Cells to the Rescue: Emerging Cell-Based Treatment Approaches for NMOSD and MOGAD
Abstract
:1. Introduction
2. Immunopathogenesis
2.1. AQP4 + NMOSD
2.2. MOGAD
3. Experimental Animal Models of NMOSD and MOGAD
3.1. Animal Models for NMOSD
3.2. Animal Models for MOGAD
4. Cell-Based Therapies
4.1. Tolerance-Inducing Dendritic Cells
4.2. Hematopoietic Stem Cell Transplantation in NMOSD and MOGAD
4.3. CAR-T Cell Therapy
4.4. Mesenchymal Stem Cell Transplantation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jarius, S.; Wildemann, B. The History of Neuromyelitis Optica. J. Neuroinflamm. 2013, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennon, V.A.; Kryzer, T.J.; Pittock, S.J.; Verkman, A.S.; Hinson, S.R. IgG Marker of Opticspinal Multiple Sclerosis Binds to the Aquaporin-4 Water Channel. J. Exp. Med. 2005, 202, 473–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennon, A.V.; Wingerchuk, D.M.; Kryzer, T.J.; Pittock, S.J.; Lucchinetti, C.F.; Fujihara, K.; Nakashima, I.; Weinshenker, B.G. A Serum Autoantibody Marker of Neuromyelitis Optica: Distinction from Multiple Sclerosis. Lancet 2004, 364, 2106–2112. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Lennon, A.V.; Lucchinetti, C.F.; Pittock, S.J.; Weinshenker, B.G. The Spectrum of Neuromyelitis Optica. Lancet Neurol. 2007, 6, 805–815. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Banwell, B.; Bennett, J.L.; Cabre, P.; Carroll, W.; Chitnis, T.; De Seze, J.; Fujihara, K.; Greenberg, B.M.; Jacob, A.; et al. International Consensus Diagnostic Criteria for Neuromyelitis Optica Spectrum Disorders. Neurology 2015, 85, 177–189. [Google Scholar] [CrossRef]
- Reindl, M.; Waters, P. Myelin Oligodendrocyte Glycoprotein Antibodies in Neurological Disease. Nat. Rev. Neurol. 2019, 15, 89–102. [Google Scholar] [CrossRef]
- Ambrosius, W.; Michalak, S.; Kozubski, W.; Kalinowska, A. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: Current Insights into the Disease Pathophysiology, Diagnosis and Management. Int. J. Mol. Sci. 2020, 22, 100. [Google Scholar] [CrossRef]
- Fujihara, K. MOG-Antibody-Associated Disease is Different from MS and NMOSD and Should be Classified as a Distinct Disease Entity—Commentary. Mult. Scler. J. 2020, 26, 276–278. [Google Scholar] [CrossRef]
- Fujihara, K.; Cook, L.J. Neuromyelitis Optica Spectrum Disorders and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: Current Topics. Curr. Opin. Neurol. 2020, 33, 300–308. [Google Scholar] [CrossRef]
- Fujihara, K. Neuromyelitis Optica Spectrum Disorders: Still Evolving and Broadening. Curr. Opin. Neurol. 2019, 32, 385–394. [Google Scholar] [CrossRef]
- Kunchok, A.; Flanagan, E.P.; Snyder, M.; Saadeh, R.; Chen, J.J.; Weinshenker, B.G.; McKeon, A.; Pittock, S.J. Coexisting Systemic and Organ-Specific Autoimmunity in MOG-IgG1-Associated Disorders Versus AQP4-IgG + NMOSD. Mult. Scler. J. 2021, 27, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, E.; Guasp, M.; García-Serra, A.; Maudes, E.; Ariño, H.; Sepulveda, M.; Armangué, T.; Ramos, A.P.; Ben-Hur, T.; Iizuka, T.; et al. Clinical Significance of Anti-NMDAR Concurrent with Glial or Neuronal Surface Antibodies. Neurology 2020, 94, e2302–e2310. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, S.; Davies, A.; Fehmi, J.; Beadnall, H.N.; Wang, J.; Hardy, T.A.; Barnett, M.H.; Broadley, S.A.; Waters, P.; Reddel, S.W.; et al. Overlapping Central and Peripheral Nervous System Syndromes in MOG Antibody–Associated Disorders. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e924. [Google Scholar] [CrossRef]
- Prasad, S.; Chen, J. What You Need to Know About AQP4, MOG, and NMOSD. Semin. Neurol. 2019, 39, 718–731. [Google Scholar] [CrossRef]
- Kitley, J.; Palace, J. Therapeutic Options in Neuromyelitis Optica Spectrum Disorders. Expert Rev. Neurother. 2016, 16, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Traboulsee, A.; Greenberg, B.M.; Bennett, J.L.; Szczechowski, L.; Fox, E.; Shkrobot, S.; Yamamura, T.; Terada, Y.; Kawata, Y.; Wright, P.; et al. Safety and Efficacy of Satralizumab Monotherapy in Neuromyelitis Optica Spectrum Disorder: A Randomised, Double-Blind, Multicentre, Placebo-Controlled Phase 3 Trial. Lancet Neurol. 2020, 19, 402–412. [Google Scholar] [CrossRef]
- Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; et al. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 614–625. [Google Scholar] [CrossRef]
- Cree, B.A.C.; Bennett, J.L.; Kim, H.J.; Weinshenker, B.G.; Pittock, S.J.; Wingerchuk, D.M.; Fujihara, K.; Paul, F.; Cutter, G.R.; Marignier, R.; et al. Inebilizumab for the Treatment of Neuromyelitis Optica Spectrum Disorder (N-MOmentum): A Double-Blind, Randomised Placebo-Controlled Phase 2/3 Trial. Lancet 2019, 394, 1352–1363. [Google Scholar] [CrossRef]
- Brod, S.A. Review of Approved NMO Therapies Based on Mechanism of Action, Efficacy and Long-Term Effects. Mult. Scler. Relat. Disord. 2020, 46, 102538. [Google Scholar] [CrossRef]
- Ceglie, G.; Papetti, L.; Valeriani, M.; Merli, P. Hematopoietic Stem Cell Transplantation in Neuromyelitis Optica-Spectrum Disorders (NMO-SD): State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 5304. [Google Scholar] [CrossRef]
- Avouac, A.; Maarouf, A.; Stellmann, J.-P.; Rico, A.; Boutiere, C.; Demortiere, S.; Marignier, R.; Pelletier, J.; Audoin, B. Rituximab-Induced Hypogammaglobulinemia and Infections in AQP4 and MOG Antibody–Associated Diseases. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e977. [Google Scholar] [CrossRef] [PubMed]
- Takai, Y.; Misu, T.; Kaneko, K.; Chihara, N.; Narikawa, K.; Tsuchida, S.; Nishida, H.; Komori, T.; Seki, M.; Komatsu, T.; et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: An Immunopathological Study. Brain 2020, 143, 1431–1446. [Google Scholar] [CrossRef] [PubMed]
- Agre, P. Nobel Lecture. Available online: https://www.nobelprize.org/prizes/chemistry/2003/agre/lecture/ (accessed on 23 July 2021).
