Impact of Dysfunctional Feed-Forward Inhibition on Glutamate Decarboxylase Isoforms and γ-Aminobutyric Acid Transporters
Abstract
:1. Introduction
2. Results
2.1. Expression Pattern of GADs and GATs in the SScortex and the Thalamus of Stargazers and Non-Epileptic Controls
2.1.1. Expression Pattern of GADs in the SScortex
2.1.2. Expression of GATs in the SScortex
2.1.3. Expression of GADs in the Thalamus
2.1.4. Expression of GATs in the Thalamus
2.2. Relative Expression of GADs and GATs in the Tissue Lysates of the SScortex and the VP Thalamus of Stargazers via Western Blotting Analysis
2.3. Expression of GADs and GATs Was Unchanged in Gi-DREADD Animals
3. Discussion
3.1. Increased Expression of GAD65 in the Stargazer Somatosensory Cortex
3.2. Unaltered Expression of GADs and GATs in Gi-DREADD Mice
3.3. Unaltered GAD or GAT3 Levels in Stargazer VP Thalamus
4. Materials and Methods
4.1. Animals
4.1.1. Breeding Paradigm for Stargazer Mice
4.1.2. Breeding Paradigm for PVCre/Gi-DREADD Mice
4.2. Genotyping
4.3. Immunofluorescence Confocal Microscopy
4.4. Confocal Image Acquisition
4.5. Western Blotting
4.6. Preparation of CNO
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Matricardi, S.; Verrotti, A.; Chiarelli, F.; Cerminara, C.; Curatolo, P. Current Advances in Childhood Absence Epilepsy. Pediatr. Neurol. 2014, 50, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Tenney, J.R.; Glauser, T.A. The Current State of Absence Epilepsy: Can We Have Your Attention? The Current State of Absence Epilepsy. Epilepsy Curr. 2013, 13, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crunelli, V.; Leresche, N. Childhood absence epilepsy: Genes, channels, neurons and networks. Nat. Rev. Neurosci. 2002, 3, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Panayiotopoulos, C.P. Typical absence seizures and related epileptic syndromes: Assessment of current state and direc-tions for future research. Epilepsia 2008, 49, 2131–2139. [Google Scholar] [CrossRef]
- Wirrell, E.C.; Camfield, C.S.; Camfield, P.R.; Gordon, K.E.; Dooley, J.M. Long-term prognosis of typical childhood absence epilepsy: Remission or progression to juvenile myoclonic epilepsy. Neurology 1996, 47, 912–918. [Google Scholar] [CrossRef]
- Crunelli, V.; Lőrincz, M.L.; McCafferty, C.; Lambert, R.C.; Leresche, N.; Di Giovanni, G.; David, F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020, 143, 2341–2368. [Google Scholar] [CrossRef]
- McCormick, D.A.; Contreras, D. On the Cellular and Network Bases of Epileptic Seizures. Annu. Rev. Physiol. 2001, 63, 815–846. [Google Scholar] [CrossRef]
- Adotevi, N.K.; Leitch, B. Alterations in AMPA receptor subunit expression in cortical inhibitory interneurons in the epileptic stargazer mutant mouse. Neuroscience 2016, 339, 124–138. [Google Scholar] [CrossRef]
- Adotevi, N.K.; Leitch, B. Synaptic changes in AMPA receptor subunit expression in cortical parvalbumin inter-neurons in the stargazer model of absence epilepsy. Front. Mol. Neurosci. 2017, 10, 434. [Google Scholar] [CrossRef] [Green Version]
- Adotevi, N.K.; Leitch, B. Cortical expression of AMPA receptors during postnatal development in a genetic model of absence epilepsy. Int. J. Dev. Neurosci. 2019, 73, 19–25. [Google Scholar] [CrossRef]
- Maheshwari, A.; Nahm, W.K.; Noebels, J.L. Paradoxical proepileptic response to NMDA receptor blockade linked to cortical interneuron defect in stargazer mice. Front. Cell. Neurosci. 2013, 7, 156. [Google Scholar] [CrossRef]
- Barad, Z.; Shevtsova, O.; Arbuthnott, G.; Leitch, B. Selective loss of AMPA receptors at corticothalamic synapses in the epileptic stargazer mouse. Neuroscience 2012, 217, 19–31. [Google Scholar] [CrossRef]
- Menuz, K.; Nicoll, R.A. Loss of Inhibitory Neuron AMPA Receptors Contributes to Ataxia and Epilepsy in Stargazer Mice. J. Neurosci. 2008, 28, 10599–10603. [Google Scholar] [CrossRef]
