Antiradical Properties of N-Oxide Surfactants—Two in One
Abstract
:1. Introduction
2. Results and Discussion
2.1. Radical Scavenging by EPR
2.2. Radical Scavenging by UV-Vis
2.3. Theoretical Calculations
2.4. Biological Activity
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Tension Measurements
4.3. Dynamic Light Scattering (DLS)
4.4. Electron Paramagnetic Resonance (EPR) Spectroscopy
4.5. UV−Vis Measurements
4.6. Theoretical Calculations
4.7. Antioxidative Properties—ROS Evaluation
4.8. Cell Culture
4.9. MTT Cell Viability Assay
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brem, R.; Guven, M.; Karran, P. Oxidatively-generated damage to DNA and proteins mediated by photosensitized UVA. Free Radic. Biol. Med. 2017, 107, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hirota, J.A.; Yang, C.; Carlsten, C. Effect of GST variants on lung function following diesel exhaust and allergen co-exposure in a controlled human crossover study. Free Radic. Biol. Med. 2016, 96, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, S.; Sindona, C.; Bramanti, P.; Mazzon, E. A state of the art of antioxidant properties of curcuminoids in neurodegenerative diseases. Int. J. Mol. Sci. 2021, 22, 3168. [Google Scholar] [CrossRef]
- Alaswad, H.A.; Mahbub, A.A.; Le Maitre, C.L.; Jordan-mahy, N. Molecular action of polyphenols in leukaemia and their therapeutic potential. Int. J. Mol. Sci. 2021, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Flemming, J.; Meyer-Probst, C.T.; Speer, K.; Kölling-Speer, I.; Hannig, C.; Hannig, M. Preventive applications of polyphenols in dentistry—A review. Int. J. Mol. Sci. 2021, 22, 4892. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Sanna, D.; Delogu, G.; Mulas, M.; Schirra, M.; Fadda, A. Determination of Free Radical Scavenging Activity of Plant Extracts Through DPPH Assay: An EPR and UV-Vis Study. Food Anal. Methods 2012, 5, 759–766. [Google Scholar] [CrossRef]
- Ionita, P. The chemistry of dpph∙ free radical and congeners. Int. J. Mol. Sci. 2021, 22, 1545. [Google Scholar] [CrossRef] [PubMed]
- Žilić, D.; Pajić, D.; Jurić, M.; Molčanov, K.; Rakvin, B.; Planinić, P.; Zadro, K. Single crystals of DPPH grown from diethyl ether and carbon disulfide solutions-Crystal structures, IR, EPR and magnetization studies. J. Magn. Reson. 2010, 207, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Bai, F.; Fan, H. Surfactant-Assisted Cooperative Self-Assembly of Nanoparticles into Active Nanostructures. iScience 2019, 11, 272–293. [Google Scholar] [CrossRef] [Green Version]
- Ranneh, A.-H.; Iwao, Y.; Noguchi, S.; Oka, T.; Itai, S. The use of surfactants to enhance the solubility and stability of the water-insoluble anticancer drug SN38 into liquid crystalline phase nanoparticles. Int. J. Pharm. 2016, 515, 501–505. [Google Scholar] [CrossRef]
- Liu, L. Penetration of Surfactants into Skin. J. Cosmet. Sci. 2020, 71, 91–109. [Google Scholar]
- Lewińska, A.; Domżał-Kędzia, M.; Jaromin, A.; Łukaszewicz, M. Nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system. Pharmaceutics 2020, 12, 953. [Google Scholar] [CrossRef]
- Lohith Kumar, D.H.; Sarkar, P. Encapsulation of bioactive compounds using nanoemulsions. Environ. Chem. Lett. 2018, 16, 59–70. [Google Scholar] [CrossRef]
- Battista, S.; Campitelli, P.; Galantini, L.; Köber, M.; Vargas-Nadal, G.; Ventosa, N.; Giansanti, L. Use of N-oxide and cationic surfactants to enhance antioxidant properties of (+)-usnic acid loaded liposomes. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124154. [Google Scholar] [CrossRef]