- Hasegawa, H.; Ma, T.; Skach, W.; Matthay, A.M.; Verkman, A.S. Molecular Cloning of a Mercurial-Insensitive Water Channel Expressed in Selected Water-Transporting Tissues. J. Biol. Chem. 1994, 269, 5497–5500. [Google Scholar] [CrossRef]
- Mader, S.; Kümpfel, T.; Meinl, E. Novel Insights into Pathophysiology and Therapeutic Possibilities Reveal Further Differences between AQP4-IgG- and MOG-IgG-Associated Diseases. Curr. Opin. Neurol. 2020, 33, 362–371. [Google Scholar] [CrossRef]
- Papadopoulos, M.C.; Verkman, A. Aquaporin 4 and Neuromyelitis Optica. Lancet Neurol. 2012, 11, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Verkman, A. Aquaporins in Clinical Medicine. Annu. Rev. Med. 2012, 63, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Matiello, M.; Schaefer-Klein, J.; Sun, D.; Weinshenker, B.G. Aquaporin 4 Expression and Tissue Susceptibility to Neuromyelitis Optica. JAMA Neurol. 2013, 70, 1118–1125. [Google Scholar] [CrossRef] [Green Version]
- Saini, H.; Fernandez, G.; Kerr, U.; Levy, M. Differential Expression of Aquaporin-4 Isoforms Localizes with Neuromyelitis Optica Disease Activity. J. Neuroimmunol. 2010, 221, 68–72. [Google Scholar] [CrossRef]
- Hillebrand, S.; Schanda, K.; Nigritinou, M.; Tsymala, I.; Böhm, D.; Peschl, P.; Takai, Y.; Fujihara, K.; Nakashima, I.; Misu, T.; et al. Circulating AQP4-Specific Auto-Antibodies Alone can Induce Neuromyelitis Optica Spectrum Disorder in the Rat. Acta Neuropathol. 2019, 137, 467–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.V.; Huang, H.; Calabresi, P.; Levy, M. Pathogenic Aquaporin-4 Reactive T Cells are Sufficient to induce Mouse Model of Neuromyelitis Optica. Acta Neuropathol. Commun. 2015, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.; Makuch, M.; Kienzler, A.-K.; Varley, J.; Taylor, J.; Woodhall, M.; Palace, J.; Leite, M.I.; Waters, P.; Irani, S.R. Condition-Dependent Generation of Aquaporin-4 Antibodies from Circulating B Cells in Neuromyelitis Optica. Brain 2018, 141, 1063–1074. [Google Scholar] [CrossRef]
- Cho, E.B.; Cho, H.-J.; Seok, J.M.; Min, J.-H.; Kang, E.-S.; Kim, B.J. The IL-10-Producing Regulatory B Cells (B10 Cells) and Regulatory T Cell Subsets in Neuromyelitis Optica Spectrum Disorder. Neurol. Sci. 2018, 39, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Cotzomi, E.; Stathopoulos, P.; Lee, C.S.; Ritchie, A.M.; Soltys, J.N.; Delmotte, F.R.; Oe, T.; Sng, J.; Jiang, R.; Ma, A.K.; et al. Early B Cell Tolerance Defects in Neuromyelitis Optica Favour Anti-AQP4 Autoantibody Production. Brain 2019, 142, 1598–1615. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Lennon, V.A.; Liu, Y.U.; Bosco, D.B.; Li, Y.; Yi, M.-H.; Zhu, J.; Wei, S.; Wu, L.-J. Astrocyte-Microglia Interaction Drives Evolving Neuromyelitis Optica Lesion. J. Clin. Investig. 2020, 130, 4025–4038. [Google Scholar] [CrossRef]
- Nishiyama, S.; Ito, T.; Misu, T.; Takahashi, T.; Kikuchi, A.; Suzuki, N.; Jin, K.; Aoki, M.; Fujihara, K.; Itoyama, Y. A Case of NMO Seropositive for Aquaporin-4 Antibody More than 10 Years before Onset. Neurology 2009, 72, 1960–1961. [Google Scholar] [CrossRef]
- Jarius, S.; Paulb, F.; Franciottac, D.; Ruprechtd, K.; Ringelsteine, M.; Bergamaschic, R.; Pommerf, R.; Kleiterg, I.; Stichh, O.; Reussi, R.; et al. Cerebrospinal Fluid Findings in Aquaporin-4 Antibody Positive Neuromyelitis Optica: Results from 211 Lumbar Punc-tures. J. Neurol. Sci. 2011, 306, 82–90. [Google Scholar]
- Sepúlveda, M.; Sola-Valls, N.; Escudero, D.; Rojc, B.; Barón, M.; Hernández-Echebarría, L.; Gómez, B.; Dalmau, J.; Saiz, A.; Graus, F. Clinical Profile of Patients with Paraneoplastic Neuromyelitis Optica Spectrum Disorder and Aquaporin-4 Anti-Bodies. Mult. Scler. 2018, 24, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Varrin-Doyer, M.; Bs, C.M.S.; Schulze-Topphoff, U.; Nelson, P.A.; Stroud, R.M.; Cree, B.A.C.; Zamvil, S.S. Aquaporin 4-Specific T Cells in Neuromyelitis Optica Exhibit a Th17 Bias and Recognize Clostridium ABC Transporter. Ann. Neurol. 2012, 72, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Pandit, L.; Cox, L.M.; Malli, C.; D’Cunha, A.; Rooney, T.; Lokhande, H.; Willocq, V.; Saxena, S.; Chitnis, T. Clostridium Bolteae is Elevated in Neuromyelitis Optica Spectrum Disorder in India and Shares Sequence Similarity with AQP4. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e907. [Google Scholar] [CrossRef]
