Antiadhesive Properties of Imidazolium Ionic Liquids Based on (−)-Menthol Against Candida spp.
Abstract
:1. Introduction
2. Results
2.1. Antifungal and Antiadhesive Properties of ILs
2.2. The Activity of ILs in Permeabilization of Fungal and Erythroid Membranes
2.3. ILs Prevent C. Albicans Biofilm Formation on Dentures
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals
5.2. Preparation of ILs
5.3. Strains and Growth Conditions
5.4. Determination of Minimal Inhibitory and Fungicidal Concentrations (MICs and MFCs)
5.5. Antiadhesive Properties of ILs
5.6. Propidium Iodide (PI) Staining
5.7. Hemolysis Assay
5.8. Biofilm Formation on Dentures
5.9. The Impact of ILs on Yeast-to-Hyphae Transition
5.10. Calcofluor White Staining
5.11. Real Time Quantitive Polymerase Chain Reaction
5.12. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salerno, C.; Pascale, M.; Contaldo, M.; Esposito, V.; Busciolano, M.; Milillo, L.; Guida, A.; Petruzzi, M.; Serpico, R. Candida-associated denture stomatitis. Med. Oral Patol. Oral Cir. Bucal. 2011, 16, e139–43. [Google Scholar] [CrossRef]
- Swidergall, M. Candida albicans at Host Barrier Sites: Pattern Recognition Receptors and Beyond. Pathogens 2019, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Ksiezopolska, E.; Gabaldón, T. Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes 2018, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Offenbacher, S.; Barros, S.P.; Bencharit, S.; Yu, N.; Preisser, J.; Moss, K.; Loewy, Z.G. Differential Mucosal Gene Expression Patterns in Candida-Associated, Chronic Oral Denture Stomatitis. J. Prosthodont. 2019, 28, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Dorocka-Bobkowska, B.; Zozulinska-Ziolkiewicz, D.; Wierusz-Wysocka, B.; Hedzelek, W.; Szumala-Kakol, A.; Budtz-Jörgensen, E. Candida-associated denture stomatitis in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2010, 90, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Motta-Silva, A.C.; Aleva, N.A.; Chavasco, J.K.; Armond, M.C.; França, J.P.; Pereira, L.J. Erythematous oral candidiasis in patients with controlled type II diabetes mellitus and complete dentures. Mycopathologia 2010, 169, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Brito, G.N.B.; Inocêncio, A.C.; Querido, S.M.R.; Jorge, A.O.C.; Koga-Ito, C.Y. In vitro antifungal susceptibility of Candida spp. oral isolates from HIV positive patients and control individuals. Braz. Oral Res. 2011, 25, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.K.; Erlandsen, J.E.; Kirkpatrick, W.R.; Berg, D.K.; Westbrook, S.D.; Louden, C.; Cornell, J.E.; Thompson, G.R.; Vallor, A.C.; Wickes, B.L.; et al. The changing epidemiology of oropharyngeal candidiasis in patients with HIV/AIDS in the era of antiretroviral therapy. AIDS Res. Treat. 2012, 2012, 262471. [Google Scholar] [CrossRef] [Green Version]
- Schelenz, S.; Abdallah, S.; Gray, G.; Stubbings, H.; Gow, I.; Baker, P.; Hunter, P.R. Epidemiology of oral yeast colonization and infection in patients with hematological malignancies, head neck and solid tumors. J. Oral Pathol. Med. 2011, 40, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, I.M.G.; Nobbs, A.H.; Ricomini-Filho, A.P.; Jenkinson, H.F.; Del Bel Cury, A.A. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material. Pathog. Dis. 2016, 74, ftw002. [Google Scholar] [CrossRef] [Green Version]