- Lewińska, A.; Jaromin, A.; Jezierska, J. Role of architecture of N-oxide surfactants in the design of nanoemulsions for Candida skin infection. Colloids Surf. B Biointerfaces 2020, 187, 110639. [Google Scholar] [CrossRef] [PubMed]
- Lewińska, A.; Witwicki, M.; Frâckowiak, R.; Jezierski, A.; Wilk, K.A.; Frąckowiak, R.; Jezierski, A.; Wilk, K.A. Experimental and theoretical approach to aggregation behavior of new di-N-oxide surfactants in an aquatic environment. J. Phys. Chem. B 2012, 116, 14324–14332. [Google Scholar] [CrossRef]
- Skrzela, R.; Piasecki, A.; Wilk, K.A. Novel Surface Active di-N_oxides of 3,3′-Iminobis(N,N-dimethylpropylamine) and Method of Their Production. Polish Patent PL211590, 2009. [Google Scholar]
- Piasecki, A.; Piłakowska-Pietras, D.; Baran, A.; Krasowska, A. Synthesis and properties of surface chemically pure alkylamidoamine-N-oxides at the air/water interface. J. Surfactants Deterg. 2008, 11, 187–194. [Google Scholar] [CrossRef]
- Durán-Álvarez, A.; Maldonado-Domínguez, M.; González-Antonio, O.; Durán-Valencia, C.; Romero-Ávila, M.; Barragán-Aroche, F.; López-Ramírez, S. Experimental-Theoretical Approach to the Adsorption Mechanisms for Anionic, Cationic, and Zwitterionic Surfactants at the Calcite-Water Interface. Langmuir 2016, 32, 2608–2616. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Novak, I.; Kovač, B. Electronic structure of galvinoxyl radical. Chem. Phys. Lett. 2005, 413, 351–355. [Google Scholar] [CrossRef]
- Havenith, R.W.A.; De Wijs, G.A.; Attema, J.J.; Niermann, N.; Speller, S.; De Groot, R.A. Theoretical study of the stable radicals galvinoxyl, azagalvinoxyl and wurster’s blue perchlorate in the solid state. J. Phys. Chem. A 2008, 112, 7734–7738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalal, N.S.; Kennedy, D.E.; Mcdowell, C.A. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) of hyperfine interactions in solutions of α, α′-diphenyl-β-picryl hydrazyl (DPPH). J. Chem. Phys. 1973, 59, 3403–3410. [Google Scholar] [CrossRef] [Green Version]
- Roessler, M.M.; Salvadori, E. Principles and applications of EPR spectroscopy in the chemical sciences. Chem. Soc. Rev. 2018, 47, 2534–2553. [Google Scholar] [CrossRef]
- Cutsail, G.E. Applications of electron paramagnetic resonance spectroscopy to heavy main-group radicals. Dalt. Trans. 2020, 49, 12128–12135. [Google Scholar] [CrossRef]
- Eaton, G.R.; Eaton, S.S.; Barr, D.P.; Weber, R.T. Quantitative EPR. Springer: Vienna, Austria, 2010; ISBN 9783211929476. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Plasser, F.; Wormit, M.; Dreuw, A. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys. 2014, 141, 024106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narsaria, A.K.; Ruijter, J.D.; Hamlin, T.A.; Ehlers, A.W.; Guerra, C.F.; Lammertsma, K.; Bickelhaupt, F.M. Performance of TDDFT Vertical Excitation Energies of Core-Substituted Naphthalene Diimides. J. Comput. Chem. 2020, 41, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.D.; Jacquemin, D. TD-DFT benchmarks: A review. Int. J. Quantum Chem. 2013, 113, 2019–2039. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Gao, L. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex. J. Mol. Model. 2020, 26. [Google Scholar] [CrossRef] [PubMed]