- Graves, J.; Grandhe, S.; Weinfurtner, K.; Krupp, L.; Belman, A.; Chitnis, T.; Ness, J.; Weinstock-Guttman, B.; Gorman, M.; Patterson, M.; et al. Protective Environmental Factors for Neuromyelitis Optica. Neurology 2014, 83, 1923–1929. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, T.; Masaki, K.; Isobe, N.; Sato, S.; Yamamoto, K.; Nakamura, Y.; Watanabe, M.; Suenaga, T.; Kira, J. The Japan Multiple Sclerosis Genetic Consortium Genetic Factors for Susceptibility to and Manifestations of Neuromyelitis Optica. Ann. Clin. Transl. Neurol. 2020, 7, 2082–2093. [Google Scholar] [CrossRef]
- Watanabe, M.; Nakamura, Y.; Sato, S.; Niino, M.; Fukaura, H.; Tanaka, M.; Ochi, H.; Kanda, T.; Takeshita, Y.; Yokota, T.; et al. HLA Genotype-Clinical Phenotype Correlations in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders Based on Japan MS/NMOSD Biobank Data. Sci. Rep. 2021, 11, 607. [Google Scholar] [CrossRef] [PubMed]
- Bruijstens, A.L.; Wong, Y.Y.M.; van Pelt, D.E.; van der Linden, P.J.E.; Haasnoot, G.W.; Hintzen, R.Q.; Claas, F.H.J.; Neuteboom, R.F.; Wokke, B.H.A. HLA Association in MOG-IgG- and AQP4-IgG-Related Disorders of the CNS in the Dutch Population. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, M.P.; do Carmo, L.F.; Vasconcelos, C.C.F.; Alvarenga, M.P.; Alvarenga-Filho, H.; de Melo Bento, C.A.; Paiva, C.L.A.; Leyva-Fernández, L.; Fernández, Ó.; Papais-Alvarenga, R.M. Neuromyelitis Optica is an HLA Associated Disease Different from MULTIPLE SCLEROSIS: A Systematic Review with Meta-Analysis. Sci. Rep. 2021, 11, 152. [Google Scholar] [CrossRef]
- Yandamuri, S.S.; Jiang, R.; Sharma, A.; Cotzomi, E.; Zografou, C.; Ma, A.K.; Alvey, J.S.; Cook, L.J.; Smith, T.J.; Yeaman, M.R.; et al. High-Throughput Investigation of Molecular and Cellular Biomarkers in NMOSD. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e852. [Google Scholar] [CrossRef]
- Höftberger, R.; Guo, Y.; Flanagan, E.P.; Lopez-Chiriboga, A.S.; Endmayr, V.; Hochmeister, S.; Joldic, D.; Pittock, S.J.; Tillema, J.M.; Gorman, M.; et al. The Pathology of Central Nervous System Inflammatory Demyelinating Disease Accompanying Myelin Oli-Godendrocyte Glycoprotein Autoantibody. Acta Neuropathol. 2020, 139, 875–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, L.S.; Ramberger, M.; Gredler, V.; Pescoller, A.S.; Rostásy, K.; Sospedra, M.; Hegen, H.; Berger, T.; Lutterotti, A.; Reindl, M. Comparative Analysis of T-Cell Responses to Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in Inflammatory Demyelinating Central Nervous System Diseases. Front. Immunol. 2020, 11, 1188. [Google Scholar] [CrossRef]
- Winklmeier, S.; Schlüter, M.; Spadaro, M.; Thaler, F.S.; Vural, A.; Gerhards, R.; Macrini, C.; Mader, S.; Kurne, A.; Inan, B.; et al. Identification of Circulating MOG-Specific B Cells in Patients with MOG Antibodies. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spadaro, M.; Winklmeier, S.; Beltrán, E.; Macrini, C.; Höftberger, R.; Schuh, E.; Thaler, F.S.; Gerdes, L.A.; Laurent, S.; Gerhards, R.; et al. Pathogenicity of Human Antibodies against Myelin Oligodendrocyte Glycoprotein. Ann. Neurol. 2018, 84, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Fovet, C.-M.; Stimmer, L.; Contreras, V.; Horellou, P.; Hubert, A.; Seddiki, N.; Chapon, C.; Tricot, S.; Leroy, C.; Flament, J.; et al. Intradermal Vaccination Prevents Anti-MOG Autoimmune Encephalomyelitis in Macaques. EBioMedicine 2019, 47, 492–505. [Google Scholar] [CrossRef]
- Grant-Peters, M.; Dos Passos, G.R.; Yeung, H.; Jacob, A.; Huda, S.; Leite, M.I.; Dendrou, C.A.; Palace, J. No Strong HLA Association with MOG Antibody Disease in the UK Population. Ann. Clin. Transl. Neurol. 2021. [Google Scholar] [CrossRef]
- Peters, J.; Alhasan, S.; Vogels, C.B.; Grubaugh, N.D.; Farhadian, S.; Longbrake, E.E. MOG-Associated Encephalitis Following SARS-COV-2 Infection. Mult. Scler. Relat. Disord. 2021, 50, 102857. [Google Scholar] [CrossRef]
- Jumah, M.; Rahman, F.; Figgie, M.; Prasad, A.; Zampino, A.; Fadhil, A.; Palmer, K.; Buerki, R.A.; Gunzler, S.; Gundelly, P.; et al. COVID-19, HHV6 and MOG Antibody: A Perfect Storm. J. Neuroimmunol. 2021, 353, 577521. [Google Scholar] [CrossRef]
- Wildemann, B.; Jarius, S.; Franz, J.; Ruprecht, K.; Reindl, M.; Stadelmann, C. MOG-Expressing Teratoma Followed by MOG-IgG-Positive Optic Neuritis. Acta Neuropathol. 2021, 141, 127–131. [Google Scholar] [CrossRef]
- Dos Passos, G.R.; Elsone, L.; Luppe, S.; Kitley, J.; Messina, S.; Cruz, P.M.R.; Harding, K.; Mutch, K.; Leite, M.I.; Robertson, N.; et al. Seasonal Distribution of Attacks in Aquaporin-4 Antibody Disease and Myelin-Oligodendrocyte Antibody Disease. J. Neurol. Sci. 2020, 415, 116881. [Google Scholar] [CrossRef]