- Nett, J.E.; Marchillo, K.; Spiegel, C.A.; Andes, D.R. Development and validation of an in vivo Candida albicans biofilm denture model. Infect. Immun. 2010, 78, 3650–3659. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Sun, J.; Lan, J.; Qi, Q. Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology 2016, 33, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Redding, S.; Bhatt, B.; Rawls, H.R.; Siegel, G.; Scott, K.; Lopez-Ribot, J. Inhibition of Candida albicans biofilm formation on denture material. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 669–672. [Google Scholar] [CrossRef]
- Alalwan, H.; Rajendran, R.; Lappin, D.F.; Combet, E.; Shahzad, M.; Robertson, D.; Nile, C.J.; Williams, C.; Ramage, G. The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Front. Microbiol. 2017, 8, 659. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, C.; Takakuda, K.; Wakabayashi, N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J. Dent. 2016, 44, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Altarawneh, S.; Bencharit, S.; Mendoza, L.; Curran, A.; Barrow, D.; Barros, S.; Preisser, J.; Loewy, Z.G.; Gendreau, L.; Offenbacher, S. Clinical and Histological Findings of Denture Stomatitis as Related to Intraoral Colonization Patterns of Candida albicans, Salivary Flow, and Dry Mouth. J. Prosthodont. 2013, 22, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Bueno, M.G.; Urban, V.M.; Barbério, G.S.; da Silva, W.J.; Porto, V.C.; Pinto, L.; Neppelenbroek, K.H. Effect of antimicrobial agents incorporated into resilient denture relines on the Candida albicans biofilm. Oral Dis. 2015, 21, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Neppelenbroek, K.H.; Pavarina, A.C.; Palomari Spolidorio, D.M.; Sgavioli Massucato, E.M.; Spolidorio, L.C.; Vergani, C.E. Effectiveness of microwave disinfection of complete dentures on the treatment of Candida-related denture stomatitis. J. Oral Rehabil. 2008, 35, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Ellepola, A.N.B.; Samaranayake, L.P.; Khan, Z.U. Extracellular phospholipase production of oral Candida albicans isolates from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimycotics. Braz. J. Microbiol. 2016, 47, 911–916. [Google Scholar] [CrossRef] [Green Version]
- Suchodolski, J.; Krasowska, A. Fructose Induces Fluconazole Resistance in Candida albicans through Activation of Mdr1 and Cdr1 Transporters. Int. J. Mol. Sci. 2021, 22, 2127. [Google Scholar] [CrossRef]
- De Almeida, R.F.M.; Santos, F.C.; Marycz, K.; Alicka, M.; Krasowska, A.; Suchodolski, J.; Panek, J.J.; Jezierska, A.; Starosta, R. New diphenylphosphane derivatives of ketoconazole are promising antifungal agents. Sci. Rep. 2019, 9, 16214. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ruigomez, M.; Badiola, J.; Schmidt-Malan, S.M.; Greenwood-Quaintance, K.; Karau, M.J.; Brinkman, C.L.; Mandrekar, J.N.; Patel, R. Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation. Int. J. Bacteriol. 2016, 2016, 9727810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernak, J.; Feder-Kubis, J.; Cieniecka-Rosłonkiewicz, A.; Fischmeister, C.; Griffin, S.T.; Rogers, R.D. Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R)-(-)-menthoxymethyl substituent. New J. Chem. 2007, 31, 879–892. [Google Scholar] [CrossRef]
- Feder-Kubis, J.; Kubicki, M.; Pernak, J. 3-Alkoxymethyl-1-(1R,2S,5R)-(-)-menthoxymethylimidazolium salts-based chiral ionic liquids. Tetrahedron Asymmetry 2010, 21, 2709–2718. [Google Scholar] [CrossRef]