- Liakos, D.G.; Guo, Y.; Neese, F. Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- And Open-Shell Systems. J. Phys. Chem. A 2020, 124, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liakos, D.G.; Sparta, M.; Kesharwani, M.K.; Martin, J.M.L.; Neese, F. Exploring the accuracy limits of local pair natural orbital coupled-cluster theory. J. Chem. Theory Comput. 2015, 11, 1525–1539. [Google Scholar] [CrossRef] [PubMed]
- Paulechka, E.; Kazakov, A. Efficient Estimation of Formation Enthalpies for Closed-Shell Organic Compounds with Local Coupled-Cluster Methods. J. Chem. Theory Comput. 2018, 14, 5920–5932. [Google Scholar] [CrossRef]
- Minenkov, Y.; Bistoni, G.; Riplinger, C.; Auer, A.A.; Neese, F.; Cavallo, L. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: The importance of sub-valence correlation. Phys. Chem. Chem. Phys. 2017, 19, 9374–9391. [Google Scholar] [CrossRef] [Green Version]
- Witwicki, M.; Walencik, P.K.; Jezierska, J. How accurate is density functional theory in predicting spin density? An insight from the prediction of hyperfine coupling constants. J. Mol. Model. 2020, 26, 10. [Google Scholar] [CrossRef]
- Mallick, S.; Roy, B.; Kumar, P. A comparison of DLPNO-CCSD(T) and CCSD(T) method for the determination of the energetics of hydrogen atom transfer reactions. Comput. Theor. Chem. 2020, 1187, 112934. [Google Scholar] [CrossRef]
- Ivanova, A.; Gerasimova, E.; Gazizullina, E. Study of Antioxidant Properties of Agents from the Perspective of Their Action Mechanisms. Molecules 2020, 25, 4251. [Google Scholar] [CrossRef]
- Borges, R.S.; Queiroz, A.N.; Mendes, A.P.S.; Araújo, S.C.; França, L.C.S.; Franco, E.C.S.; Leal, W.G.; da Silva, A.B.F. Density functional theory (DFT) study of edaravone derivatives as antioxidants. Int. J. Mol. Sci. 2012, 13, 7594–7606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- Di Meo, F.; Lemaur, V.; Cornil, J.; Lazzaroni, R.; Duroux, J.L.; Olivier, Y.; Trouillas, P. Free radical scavenging by natural polyphenols: Atom versus electron transfer. J. Phys. Chem. A 2013, 117, 2082–2092. [Google Scholar] [CrossRef]
- De Souza, G.L.C.; Peterson, K.A. Benchmarking Antioxidant-Related Properties for Gallic Acid through the Use of DFT, MP2, CCSD, and CCSD(T) Approaches. J. Phys. Chem. A 2021, 125, 198–208. [Google Scholar] [CrossRef]
- Ćwieląg-Piasecka, I.; Witwicki, M.; Jerzykiewicz, M.; Jezierska, J. Can Carbamates Undergo Radical Oxidation in the Soil Environment? A Case Study on Carbaryl and Carbofuran. Environ. Sci. Technol. 2017, 51, 14124–14134. [Google Scholar] [CrossRef]
- Dávalos, J.Z.; Valderrama-Negrón, A.C.; Barrios, J.R.; Freitas, V.L.S.; Ribeiro Da Silva, M.D.M.C. Energetic and Structural Properties of Two Phenolic Antioxidants: Tyrosol and Hydroxytyrosol. J. Phys. Chem. A 2018, 122, 4130–4137. [Google Scholar] [CrossRef]
- Isegawa, M.; Neese, F.; Pantazis, D.A. Ionization Energies and Aqueous Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory and Pair Natural Orbital Approaches. J. Chem. Theory Comput. 2016, 12, 2272–2284. [Google Scholar] [CrossRef]
- Toma, M.; Kuvek, T.; Vrček, V. Ionization Energy and Reduction Potential in Ferrocene Derivatives: Comparison of Hybrid and Pure DFT Functionals. J. Phys. Chem. A 2020, 124, 8029–8039. [Google Scholar] [CrossRef]
- Ujhelyi, Z.; Fenyvesi, F.; Váradi, J.; Fehér, P.; Kiss, T.; Veszelka, S.; Deli, M.; Vecsernyés, M.; Bácskay, I. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer. Eur. J. Pharm. Sci. 2012, 47, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Kyadarkunte, A.; Patole, M.; Pokharkar, V. In vitro cytotoxicity and phototoxicity assessment of acylglutamate surfactants using a human keratinocyte cell line. Cosmetics 2014, 1, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.-S.; Tseng, Y.-H.; Liao, B.-J.; Chen, S.Y. Magnetically Targeted Nanocapsules for PAA-Cisplatin-Conjugated Cores in PVA/SPIO Shells via Surfactant-Free Emulsion for Reduced Nephrotoxicity and Enhanced Lung Cancer Therapy. Adv. Healthc. Mater. 2015, 4, 1066–1075. [Google Scholar] [CrossRef]