- Duan, T.; Verkman, A.S. Experimental Animal Models of Aquaporin-4-IgG-Seropositive Neuromyelitis Optica Spectrum Disorders: Progress and Shortcomings. Brain Pathol. 2020, 30, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Zeka, B.; Hastermann, M.; Hochmeister, S.; Kögl, N.; Kaufmann, N.; Schanda, K.; Mader, S.; Misu, T.; Rommer, P.; Fujihara, K.; et al. Highly Encephalitogenic Aquaporin 4-Specific T Cells and NMO-IgG Jointly Orchestrate Lesion Location and Tissue Damage in the CNS. Acta Neuropathol. 2015, 130, 783–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuma, H.; Kohyama, K.; Park, I.-K.; Miyakoshi, A.; Tanuma, N.; Matsumoto, Y. Clinicopathological Study of a myelin Oligodendrocyte Glycoprotein-Induced Demyelinating Disease in LEW.1AV1 Rats. Brain 2004, 127, 2201–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefferl, A.; Brehm, U.; Storch, M.; Lambracht-Washington, D.; Bourquin, C.; Wonigeit, K.; Lassmann, H.; Linington, C.; Stefferl, A.; Brehm, U.; et al. Myelin Oligodendrocyte Glycoprotein Induces Experimental Autoimmune Encephalomyelitis in the “Resistant” Brown Norway Rat: Disease Susceptibility is Determined by MHC and MHC-Linked Effects on the B Cell Response. J. Immunol. 1999, 163, 40–49. [Google Scholar] [PubMed]
- Storch, M.K.; Stefferl, A.; Brehm, U.; Weissert, R.; Wallström, E.; Kerschensteiner, M.; Olsson, T.; Linington, C.; Lassmann, H. Autoimmunity to Myelin Oligodendrocyte Glycoprotein in Rats Mimics the Spectrum of Multiple Sclerosis Pathology. Brain Pathol. 1998, 8, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Collongues, N.; Chanson, J.; Blanc, F.; Steibel, J.; Lam, C.; Shabbir, A.; Trifilieff, E.; Honnorat, J.; Pham-Dinh, D.; Ghandour, M.; et al. The Brown Norway Opticospinal Model of Demyelination: Does it Mimic Multiple Sclerosis or Neuromyelitis Optica? Int. J. Dev. Neurosci. 2012, 30, 487–497. [Google Scholar] [CrossRef]
- Tsymala, I.; Nigritinou, M.; Zeka, B.; Schulz, R.; Niederschick, F.; Matković, M.; Bauer, I.J.; Szalay, M.; Schanda, K.; Lerch, M.; et al. Induction of Aquaporin 4-Reactive Antibodies in Lewis Rats Immunized with Aquaporin 4 Mimotopes. Acta Neuropathol. Commun. 2020, 8, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pittock, S.J.; Lennon, V.A.; McKeon, A.; Mandrekar, J.; Weinshenker, B.G.; Lucchinetti, C.F.; Toole, O.O.; Wingerchuk, D.M. Eculizumab in AQP4-IgG-Positive Relapsing Neuromyelitis Optica Spectrum Disorders: An Open-Label Pilot Study. Lancet Neurol. 2013, 12, 554–562. [Google Scholar] [CrossRef]
- Ratelade, J.; Verkman, A. Inhibitor(s) of the Classical Complement Pathway in Mouse Serum Limit the Utility of Mice as Experimental Models of Neuromyelitis Optica. Mol. Immunol. 2014, 62, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettelli, E.; Pagany, M.; Weiner, H.L.; Linington, C.; Sobel, R.A.; Kuchroo, V.K. Myelin Oligodendrocyte Glycoprotein–Specific T Cell Receptor Transgenic Mice Develop Spontaneous Autoimmune Optic Neuritis. J. Exp. Med. 2003, 197, 1073–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettelli, E.; Baeten, M.; Jäger, A.; Sobel, R.A.; Kuchroo, V.K. Myelin Oligodendrocyte Glycoprotein–Specific T and B Cells Cooperate to Induce a Devic-Like Disease in Mice. J. Clin. Investig. 2006, 116, 2393–2402. [Google Scholar] [CrossRef]
- Zubizarreta, I.; Flórez-Grau, G.; Vila, G.; Cabezón, R.; España, C.; Andorra, M.; Saiz, A.; Llufriu, S.; Sepulveda, M.; Sola-Valls, N.; et al. Immune Tolerance in Multiple Sclerosis and Neuromyelitis Optica with Peptide-Loaded Tolerogenic Dendritic Cells in a Phase 1b Trial. Proc. Natl. Acad. Sci. USA 2019, 116, 8463–8470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burt, R.K.; Balabanov, R.; Han, X.; Burns, C.; Gastala, J.; Jovanovic, B.; Helenowski, I.; Jitprapaikulsan, J.; Fryer, J.P.; Pittock, S.J. Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation for Neuromyelitis Optica. Neurology 2019, 93, e1732–e1741. [Google Scholar] [CrossRef]