- Pernak, J.; Feder-Kubis, J. Synthesis and properties of chiral ammonium-based ionic liquids. Chem. Eur. J. 2005, 11, 4441–4449. [Google Scholar] [CrossRef]
- Pernak, J.; Feder-Kubis, J. Chiral pyridinium-based ionic liquids containing the (1R,2S,5R)-(-)-menthyl group. Tetrahedron Asymmetry 2006, 17, 1728–1737. [Google Scholar] [CrossRef]
- Elder, S.T.; Preuss, A.; Schoening, K.-U.; Muehlbauer, K. Anti-Microbial Compositions. U.S. Patent 20080070966, 31 July 2012. [Google Scholar]
- Kanjanamekanant, K.; Limpuangthip, N.; Arksornnukit, M. Physical and Mechanical Properties of Antifungal Ionic Liquid-Incorporated Dental Tissue Conditioner. Mater. Sci. Appl. 2017, 8, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Bergamo, V.Z.; Donato, R.K.; Nemitz, M.C.; Acasigua, G.A.X.; Selukar, B.S.; Lopes, W.; Dalla Lana, D.F.; Teixeira, M.L.; Teixeira, H.F.; Schrekker, H.S.; et al. Assessing an imidazolium salt’s performance as antifungal agent on a mouthwash formulation. J. Appl. Microbiol. 2016, 121, 1558–1567. [Google Scholar] [CrossRef]
- Feder-Kubis, J.; Tomczuk, K. The effect of the cationic structures of chiral ionic liquids on their antimicrobial activities. Tetrahedron 2013, 69, 4190–4198. [Google Scholar] [CrossRef]
- Suchodolski, J.; Feder-Kubis, J.; Krasowska, A. Antifungal activity of ionic liquids based on (−)-menthol: A mechanism study. Microbiol. Res. 2017, 197, 56–64. [Google Scholar] [CrossRef]
- Mota, A.C.L.G.; de Castro, R.D.; de Araújo Oliveira, J.; de Oliveira Lima, E. Antifungal Activity of Apple Cider Vinegar on Candida Species Involved in Denture Stomatitis. J. Prosthodont. 2015, 24, 296–302. [Google Scholar] [CrossRef]
- Ishikawa, K.H.; Mayer, M.P.A.; Miyazima, T.Y.; Matsubara, V.H.; Silva, E.G.; Paula, C.R.; Campos, T.T.; Nakamae, A.E.M. A multispecies probiotic reduces oral candida colonization in denture wearers. J. Prosthodont. 2015, 24, 194–199. [Google Scholar] [CrossRef]
- Zomorodian, K.; Haghighi, N.N.; Rajaee, N.; Pakshir, K.; Tarazooie, B.; Vojdani, M.; Sedaghat, F.; Vosoghi, M. Assessment of Candida species colonization and denture-related stomatitis in complete denture wearers. Med. Mycol. 2011, 49, 208–211. [Google Scholar] [CrossRef] [Green Version]
- De Freitas Fernandes, F.S.; Pereira-Cenci, T.; Da Silva, W.J.; Filho, A.P.R.; Straioto, F.G.; Del Bel Cury, A.A. Efficacy of denture cleansers on Candida spp. biofilm formed on polyamide and polymethyl methacrylate resins. J. Prosthet. Dent. 2011, 105, 51–58. [Google Scholar] [CrossRef]
- García-Lorenzo, A.; Tojo, E.; Tojo, J.; Teijeira, M.; Rodríguez-Berrocal, F.J.; González, M.P.; Martínez-Zorzano, V.S. Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study. Green Chem. 2008, 10, 508–551. [Google Scholar] [CrossRef]
- Krasowska, A.; Sigler, K. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol. 2014, 4, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchodolski, J.; Muraszko, J.; Korba, A.; Bernat, P.; Krasowska, A. Lipid composition and cell surface hydrophobicity of Candida albicans influence the efficacy of fluconazole-gentamicin treatment. Yeast 2020, 37, 117–129. [Google Scholar] [CrossRef]
- Suchodolski, J.; Derkacz, D.; Bernat, P.; Krasowska, A. Capric acid secreted by Saccharomyces boulardii influences the susceptibility of Candida albicans to fluconazole and amphotericin B. Sci. Rep. 2021, 11, 6519. [Google Scholar] [CrossRef]