- Panthi, S.; Leitch, B. The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the cortico-thalamocortical network on seizure generation and behaviour. Neurobiol. Dis. 2019, 132, 104610. [Google Scholar] [CrossRef]
- Panthi, S.; Leitch, B. Chemogenetic Activation of Feed-Forward Inhibitory Parvalbumin-Expressing Interneurons in the Cortico-Thalamocortical Network During Absence Seizures. Front. Cell. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Adotevi, N.; Su, A.; Peiris, D.; Hassan, M.; Leitch, B. Altered Neurotransmitter Expression in the Corticothalamocortical Network of an Absence Epilepsy Model with impaired Feedforward Inhibition. Neuroscience 2021, 467, 73–80. [Google Scholar] [CrossRef]
- Seo, S.; Leitch, B. Altered thalamic GABAA-receptor subunit expression in the stargazer mouse model of absence epilepsy. Epilepsia 2014, 55, 224–232. [Google Scholar] [CrossRef]
- Seo, S.; Leitch, B. Synaptic changes in GABAA receptor expression in the thalamus of the stargazer mouse model of absence epilepsy. Neuroscience 2015, 306, 28–38. [Google Scholar] [CrossRef]
- Seo, S.; Leitch, B. Postnatal expression of thalamic GABAA receptor subunits in the stargazer mouse model of absence epilepsy. Neuroreport 2017, 28, 1255–1260. [Google Scholar] [CrossRef]
- Leal, A.; Vieira, J.P.; Lopes, R.; Nunes, R.; Gonçalves, S.I.; da Silva, F.L.; Figueiredo, P. Dynamics of epileptic activity in a peculiar case of childhood absence epilepsy and correlation with thalamic levels of GABA. Epilepsy Behav. Case Rep. 2016, 5, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Tian, N.; Petersen, C.; Kash, S.; Baekkeskov, S.; Copenhagen, D.; Nicoll, R. The role of the synthetic enzyme GAD65 in the control of neuronal γ-aminobutyric acid release. Proc. Natl. Acad. Sci. USA 1999, 96, 12911–12916. [Google Scholar] [CrossRef] [Green Version]
- Asada, H.; Kawamura, Y.; Maruyama, K.; Kume, H.; Ding, R.G.; Kanbara, N.; Kuzume, H.; Sanbo, M.; Yagi, T.; Obata, K. Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 1997, 94, 6496–6499. [Google Scholar] [CrossRef] [Green Version]
- Schousboe, A.; Waagepetersen, H.S. Gamma-aminobutyric acid (GABA). In Encyclopedia of Neuroscience; Academic Press: Cambridge, MA, USA, 2009; pp. 511–515. [Google Scholar]
- Melone, M.; Ciappelloni, S.; Conti, F. A quantitative analysis of cellular and synaptic localization of GAT-1 and GAT-3 in rat neocortex. Brain Struct. Funct. 2013, 220, 885–897. [Google Scholar] [CrossRef]
- Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell. Neurosci. 2014, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Cope, D.W.; Di Giovanni, G.; Fyson, S.J.; Orbán, G.; Errington, A.C.; Lőrincz, M.L.; Gould, T.M.; Carter, D.A.; Crunelli, V. Enhanced tonic GABA A inhibition in typical absence epilepsy. Nat. Med. 2009, 15, 1392. [Google Scholar] [CrossRef] [Green Version]
- Pina, C.; Morais, T.P.; Sebastiao, A.M.; Crunelli, V.; Vaz, S.H. Astrocytic GABA transporter dysfunction in childhood absence epilepsy. In Proceedings of the XIV European Meeting on Glial Cells in Health and Disease, Porto, Portugal, 10–13 July 2019. [Google Scholar]
- Chiu, C.-S.; Brickley, S.; Jensen, K.; Southwell, A.; Mckinney, S.; Cull-Candy, S.; Mody, I.; Lester, H.A. GABA Transporter Deficiency Causes Tremor, Ataxia, Nervousness, and Increased GABA-Induced Tonic Conductance in Cerebellum. J. Neurosci. 2005, 25, 3234–3245. [Google Scholar] [CrossRef]
- Jensen, K.; Chiu, C.-S.; Sokolova, I.; Lester, H.A.; Mody, I. GABA Transporter-1 (GAT1)-Deficient Mice: Differential Tonic Activation of GABAA Versus GABAB Receptors in the Hippocampus. J. Neurophysiol. 2003, 90, 2690–2701. [Google Scholar] [CrossRef] [Green Version]