- Fu, Y.; Yan, Y.; Qi, Y.; Yang, L.; Li, T.; Zhang, N.; Yu, C.; Su, L.; Zhang, R.; Shen, Y.; et al. Impact of Autologous Mesenchymal Stem Cell Infusion on Neuromyelitis Optica Spectrum Disorder: A Pilot, 2-Year Observational Study. CNS Neurosci. Ther. 2016, 22, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhu, L.; Liu, Z.; Wu, J.; Xu, Y.; Zhang, C.J. IV/IT hUC-MSCs Infusion in RRMS and NMO: A 10-Year Follow-Up Study. Front. Neurol. 2020, 11, 967. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, B. Effect of Autologous Hematopoietic Stem Cell Transplantation on Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A PRISMA-Compliant Meta-Analysis. Bone Marrow Transplant. 2020, 55, 1928–1934. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Bondanza, A.; Oliveira, M.C.; Badoglio, M.; Burman, J.; Piehl, F.; Hagglund, H.; Krasulová, E.; Simões, B.P.; Carlson, K.; et al. Autologous Hematopoietic Stem Cell Transplantation in Neuromyelitis Optica: A Registry Study of the EBMT Autoimmune Diseases Working Party. Mult. Scler. J. 2015, 21, 189–197. [Google Scholar] [CrossRef]
- Hoay, K.Y.; Ratnagopal, P. Autologous Hematopoietic Stem Cell Transplantation for the Treatment of Neuromyelitis Optica in Singapore. Acta Neurol. Taiwanica 2018, 27, 26–32. [Google Scholar]
- Sharrack, B.; For the European Society for Blood and Marrow Transplantation (EBMT) Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of the International Society for Cellular Therapy (ISCT) and EBMT (JACIE); Saccardi, R.; Alexander, T.; Badoglio, M.; Burman, J.; Farge, D.; Greco, R.; Jessop, H.; Kazmi, M.; et al. Autologous Haematopoietic Stem Cell Transplantation and Other Cellular Therapy in Multiple Sclerosis and Immune-Mediated Neurological Diseases: Updated Guidelines and Recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant. 2020, 55, 283–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hau, L.; Kállay, K.; Kertész, G.; Goda, V.; Kassa, C.; Horváth, O.; Liptai, Z.; Constantin, T.; Kriván, G. Allogeneic Haematopoietic Stem Cell Transplantation in a Refractory Case of Neuromyelitis Optica Spectrum Disorder. Mult. Scler. Relat. Disord. 2020, 42, 102110. [Google Scholar] [CrossRef] [PubMed]
- Ceglie, G.; Papetti, L.; Talamanca, L.F.; Lucarelli, B.; Algeri, M.; Gaspari, S.; Pira, G.L.; Colafati, G.; Montanari, M.; Valeriani, M.; et al. T-Cell Depleted HLA-Haploidentical HSCT in a Child with Neuromyelitis Optica. Ann. Clin. Transl. Neurol. 2019, 6, 2110–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, R.; Bondanza, A.; Vago, L.; Moiola, L.; Rossi, P.; Furlan, R.; Martino, G.; Radaelli, M.; Martinelli, V.; Carbone, M.R.; et al. Allogeneic Hematopoietic Stem Cell Transplantation for Neuromyelitis Optica. Ann. Neurol. 2014, 75, 447–453. [Google Scholar] [CrossRef]
- Hümmert, M.W.; Stadler, M.; Hambach, L.; Gingele, S.; Bredt, M.; Wattjes, M.P.; Göhring, G.; Venturini, L.; Möhn, N.; Stangel, M.; et al. Severe Allo-Immune Antibody-Associated Peripheral and Central Nervous System Diseases after Allogeneic Hematopoietic Stem Cell Transplantation. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Rush, C.; Atkins, H. Aggressive and refractory MOG IgG Associated Encephalomyelitis Treated with Autologous Hematopoeitic Stem Cell Transplantation: First Case Worldwide. Mult. Scler. J. 2019, 25, 367–368. [Google Scholar]
- Dotti, G.; Gottschalk, S.; Savoldo, B.; Brenner, M.K. Design and Development of Therapies Using Chimeric Antigen Receptor-expressing T Cells. Immunol. Rev. 2014, 257, 107–126. [Google Scholar] [CrossRef]
- Jensen, T.I.; Axelgaard, E.; Bak, R.O. Therapeutic Gene Editing in Haematological Disorders with CRISPR/Cas9. Br. J. Haematol. 2019, 185, 821–835. [Google Scholar] [CrossRef] [PubMed]
- Atrash, S.; Bano, K.; Harrison, B.; Abdallah, A.-O. CAR-T Treatment for Hematological Malignancies. J. Investig. Med. 2020, 68, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Moon, E.K. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front. Immunol. 2019, 10, 128. [Google Scholar] [CrossRef] [Green Version]
- Vairy, S.; Garcia, J.L.; Teira, P.; Bittencourt, H. CTL019 (Tisagenlecleucel): CAR-T Therapy for Relapsed and Refractory B-Cell Acute Lymphoblastic Leukemia. Drug Des. Dev. Ther. 2018, 12, 3885–3898. [Google Scholar] [CrossRef] [Green Version]
- Abramson, J.S. Anti-CD19 CAR T-Cell Therapy for B-Cell Non-Hodgkin Lymphoma. Transfus. Med. Rev. 2020, 34, 29–33. [Google Scholar] [CrossRef]
- Kersten, M.J.; Spanjaart, A.M.; Thieblemont, C. CD19-Directed CAR T-Cell Therapy in B-Cell NHL. Curr. Opin. Oncol. 2020, 32, 408–417. [Google Scholar] [CrossRef]