- King, A.; Chakrabarty, S.; Zhang, W.; Zeng, X.; Ohman, D.E.; Wood, L.F.; Abraham, S.; Rao, R.; Wynne, K.J. High antimicrobial effectiveness with low hemolytic and cytotoxic activity for PEG/quaternary copolyoxetanes. Biomacromolecules 2014, 15, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Vinardell, M.P.; Infante, M.R. The relationship between the chain length of non-ionic surfactants and their hemolytic action on human erythrocytes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1999, 124, 117–120. [Google Scholar] [CrossRef]
- Ramage, G.; Tomsett, K.; Wickes, B.L.; López-Ribot, J.L.; Redding, S.W. Denture stomatitis: A role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004, 98, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Estivill, D.; Arias, A.; Torres-Lana, A.; Carrillo-Muñoz, A.J.; Arévalo, M.P. Biofilm formation by five species of Candida on three clinical materials. J. Microbiol. Methods 2011, 86, 238–242. [Google Scholar] [CrossRef]
- Hoyer, L.L.; Green, C.B.; Oh, S.H.; Zhao, X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—A sticky pursuit. Med. Mycol. 2008, 46, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyer, L.L.; Cota, E. Candida albicans agglutinin-like sequence (Als) family vignettes: A review of als protein structure and function. Front. Microbiol. 2016, 7, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buergers, R.; Rosentritt, M.; Schneider-Brachert, W.; Behr, M.; Handel, G.; Hahnel, S. Efficacy of denture disinfection methods in controlling Candida albicans colonization in vitro. Acta Odontol. Scand. 2008, 66, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Zamperini, C.A.; de Lima Carneiro, H.; Rangel, E.C.; Cruz, N.C.; Vergani, C.E.; Machado, A.L. In vitro adhesion of Candida glabrata to denture base acrylic resin modified by glow-discharge plasma treatment. Mycoses 2013, 56, 134–144. [Google Scholar] [CrossRef]
- Garaicoa, J.L.; Fischer, C.L.; Bates, A.M.; Holloway, J.; Avila-Ortiz, G.; Guthmiller, J.M.; Johnson, G.K.; Stanford, C.; Brogden, K.A. Promise of Combining Antifungal Agents in Denture Adhesives to Fight Candida Species Infections. J. Prosthodont. 2018, 27, 755–762. [Google Scholar] [CrossRef]
- Johnson, C.C.; Yu, A.; Lee, H.; Fidel, P.L.; Noverr, M.C. Development of a contemporary animal model of candida albicans-associated denture stomatitis using a novel intraoral denture system. Infect. Immun. 2012, 80, 1736–1743. [Google Scholar] [CrossRef] [Green Version]
- Fonzi, W.A.; Irwin, M.Y. Isogenic Strain Construction and Gene Mapping in Candida albicans. Genetis 1993, 134, 717–728. [Google Scholar] [CrossRef]
- CLSI. Reference method for broth dilutionantifungal susceptibility testing of yeast. In Approved Standard: M27-A3 28, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2008; p. 604. [Google Scholar]
- Biniarz, P.; Baranowska, G.; Feder-Kubis, J.; Krasowska, A. The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2015, 108, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Suchodolski, J.; Krasowska, A. Plasma Membrane Potential of Candida albicans Measured by Di-4-ANEPPS Fluorescence Depends on Growth Phase and Regulatory Factors. Microorganisms 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Sztafrowski, D.; Suchodolski, J.; Muraszko, J.; Sigler, K.; Krasowska, A. The influence of N and S poles of static magnetic field (SMF) on Candida albicans hyphal formation and antifungal activity of amphotericin B. Folia Microbiol. 