- Asada, H.; Kawamura, Y.; Maruyama, K.; Kume, H.; Ding, R.G.; Ji, F.Y.; Kanbara, N.; Kuzume, H.; Sanbo, M.; Yagi, T.; et al. Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem. Biophys. Res. Commun. 1996, 229, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Kash, S.F.; Johnson, R.; Tecott, L.H.; Noebels, J.; Mayfield, R.D.; Hanahan, D.; Baekkeskov, S. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 1997, 94, 14060–14065. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Kim, M.; Sanchez, R.; Ziaee, S.M.; Kohtz, J.D.; Koh, S. Enhanced susceptibility to stress and seizures in GAD65 deficient mice. PLoS ONE 2018, 13, e0191794. [Google Scholar] [CrossRef] [Green Version]
- Stork, O.; Ji, F.-Y.; Kaneko, K.; Stork, S.; Yoshinobu, Y.; Moriya, T.; Shibata, S.; Obata, K. Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res. 2000, 865, 45–58. [Google Scholar] [CrossRef]
- Kakizaki, T.; Ohshiro, T.; Itakura, M.; Konno, K.; Watanabe, M.; Mushiake, H.; Yanagawa, Y. Rats deficient in the GAD65 isoform exhibit epilepsy and premature lethality. FASEB J. 2020, 35. [Google Scholar] [CrossRef]
- Condie, B.G.; Bain, G.; Gottlieb, D.I.; Capecchi, M.R. Cleft palate in mice with a targeted mutation in the γ-aminobutyric acid-producing enzyme glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 1997, 94, 11451–11455. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.G.; Cai, Q.; Zheng, J.; Dong, Y.S.; Li, J.J.; Li, J.C.; Hao, G.Z.; Wang, C.; Wang, J.L. Epigenetic suppression of GADs expression is involved in temporal lobe epilepsy and pilocarpine-induced mice epilepsy. Neurochem. Res. 2016, 41, 1751–1760. [Google Scholar] [CrossRef]
- Qiao, X.; Noebels, J. Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike-wave seizures. J. Neurosci. 1993, 13, 4622–4635. [Google Scholar] [CrossRef] [Green Version]
- Hafner, A.-S.; Donlin-Asp, P.G.; Leitch, B.; Herzog, E.; Schuman, E.M. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 2019, 364, eaau3644. [Google Scholar] [CrossRef]
- Delfs, J.M.; Ciaramitaro, V.M.; Soghomonian, J.J.; Chesselet, M.F. Unilateral nigrostriatal lesions induce a bilateral increase in glutamate decarboxylase messenger RNA in the reticular thalamic nucleus. Neuroscience 1996, 71, 383–395. [Google Scholar] [CrossRef]
- Esclapez, M.; Tillakaratne, N.J.K.; Tobin, A.J.; Houser, C.R. Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J. Comp. Neurol. 1993, 331, 339–362. [Google Scholar] [CrossRef]
- Pinal, C.S.; Tobin, A.J. Uniqueness and redundancy in GABA production. Perspect. Dev. Neurobiol. 1998, 5, 109–118. [Google Scholar]
- Dávid, C.; Schleicher, A.; Zuschratter, W.; Staiger, J.F. The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary somatosensory cortex of the adult rat. Eur. J. Neurosci. 2007, 25, 2329–2340. [Google Scholar] [CrossRef]
- Staiger, J.F.; Freund, T.F.; Zilles, K. Interneurons Immunoreactive for Vasoactive Intestinal Polypeptide (VIP) are Extensively Innervated by Parvalbumin-Containing Boutons in Rat Primary Somatosensory Cortex. Eur. J. Neurosci. 1997, 9, 2259–2268. [Google Scholar] [CrossRef] [PubMed]
- Bean, J.C.; Lin, T.W.; Sathyamurthy, A.; Liu, F.; Yin, D.M.; Xiong, W.C.; Mei, L. Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene: Distribution of GABA and non-GABA ErbB4-positive cells in adult mouse brain. J. Neurosci. 2014, 34, 13549–13566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujihara, K.; Miwa, H.; Kakizaki, T.; Kaneko, R.; Mikuni, M.; Tanahira, C.; Tamamaki, N.; Yanagawa, Y. Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes. Neuropsychopharmacology 2015, 40, 2475–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarus, M.S.; Krishnan, K.; Huang, Z.J. GAD67 deficiency in parvalbumin interneurons produces deficits in in-hibitory transmission and network disinhibition in mouse prefrontal cortex. Cereb. Cortex 2015, 25, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Turner, C.P.; DeBenedetto, D.; Ware, E.; Stowe, R.; Lee, A.; Swanson, J.; Walburg, C.; Lambert, A.; Lyle, M.; Desai, P.; et al. Postnatal exposure to MK801 induces selective changes in GAD67 or parvalbumin. Exp. Brain Res. 2009, 201, 479–488. [Google Scholar] [CrossRef]