- Roex, G.; Timmers, M.; Wouters, K.; Campillo-Davo, D.; Flumens, D.; Schroyens, W.; Chu, Y.; Berneman, Z.N.; Lion, E.; Luo, F.; et al. Safety and Clinical Efficacy of BCMA CAR-T-Cell Therapy in Multiple Myeloma. J. Hematol. Oncol. 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Q.; Pu, C.; Zhu, K.; Lu, C.; Jiang, Y.; Xiao, L.; Han, Y.; Lu, L. Therapeutic Efficacy of Anti-CD19 CAR-T Cells in a Mouse Model of Systemic Lupus Erythematosus. Cell. Mol. Immunol. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brunstein, C.G.; Miller, J.S.; Cao, Q.; McKenna, D.H.; Hippen, K.L.; Curtsinger, J.; DeFor, T.; Levine, B.L.; June, C.; Rubinstein, P.; et al. Infusion of Ex Vivo Expanded T Regulatory Cells in Adults Transplanted with Umbilical Cord Blood: Safety Profile and Detection Kinetics. Blood 2011, 117, 1061–1070. [Google Scholar] [CrossRef]
- Martelli, M.F.; Di Ianni, M.; Ruggeri, L.; Falzetti, F.; Carotti, A.; Terenzi, A.; Pierini, A.; Massei, M.S.; Amico, L.; Urbani, E.; et al. HLA-Haploidentical Transplantation with Regulatory and Conventional T-Cell Adoptive Immunotherapy Prevents Acute Leukemia Relapse. Blood 2014, 124, 638–644. [Google Scholar] [CrossRef]
- Trzonkowski, P.; Dukat-Mazurek, A.; Bieniaszewska, M.; Marek-Trzonkowska, N.; Dobyszuk, A.; Juścińska, J.; Dutka, M.; Myśliwska, J.; Hellmann, A. Treatment of Graft-Versus-Host Disease with Naturally Occurring T Regulatory Cells. BioDrugs 2013, 27, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Marek-Trzonkowska, N.; Myśliwiec, M.; Dobyszuk, A.; Grabowska, M.; Techmańska, I.; Juścińska, J.; Wujtewicz, M.A.; Witkowski, P.; Młynarski, W.; Balcerska, A.; et al. Administration of CD4+CD25highCD127- Regulatory T cells Preserves β-Cell Function in Type 1 Diabetes in Children. Diabetes Care 2012, 35, 1817–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bluestone, J.A.; Buckner, J.H.; Fitch, M.D.; Gitelman, S.E.; Gupta, S.; Hellerstein, M.K.; Herold, K.C.; Lares, A.; Lee, M.R.; Li, K.; et al. Type 1 Diabetes Immunotherapy Using Polyclonal Regulatory T Cells. Sci. Transl. Med. 2015, 7, 315ra189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohseni, Y.R.; Tung, S.L.; Dudreuilh, C.; Lechler, R.I.; Fruhwirth, G.O.; Lombardi, G. The Future of Regulatory T Cell Therapy: Promises and Challenges of Implementing CAR Technology. Front. Immunol. 2020, 11, 1608. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, Z.; Lu, Z.; Borlongan, C.; Pan, J.; Chen, J.; Qian, L.; Liu, Z.; Zhu, L.; Zhang, J.; et al. Human Umbilical Cord Stem Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Immunoinflammation and Remyelination. Stem Cells Dev. 2013, 22, 1053–1062. [Google Scholar] [CrossRef]
- Kokaia, Z.; Martino, G.; Schwartz, M.; Lindvall, O. Cross-Talk Between Neural Stem Cells and Immune Cells: The Key to Better Brain Repair? Nat. Neurosci. 2012, 15, 1078–1087. [Google Scholar] [CrossRef]
- Le Blanc, K.; Mougiakakos, D. Multipotent Mesenchymal Stromal Cells and the Innate Immune system. Nat. Rev. Immunol. 2012, 12, 383–396. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Prockop, D.J. Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues. Science 1997, 276, 71–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Ye, D.; Qian, L.; Zhu, L.; Wang, C.; Guan, D.; Zhang, X.; Xu, Y. Human Umbilical Cord Mesenchymal Stem Cell Therapy on Neuromyelitis Optica. Curr. Neurovasc. Res. 2012, 9, 250–255. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, X.; NI, P.; Qiu, X.; Lin, X.; Wu, W.; Xie, L.; Lin, L.; Min, J.; Lai, X.; et al. Immunological Characteristics of Human Umbilical Cord Mesenchymal Stem Cells and the Therapeutic Effects of Their Transplantion on Hyperglycemia in Diabetic Rats. Int. J. Mol. Med. 2014, 33, 263–270. [Google Scholar] [CrossRef]
- Hayes, C. Cellular Immunotherapies for Cancer. Ir. J. Med Sci. 2021, 190, 41–57. [Google Scholar] [CrossRef]
- Akaishi, T.; Takahashi, T.; Nakashima, I.; Abe, M.; Ishii, T.; Aoki, M.; Fujihara, K. Repeated Follow-Up of AQP4-IgG Titer by Cell-Based Assay in Neuromyelitis Optica Spectrum Disorders (NMOSD). J. Neurol. Sci. 2020, 410, 116671. [Google Scholar] [CrossRef]
- Kessler, R.A.; Mealy, M.A.; Jimenez-Arango, J.A.; Quan, C.; Paul, F.; López, R.; Hopkins, S.; Levy, M. Anti-Aquaporin-4 Titer is Not Predictive of Disease Course in Neuromyelitis Optica Spectrum Disorder: A Multicenter Cohort Study. Mult. Scler. Relat. Disord. 2017, 17, 198–201. [Google Scholar] [CrossRef]
