrieri, F.; Sangiorgi, E. Defective activation of the MAPK/ERK pathway, leading to PARP1 and DNMT1 dysregulation, is a common defect in IgA nephropathy and Henoch-Schönlein purpura. J. Nephrol. 2018, 31, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Fernández, L.; Carmona, F.D.; López-Mejías, R.; González-Escribano, M.F.; Lyons, P.A.; Morgan, A.W.; Sawalha, A.H.; Merkel, P.A.; Smith, K.G.C.; González-Gay, M.A.; et al. Cross-phenotype analysis of Immunochip data identifies KDM4C as a relevant locus for the development of systemic vasculitis. Ann. Rheum. Dis. 2018, 77, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Liang, G.; Zhang, P.; Zhao, M.; Lu, Q. Aberrant histone modifications in peripheral blood mononuclear cells from patients with Henoch-Schönlein purpura. Clin. Immunol. 2013, 146, 165–175. [Google Scholar] [CrossRef] [PubMed]
IgA Vasculitis | IgA Vasculitis Nephritis | IgA Colitis | |
---|---|---|---|
IL-1β | ↑ [54] → [55,56] | ↑ [55] → [54,57] | No report |
IL-2 | → [58] | → [58] | No report |
IL-4 | ↑ [58] | ↑ [58] | No report |
IL-6 | ↑ [54,56,58,59] → [55] | ↑ [54,55,57,58] → [60] | ↑ [60] |
IL-8 | ↑ [55,56] | ↑ [55,60] | → [60] |
IL-9 | → [56] | No report | No report |
IL-10 | → [55,56] ↓ [58] | → [55,56] ↓ [58] | No report |
IL-12p70 | → [54,55] | → [54,55] | No report |
IL-17A | ↑ [58] | ↑ [58] | No report |
IL-23 | → [56] | No report | No report |
TNF-α | ↑ [56] → [54,55] ↓ [58] | → [54,55,60] ↓ [58] | → [60] |
IFN-γ | ↑ [58] | ↑ [58] → [57] | No report |
Author | Age | Sex | Days after COVID-19 Test Positive | Involvement | Treatment |
---|---|---|---|---|---|
Suso, et al. [71] | 78 | Male | 5 weeks later | Skin Nephritis | Steroid pulse plus Rituximab |
Hoskins, et al. [72] | 2 | Male | Same time | Skin Abdominal pain | Intravenous steroid |
Allez et al. [73] | 24 | Male | Unknown | Skin Abdominal pain | Methylprednisolone 0.8 mg/day |
Sandhu et al. [74] | 22 | Male | Same time | Skin Nephritis | Prednisolone 1 mg/kg |
AlGhoozi et al. [75] | 4 | Male | 37 days later | Skin | Not described |
Jacobi, et al. [76] | 3 | Male | Same time | Skin Abdominal pain | Antibiotic |
Li et al. [77] | 30 | Male | Same time | Skin Nephritis | Losartan 25 mg following prednisolone 40 mg for 7 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugino, H.; Sawada, Y.; Nakamura, M. IgA Vasculitis: Etiology, Treatment, Biomarkers and Epigenetic Changes. Int. J. Mol. Sci. 2021, 22, 7538. https://doi.org/10.3390/ijms22147538
Sugino H, Sawada Y, Nakamura M. IgA Vasculitis: Etiology, Treatment, Biomarkers and Epigenetic Changes. International Journal of Molecular Sciences. 2021; 22(14):7538. https://doi.org/10.3390/ijms22147538
Chicago/Turabian StyleSugino, Hitomi, Yu Sawada, and Motonobu Nakamura. 2021. "IgA Vasculitis: Etiology, Treatment, Biomarkers and Epigenetic Changes" International Journal of Molecular Sciences 22, no. 14: 7538. https://doi.org/10.3390/ijms22147538
APA StyleSugino, H., Sawada, Y., & Nakamura, M. (2021). IgA Vasculitis: Etiology, Treatment, Biomarkers and Epigenetic Changes. International Journal of Molecular Sciences, 22(14), 7538. https://doi.org/10.3390/ijms22147538