- Bindu, P.C.; Babu, P. Surfactant-induced lipid peroxidation in a tropical euryhaline teleost Oreochromis mossambicus (Tilapia) adapted to fresh water. Indian J. Exp. Biol. 2001, 39, 1118–1122. [Google Scholar] [PubMed]
- Perani, A.; Gérardin, C.; Stacey, G.; Infante, M.R.; Vinardell, P.; Rodehüser, L.; Selve, C.; Maugras, M. Interactions of surfactants with living cells. Induction of apoptosis by detergents containing a beta-lactam moiety. Amino Acids 2001, 21, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Debbasch, C.; Brignole, F.; Pisella, P.J.; Warnet, J.M.; Rat, P.; Baudouin, C. Quaternary ammoniums and other preservatives’ contribution in oxidative stress and apoptosis on Chang conjunctival cells. Investig. Ophthalmol. Vis. Sci. 2001, 42, 642–652. [Google Scholar]
- Inami, K.; Iizuka, Y.; Furukawa, M.; Nakanishi, I.; Ohkubo, K.; Fukuhara, K.; Fukuzumi, S.; Mochizuki, M. Chlorine atom substitution influences radical scavenging activity of 6-chromanol. Bioorgan. Med. Chem. 2012, 20, 4049–4055. [Google Scholar] [CrossRef]
- Schnell, S.; Mendoza, C. The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration. Biophys. Chem. 2004, 107, 165–174. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Ames, W.; Christian, G.; Kampa, M.; Liakos, D.G.; Pantazis, D.A.; Roemelt, M.; Surawatanawong, P.; Shengfa, Y.E. Dealing with Complexity in Open-Shell Transition Metal Chemistry from a Theoretical Perspective: Reaction Pathways, Bonding, Spectroscopy, and Magnetic Properties. Adv. Inorg. Chem. 2010, 62, 301–349. [Google Scholar]
- Witwicki, M. Theoretical characterisation of phosphinyl radicals and their magnetic properties: G matrix. Chem. Phys. Chem. 2015, 16, 1912–1925. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 2005, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, P.; Devlin, F.; Ashvar, C.S.; Chabalowski, C.; Frisch, M. Theoretical calculation of vibrational circular dichroism spectra. Faraday Discuss. 1994, 99, 103–119. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 034108. [Google Scholar] [CrossRef] [Green Version]
- Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 134101. [Google Scholar] [CrossRef] [PubMed]
- Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138, 034106. [Google Scholar] [CrossRef] [PubMed]
- Pinski, P.; Neese, F. Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J. Chem. Phys. 2018, 148, 31101. [Google Scholar] [CrossRef] [Green Version]
- Neese, F. Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory. J. Chem. Phys. 2007, 127, 164112. [Google Scholar] [CrossRef]
- Neese, F. Importance of Direct Spin−Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes: A Case Study. J. Am. Chem. Soc. 2006, 128, 10213–10222. [Google Scholar] [CrossRef]
- Guo, Y.; Riplinger, C.; Becker, U.; Liakos, D.G.; Minenkov, Y.; Cavallo, L.; Neese, F. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J. Chem. Phys. 2018, 148, 011101. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Neese, F. An Improvement of the Resolution of the IdentityApproximation for the Formation of the Coulomb Matrix. J. Comput. Chem. 2003, 24, 1740–1747. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A “chain-of-spheres” algorithm for the Hartree-Fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Kossmann, S.; Neese, F. Comparison of two efficient approximate Hartee-Fock approaches. Chem. Phys. Lett. 2009, 481, 240–243. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1024. [Google Scholar] [CrossRef]
- Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175–3183. [Google Scholar] [CrossRef]
- Te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Pye, C.C.; Ziegler, T.; Van Lenthe, E.; Louwen, J.N. An implementation of the conductor-like screening model of solvation within the amsterdam density functional package-Part II. COSMO for real solvents. Can. J. Chem. 2009, 87, 790–797. [Google Scholar] [CrossRef]
- Saczko, J.; Dominiak, M.; Kulbacka, J.; Chwiłkowska, A.; Krawczykowska, H. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation. Folia Histochem. Cytobiol. 2008, 46, 117–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominiak, M.; Saczko, J. Method for the Primary Cultivation of Human Fibro-Blasts. Polish Patent PL3812042008, 2008. [Google Scholar]
Abbreviations | R | CMC [M] | RH [nm] | logP | Lipinski Rule | ||
---|---|---|---|---|---|---|---|
DLS | DFT b | ||||||
C10(DAPANO)2 | C9H19 | 3.0·10−2 a | 1.75 a | 1.79 | 0.44 | Yes | |
C12(DAPANO)2 | C11H23 | 5.5·10−3 a | 2.04 a | 2.02 | 1.27 | Yes | |
C14(DAPANO)2 | C13H27 | 8.0·10−4 a | 2.28 a | 2.32 | 1.97 | Yes | |
C16(DAPANO)2 | C15H31 | 1.5·10−4 a | 2.38 a | 2.46 | 2.76 | Yes | |
C10PDA | C9H19 | 7.5·10−3 | 1.67 | 1.75 | 3.45 | Yes | |
C12PDA | C11H23 | 7.0·10−4 | 1.96 | 2.00 | 4.74 | Yes | |
C14PDA | C13H27 | 8.0·10−5 | 2.19 | 2.11 | 6.05 | Yes | |
C16PDA | C15H31 | 8.5·10−6 | 2.27 | 2.51 | 7.32 | Yes |
Surfactant | IC50 [g/L] | Viability [%] | ||||||
---|---|---|---|---|---|---|---|---|
HaCaT | HGFs | 24 h | 48 h | |||||
24 h | 48 h | 24 h | 48 h | HGF’s | HaCaT | HGF’s | HaCaT | |
C10(DAPANO)2 | 0.098 | 0.097 | 0.0345 | 0.0019 | 16.2 | 8.1 | 9.7 | 18.2 |
C12(DAPANO)2 | 0.095 | 0.094 | 0.0279 | 0.0012 | 17.1 | 9.2 | 10.8 | 16.4 |
C14(DAPANO)2 | 0.032 | 0.017 | 0.0685 | 0.00089 | 17.7 | 11.3 | 11.5 | 4.5 |
C16(DAPANO)2 | 0.029 | 0.0182 | 0.0143 | 0.00076 | 27.8 | 14.7 | 12.3 | 3.9 |
C10PDA | 0.0438 | 0.0415 | 0.0779 | 0.0387 | 98.6 | 34.7 | 20.2 | 84.8 |
C12PDA | 0.0310 | 0.0188 | 0.0519 | 0.0498 | 55.5 | 89.4 | 44.8 | 115.8 |
C14PDA | 0.0481 | 0.0099 | 0.0699 | 0.0016 | 103.7 | 81.1 | 78.2 | 119.4 |
C16PDA | 0.0481 | 0.0098 | 0.0441 | 0.0019 | 96.9 | 139.5 | 81.7 | 123.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewińska, A.; Kulbacka, J.; Domżał-Kędzia, M.; Witwicki, M. Antiradical Properties of N-Oxide Surfactants—Two in One. Int. J. Mol. Sci. 2021, 22, 8040. https://doi.org/10.3390/ijms22158040
Lewińska A, Kulbacka J, Domżał-Kędzia M, Witwicki M. Antiradical Properties of N-Oxide Surfactants—Two in One. International Journal of Molecular Sciences. 2021; 22(15):8040. https://doi.org/10.3390/ijms22158040
Chicago/Turabian StyleLewińska, Agnieszka, Julita Kulbacka, Marta Domżał-Kędzia, and Maciej Witwicki. 2021. "Antiradical Properties of N-Oxide Surfactants—Two in One" International Journal of Molecular Sciences 22, no. 15: 8040. https://doi.org/10.3390/ijms22158040
APA StyleLewińska, A., Kulbacka, J., Domżał-Kędzia, M., & Witwicki, M. (2021). Antiradical Properties of N-Oxide Surfactants—Two in One. International Journal of Molecular Sciences, 22(15), 8040. https://doi.org/10.3390/ijms22158040