- Takahashi, T.; Fujihara, K.; Nakashima, I.; Misu, T.; Miyazawa, I.; Nakamura, M.; Watanabe, S.; Shiga, Y.; Kanaoka, C.; Fujimori, J.; et al. Anti-Aquaporin-4 Antibody is Involved in the Pathogenesis of NMO: A Study on Antibody Titre. Brain 2007, 130, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Hennes, E.-M.; Baumann, M.; Schanda, K.; Anlar, B.; Bajer-Kornek, B.; Blaschek, A.; Brantner-Inthaler, S.; Diepold, K.; Eisenkölbl, A.; Gotwald, T.; et al. Prognostic Relevance of MOG Antibodies in Children with an Acquired Demyelinating Syndrome. Neurology 2017, 89, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Cobo-Calvo, A.; The OFSEP Group; Sepúlveda, M.; D’Indy, H.; Armangue, T.; Ruiz, A.; Maillart, E.; Papeix, C.; Audoin, B.; Zephir, H.; et al. Usefulness of MOG-Antibody Titres at First Episode to Predict the Future Clinical Course in Adults. J. Neurol. 2019, 266, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Calvo, A.; Ruiz, A.; Maillart, E.; Audoin, B.; Zephir, H.; Bourre, B.; Ciron, J.; Collongues, N.; Brassat, D.; Cottonetal, F. Clinical Spectrum and Prognostic Value Of CNS MOG autoimmunity in Adults: The MOGADOR Study. Neurology 2018, 90, e1858–e1869. [Google Scholar] [CrossRef] [PubMed]
- Mariotto, S.; Ferrari, S.; Monaco, S.; Benedetti, M.D.; Schanda, K.; Alberti, D.; Farinazzo, A.; Capra, R.; Mancinelli, C.; De Rossi, N.; et al. Clinical Spectrum and IgG Subclass Analysis of Anti-Myelin Oligodendrocyte Glycoprotein Antibody-Associated Syndromes: A Multicenter Study. J. Neurol. 2017, 264, 2420–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurynczyk, M.; Messina, S.; Woodhall, M.R.; Raza, N.; Everett, R.; Roca-Fernandez, A.; Tackley, G.; Hamid, S.; Sheard, A.; Reynolds, G.; et al. Clinical Presentation and Prognosis in MOG-Antibody Disease: A UK Study. Brain 2017, 140, 3128–3138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armangue, T.; Olivé-Cirera, G.; Martínez-Hernandez, E.; Sepulveda, M.; Ruiz-García, R.; Muñoz-Batista, M.; Ariño, H.; González-Álvarez, V.; Felipe-Rucian, A.; Martínez-González, M.J.; et al. Associations of Paediatric Demyelinating and Encephalitic Syndromes with Myelin Oligodendrocyte Glycoprotein Antibodies: A Multicentre Observational Study. Lancet Neurol. 2020, 19, 234–246. [Google Scholar] [CrossRef]
- Waters, P.; Fadda, G.; Woodhall, M.; O’Mahony, J.; Brown, R.A.; Castro, D.A.; Longoni, G.; Irani, S.R.; Sun, B.; Yeh, E.A.; et al. Serial Anti–Myelin Oligodendrocyte Glycoprotein Antibody Analyses and Outcomes in Children With Demyelinating Syndromes. JAMA Neurol. 2020, 77, 82. [Google Scholar] [CrossRef] [Green Version]
- Armangue, T.; Capobianco, M.; de Chalus, A.; Laetitia, G.; Deiva, K.; Bruijstens, A.L.; Wendel, E.-M.; Lechner, C.; Bartels, F.; Finke, C.; et al. E.U. Paediatric MOG Consortium Consensus: Part 3—Biomarkers of Paediatric Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorders. Eur. J. Paediatr. Neurol. 2020, 29, 22–31. [Google Scholar] [CrossRef]
- Akaishi, T.; Takahashi, T.; Misu, T.; Kaneko, K.; Takai, Y.; Nishiyama, S.; Ogawa, R.; Fujimori, J.; Ishii, T.; Aoki, M.; et al. Difference in the Source of Anti-AQP4-IgG and Anti-MOG-IgG Antibodies in CSF in Patients With Neuromyelitis Optica Spectrum Disorder. Neurology 2021. [Google Scholar] [CrossRef]
- Carta, S.; Höftberger, R.; Bolzan, A.; Bozzetti, S.; Bonetti, B.; Scarpelli, M.; Ottaviani, S.; Ghimenton, C.; Alberti, D.; Schanda, K.; et al. Antibodies to MOG in CSF Only: Pathological Findings Support the Diagnostic Value. Acta Neuropathol. 2021, 141, 801–804. [Google Scholar] [CrossRef]
- Schindler, P.; Grittner, U.; Oechtering, J.; Leppert, D.; Siebert, N.; Duchow, A.S.; Oertel, F.C.; Asseyer, S.; Kuchling, J.; Zimmermann, H.G.; et al. Serum GFAP and NfL as Disease Severity and Prognostic Biomarkers in Patients with Aquaporin-4 Antibody-Positive Neuromyelitis Optica Spectrum Disorder. J. Neuroinflamm. 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Lünemann, J.D.; Ruck, T.; Muraro, P.A.; Bar-Or, A.; Wiendl, H. Immune Reconstitution Therapies: Concepts for Durable Remission in Multiple Sclerosis. Nat. Rev. Neurol. 2020, 16, 56–62. [Google Scholar] [CrossRef]
- Honce, J.M.; Nair, K.V.; Sillau, S.; Valdez, B.; Miravalle, A.; Alvarez, E.; Schreiner, T.; Corboy, J.R.; Vollmer, T.L. Rituximab vs Placebo Induction Prior to Glatiramer Acetate Monotherapy in Multiple Sclerosis. Neurology 2019, 92, e723–e732. [Google Scholar] [CrossRef]
- Harrison, D.M.; E. Gladstone, D.; Hammond, E.; Cheng, J.; Jones, R.J.; A. Brodsky, R.; Kerr, D.; McArthur, J.C.; Kaplin, A. Treatment of Relapsing–Remitting Multiple Sclerosis with High-Dose Cyclophosphamide Induction Followed by Glatiramer Acetate Maintenance. Mult. Scler. J. 2011, 18, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Yang, Y.; Ma, L.; Zhang, G.; Shi, F.; Yan, Y.; Chang, G. Study of the Cytological Features of Bone Marrow Mesenchymal Stem Cells from Patients with Neuromyelitis Optica. Int. J. Mol. Med. 2019, 43, 1395–1405. [Google Scholar] [CrossRef] [Green Version]