- Pirttimaki, T.; Parri, H.R.; Crunelli, V. Astrocytic GABA transporter GAT-1 dysfunction in experimental absence seizures. J. Physiol. 2012, 591, 823–833. [Google Scholar] [CrossRef]
- Conti, F.; Minelli, A.; Melone, M. GABA transporters in the mammalian cerebral cortex: Localization, development and pathological implications. Brain Res. Rev. 2004, 45, 196–212. [Google Scholar] [CrossRef]
- Fattorini, G.; Melone, M.; Gomez, M.V.S.; Arellano, R.O.; Bassi, S.; Matute, C.; Conti, F. GAT-1 mediated GABA uptake in rat oligodendrocytes. Glia 2017, 65, 514–522. [Google Scholar] [CrossRef]
- Fattorini, G.; Catalano, M.; Melone, M.; Serpe, C.; Bassi, S.; Limatola, C.; Conti, F. Microglial expression of GAT-1 in the cerebral cortex. Glia 2019, 68, 646–655. [Google Scholar] [CrossRef]
Product | Antibody/Type | Source/Catalogue No. | RRID | Dilution |
---|---|---|---|---|
Immunofluorescence Confocal Microscopy | ||||
Parvalbumin | Primary/Mouse monoclonal | Swant/235 | AB_10000343 | 1:2000 |
Parvalbumin | Primary/Rabbit polyclonal | Swant/PV27 | AB_2631173 | 1:2000 |
GAT-1 | Primary/Rabbit polyclonal | Abcam/ab426 | AB_2189971 | 1:500 |
GAT-3 | Primary/Rabbit polyclonal | Alomone Labs/AGT-003 | AB_2340977 | 1:200 |
GAD 65 | Primary/Mouse monoclonal | Abcam/ab26113 | AB_448989 | 1:500 |
GAD 67 | Primary/Mouse monoclonal | Millipore/MAB5406 | AB_2278725 | 1:500 |
Goat anti-rabbit | Secondary/Alexa Fluor 488 | Life Technologies/11008 | AB_143165 | 1:1000 |
Goat anti-mouse | Secondary/Alexa Fluor 568 | Life Technologies/11031 | AB_144696 | 1:1000 |
Western blotting | ||||
β-actin | Primary/Mouse monoclonal | Abcam/ab8226 | AB_306371 | 1:1000 |
β-actin | Primary/Rabbit monoclonal | Cell Signalling/4970 | AB_2223172 | 1:1000 |
α-tubulin | Primary/Rabbit polyclonal | Abcam/ab4074 | AB_2288001 | 1:5000 |
GAT-1 | Primary/Rabbit polyclonal | Abcam/ab426 Alomone Labs/AGT-001 | AB_2189971 | 1:250–500 1:200 |
GAT-3 | Primary/Rabbit polyclonal | Alomone Labs/AGT-003 | AB_2340977 | 1:200 |
GAD65 | Primary/Mouse monoclonal | Abcam/ab26113 | AB_448989 | 1:750 |
GAD67 | Primary/Mouse monoclonal | Millipore/MAB5406 | AB_2278725 | 1:2500 |
Goat anti-rabbit | Secondary/IRDye 680 | Li-Cor/926-32221 | AB_621841 | 1:10,000 |
Goat anti-rabbit | Secondary/IRDye 800 CW | Li-Cor/926-32211 | AB_621843 | 1:10,000 |
Goat anti-mouse | Secondary/IRDye 800 CW | Li-Cor/926-32210 | AB_621842 | 1:10,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panthi, S.; Lyons, N.M.A.; Leitch, B. Impact of Dysfunctional Feed-Forward Inhibition on Glutamate Decarboxylase Isoforms and γ-Aminobutyric Acid Transporters. Int. J. Mol. Sci. 2021, 22, 7740. https://doi.org/10.3390/ijms22147740
Panthi S, Lyons NMA, Leitch B. Impact of Dysfunctional Feed-Forward Inhibition on Glutamate Decarboxylase Isoforms and γ-Aminobutyric Acid Transporters. International Journal of Molecular Sciences. 2021; 22(14):7740. https://doi.org/10.3390/ijms22147740
Chicago/Turabian StylePanthi, Sandesh, Nikita M. A. Lyons, and Beulah Leitch. 2021. "Impact of Dysfunctional Feed-Forward Inhibition on Glutamate Decarboxylase Isoforms and γ-Aminobutyric Acid Transporters" International Journal of Molecular Sciences 22, no. 14: 7740. https://doi.org/10.3390/ijms22147740
APA StylePanthi, S., Lyons, N. M. A., & Leitch, B. (2021). Impact of Dysfunctional Feed-Forward Inhibition on Glutamate Decarboxylase Isoforms and γ-Aminobutyric Acid Transporters. International Journal of Molecular Sciences, 22(14), 7740. https://doi.org/10.3390/ijms22147740