2019, 64, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchodolski, J.; Derkacz, D.; Muraszko, J.; Panek, J.J.; Jezierska, A. Fluconazole and Lipopeptide Surfactin Interplay During Candida albicans Plasma Membrane and Cell Wall Remodeling Increases Fungal Immune System Exposure. Pharmaceutics 2020, 12, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczepaniak, J.; Łukaszewicz, M.; Krasowska, A. Estimation of Candida albicans ABC transporter behavior in real-time via fluorescence. Front. Microbiol. 2015, 6, E1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | C. albicans | C. parapsilosis | C. glabrata | C. krusei | |
---|---|---|---|---|---|
1a | MIC | 12.5 | 12.5 | 12.5 | 6.25 |
MFC | 50 | 50 | 25 | 25 | |
1b | MIC | 25 | 25 | 25 | 25 |
MFC | 50 | 25 | 25 | 25 | |
2a | MIC | 12.5 | 12.5 | 12.5 | 6.25 |
MFC | 25 | 25 | 12.5 | 12.5 | |
AMB | MIC | 0.25 | 0.25 | 0.25 | 0.5 |
MFC | 0.5 | 0.5 | 0.5 | 1 |
Condition/Compound | C. albicans | C. parapsilosis | C. glabrata | C. krusei |
---|---|---|---|---|
Control | 3.12 ± 1.7 | 2.02 ± 0.72 | 1.43 ± 1.1 | 0.99 ± 0.67 |
1a | 12.42 ± 6.88 | 2.74 ± 0.92 | 12.34 ± 0.46 *** | 36.28 ± 11.54 * |
1b | 22.48 ± 2.19 *** | 3.86 ± 0.99 | 42.15 ± 6.12 ** | 16.45 ± 7.84 * |
2a | 4.42 ± 0.92 | 21.29 ± 8.47 * | 23.8 ± 5.92 * | 9.6 ± 3.49 * |
AMB | 37.3 ± 4.17 *** | 32.38 ± 3.15 *** | 43.2 ± 2.15 *** | 38.2 ± 10.7 * |
ILs Conc. (µM) | ||||
Compound | 0 (Control) | 12.5 | 25 | 50 |
1a | 1.09 ± 0.01 | 4.81 ± 0.02 ** | 1.51 ± 0.53 | 11.56 ± 2.13 |
1b | 1.11 ± 0.02 | 2.1 ± 0.36 | 3.01 ± 0.39 | 3.23 ± 0.6 |
2a | 1.07 ± 0.01 | 4.55 ± 0.82 | 1.78 ± 0.44 | 6.09 ± 0.48 * |
AMB Conc. (µM) | ||||
0 (Control) | 0.25 | 0.5 | 1 | |
AMB | 1.34 ± 0.04 | 86.7 ± 0.43 *** | 98.6 ± 1.53 *** | 100 ± 0.73 *** |
Structure, Name, Abbreviation, Empirical Formula | Yield [%] | Elementary Analysis [%] | ||
---|---|---|---|---|
Calculation | Found | |||
1a | 1-[(1R,2S,5R)-(−)-menthoxymethyl]-3-nonylimidazolium chloride [C9-Im-C1OMen][Cl] C23H43ClN2O | 98.0 a | C 69.22 H 10.86 N 7.02 | C 69.31 H 10.92 N 6.90 |
1b | 3-decyl-1-[(1R,2S,5R)-(−)-menthoxymethyl]imidazolium chloride [C10-Im-C1OMen][Cl] C24H45ClN2O | 97.5 b | C 69.78 H 10.98 N 6.78 | C 69.69 H 11.08 N 6.82 |
2a | 1-(1R,2S,5R)-(−)-menthoxymethyl-3-nonyloxymethylimidazolium chloride [C1OC9-Im-C1OMen][Cl] C24H45ClN2O2 | 96.0 c | C 67.18 H 10.57 N 6.53 | C 67.24 H 10.66 N 6.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchodolski, J.; Feder-Kubis, J.; Krasowska, A. Antiadhesive Properties of Imidazolium Ionic Liquids Based on (−)-Menthol Against Candida spp. Int. J. Mol. Sci. 2021, 22, 7543. https://doi.org/10.3390/ijms22147543
Suchodolski J, Feder-Kubis J, Krasowska A. Antiadhesive Properties of Imidazolium Ionic Liquids Based on (−)-Menthol Against Candida spp. International Journal of Molecular Sciences. 2021; 22(14):7543. https://doi.org/10.3390/ijms22147543
Chicago/Turabian StyleSuchodolski, Jakub, Joanna Feder-Kubis, and Anna Krasowska. 2021. "Antiadhesive Properties of Imidazolium Ionic Liquids Based on (−)-Menthol Against Candida spp." International Journal of Molecular Sciences 22, no. 14: 7543. https://doi.org/10.3390/ijms22147543
APA StyleSuchodolski, J., Feder-Kubis, J., & Krasowska, A. (2021). Antiadhesive Properties of Imidazolium Ionic Liquids Based on (−)-Menthol Against Candida spp. International Journal of Molecular Sciences, 22(14), 7543. https://doi.org/10.3390/ijms22147543