Title | ClinicalTrials.gov Identifier | Status | Type of Trial | Intervention | Study Population | Primary Outcome | Results | Reference |
---|---|---|---|---|---|---|---|---|
Dendritic cells | ||||||||
Treatment of Multiple Sclerosis and Neuromyelitis Optica With Regulatory Dendritic Cell: Clinical Trial Phase 1 B | NCT02283671 | Completed | Dose-escalating phase I | Tolerogenic dendritic cells loaded with myelin and AQP4 peptides | MS and NMOSD | Adverse events | Well tolerated, without serious adverse events and with no therapy-related reactions | Zubizaretta et al. [68] |
Hematopoeitic stem cells | ||||||||
Hematopoietic Stem Cell Transplant in Devic’s Disease | NCT00787722 | Completed | Phase I/II | Hematopoeitic stem cells, after preconditioning with a.o. cyclofosfamide and rituximab | NMOSD | Survival | 11/13 patients survived more than 5 years post-transplant | Burt et al. [69] |
Autologous Hematopoietic Stem Cell Transplant in Neuromyelitis Optica (SCT-NMO) | NCT01339455 | Terminated (recruitment failure) | Phase I/II | Autologous hematopoeitic stem cells, after preconditioning with a.o. cyclofosfamide and rituximab | NMOSD | Proportion relapse-free at three years | N/A | N/A |
Autologous Transplant To End NMO Spectrum Disorder | NCT03829566 | Withdrawn by investigator | Open-label phase II/III | Autologous hematopoietic stem cells, after preconditioning with a.o. cyclofosfamide and rituximab | NMOSD | Progression-free Survival | N/A | N/A |
Autologous Peripheral Blood Stem Cell Transplant for Neurologic Autoimmune Diseases | NCT00716066 | Recruiting | Open-label phase II | Syngeneic or autologous hematopoietic stem cells, after high-dose preconditioning regimen with high-dose carmustine, etoposide, cytarabine, melphalan and antithymocyte globulin | Severe and refractory autoimmune disorders of the central or peripheral nervous system (including NMOSD) | Incidence of grades 4-5 regimen-related toxicity | N/A | N/A |
CAR-T cells | ||||||||
Treatment of Relapsed and/or Refractory AQP4-IgG Seropositive NMOSD by Tandem CAR T Cells Targeting CD19 and CD20 | NCT03605238 | Withdrawn (recruitment failure) | Phase I | Tandem CAR-T cells against CD19 and CD20 | Refractory NMOSD | Occurrence of study related adverse events | N/A | N/A |
Safety and Efficacy of CT103A Cells for Relapsed/Refractory Antibody-associated Idiopathic Inflammatory Diseases of the Nervous System (CARTinNS) | NCT04561557 | Recruiting | Dose-escalating phase I | CAR-T cells against BCMA, after lymphodepletion with cyclofosfamide and fludarabine | Refractory NMOSD | Dose-limiting toxicities and adverse events | N/A | N/A |
Mesenchymal stem cells | ||||||||
Autologous Mesenchymal Stem Cells for the Treatment of Neuromyelitis Optica Spectrum Disorders | NCT02249676 | Completed | Placebo-controlled phase II | Autologous mesenchymal stem cells | Refractory NMOSD | EDSS change before and one year after infusion | EDSS reduction from 4.9 to 4.3 | Fu et al. [70] |
Safety and Efficacy of Umbilical Cord Mesenchymal Stem Cell Therapy for Patients With Progressive Multiple Sclerosis and Neuromyelitis Optica | NCT01364246 | Completed | Phase I/II | Human umbilical cord mesenchymal stem cells | MS and AQP4+ NMOSD | EDSS | EDSS improvement with 6.5% ± 26.1% at 24 months following transplantation | Lu et al. [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derdelinckx, J.; Reynders, T.; Wens, I.; Cools, N.; Willekens, B. Cells to the Rescue: Emerging Cell-Based Treatment Approaches for NMOSD and MOGAD. Int. J. Mol. Sci. 2021, 22, 7925. https://doi.org/10.3390/ijms22157925
Derdelinckx J, Reynders T, Wens I, Cools N, Willekens B. Cells to the Rescue: Emerging Cell-Based Treatment Approaches for NMOSD and MOGAD. International Journal of Molecular Sciences. 2021; 22(15):7925. https://doi.org/10.3390/ijms22157925
Chicago/Turabian StyleDerdelinckx, Judith, Tatjana Reynders, Inez Wens, Nathalie Cools, and Barbara Willekens. 2021. "Cells to the Rescue: Emerging Cell-Based Treatment Approaches for NMOSD and MOGAD" International Journal of Molecular Sciences 22, no. 15: 7925. https://doi.org/10.3390/ijms22157925
APA StyleDerdelinckx, J., Reynders, T., Wens, I., Cools, N., & Willekens, B. (2021). Cells to the Rescue: Emerging Cell-Based Treatment Approaches for NMOSD and MOGAD. International Journal of Molecular Sciences, 22(15), 7925. https://doi.org/10.3390/ijms22157925