Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes
Abstract
:1. Introduction
2. Bacteria
2.1. Strains with Ability to Degrade Pyrene
2.2. Complete and Integrated Degradation of Pyrene
2.2.1. Aerobic Degradation
Degradation of Pyrene by Mycobacterium vanbaalenii PYR-1
- Enzymatic Reactions and Degradations Genes
- Biochemical Reactions
Organisms | Functional Genes | Identified Function | Enzymatic Step | References |
---|---|---|---|---|
M. vanbaalenii PYR-1 | NidA | Pyrene/phenanthrene ring-hydroxylating oxygenase, α subunit | 1 | [29] |
M. vanbaalenii PYR-1 | NidB2 | Pyrene/phenanthrene ring-hydroxylating oxygenase, α- subunit | 1 | [20] |
Mycobacterium sp. strain 6PY1 | PdoA1 | Pyrene/phenanthrene ring-hydroxylating oxygenase, β-subunit | 1 | [30] |
Nocardioides sp. strain KP7 | PhdE | Dihydrodioldehydrogenase | 2/6/23 | [31] |
M. vanbaalenii PYR-1 | PhdF | Ring cleavage dioxygenase | 3/7 | [20] |
Arthrobacter keyseri 12B | PhtC | Decarboxylase | 4/15 | [32] |
Mycobacterium sp. strain 6PY1 | PdoA2 | Phenanthrene ring-hydroxylating oxygenase, αsubunit | 5 | [32] |
Mycobacterium sp. strain 6PY1 | PdoB2 | Phenanthrene ring-hydroxylating oxygenase, β-subunit | 5 | [32] |
M. vanbaalenii PYR-1 | PhdG | Hydratase-aldolase | 8 | [20] |
M. vanbaalenii PYR-1 | NidD | Aldehyde dehydrogenase | 9 | [33] |
Nocardioides sp. strain KP7 | PhdH | Aldehyde dehydrogenase | 9 | [31] |
M. vanbaalenii PYR-1 | PhdI | 1-Hydroxy-2-naphthoate dioxygenase | 10 | [20] |
Nocardioides sp. strain KP7 | PhdI | 1-Hydroxy-2-naphthoate dioxygenase | 10 | [31] |
M. vanbaalenii PYR-1 | PhdJ | trans-2_-Carboxybenzalpyruvate hydratase-aldolase | 11 | [20] |
Nocardioides sp. strain KP7 | PhdJ | trans-2_-Carboxybenzalpyruvate hydratase-aldolase | 11 | [31] |
Nocardioides sp. strain KP7 | PhdK | 2-Carboxylbenzaldehyde dehydrogenase | 12 | [31] |
M. vanbaalenii PYR-1 | PhtAa | Phthalate 3,4-dioxygenase, α subunit | 13 | [34] |
Terrabacter sp. strain DBF63 | PhtA1 | Phthalate 3,4-dioxygenase, α subunit | 13 | [35] |
M. vanbaalenii PYR-1 | PhtAb | Phthalate 3,4-dioxygenase, β subunit | 13 | [34] |
Terrabacter sp. strain DBF63 | PhtA2 | Phthalate 3,4-dioxygenase, β subunit | 13 | [35] |
M. vanbaalenii PYR-1 | PhtAc | Oxygenase ferredoxin component | 1/5/13/22 | [36] |
Arthrobacter keyseri 12B | PhtAc | Oxygenase ferredoxin component | 1/5/13/22 | [37] |
M. vanbaalenii PYR-1 | PhtAd | Oxygenase reductase component | 1/5/13/22 | [36] |
Arthrobacter keyseri 12B | PhtAd | Oxygenase reductase component | 1/5/13/22 | [37] |
M. vanbaalenii PYR-1 | PhtB | Phthalate 3,4-dihydrodiol dehydrogenase | 14 | [34] |
Terrabacter sp. strain DBF63 | PhtB | Phthalate 3,4-dihydrodiol dehydrogenase | 14 | [35] |
Streptomyces sp. strain 2065 | PcaG | Protocatechuate 3,4-dioxygenase, α subunit | 16 | [38] |
Streptomyces sp. strain 2065 | PcaH | Protocatechuate 3,4-dioxygenase, β-subunit | 16 | [38] |
Terrabacter sp. strain DBF63 | PcaB | β-Carboxy-cis,cis-muconatecycloisomerase | 17 | [39] |
Rhodococcus opacus 1CP | PcaL | γ-Carboxymuconolactonedecarboxylase/β-ketoadipate enol-lactone hydrolase | 18/19 | [40] |
Pseudomonas putida PRS2000 | PcaI | β-Ketoadipatesuccinyl-CoA transferase, α subunit | 20 | [41] |
Pseudomonas putida PRS2000 | PcaJ | β-Ketoadipatesuccinyl-CoA transferase, β subunit | 20 | [41] |
Terrabacter sp. strain DBF63 | PcaF | β-Ketoadipyl-CoA thiolase | 21 | [39] |
M. vanbaalenii PYR-1 | NidA3 | Fluoranthene/pyrene ring-hydroxylating oxygenase, α subunit | 1/22 | [20] |
M. vanbaalenii PYR-1 | NidB3 | Fluoranthene/pyrene ring-hydroxylating oxygenase, β subunit | 1/22 | [20] |
Mycobacterium tuberculosis CDC1551 | MT1743 | Catechol O-methyltransferase | 24/25 | [42] |
M. vanbaalenii PYR-1 | MT1743 | Catechol O-methyltransferase | 24/25 | [20] |
Degradation by Mycobacterium sp. KMS
2.2.2. Anaerobic Degradation
Anaerobic Pyrene Degradation Mechanism by Klebsiella sp. LZ6 and Pseudomonas sp. JP1
3. Fungi
3.1. Fungal Strain with Ability to Metabolize Pyrene
Strains Names | Strains/Taxonomic ID | Degradation Rates (%) | References |
---|---|---|---|
Armillaria sp. | FO22 | 63 | [76] |
Aspergillus ficuum | MB#5058 | 54.6 | [84] |
Aspergillus flavus | MB#347788 | 59.8 | [84] |
Aspergillus fumigatus | MB#352615 | 59.6 | [84] |
Cladosporium sp. | CBMAI 1237 | 62 | [85] |
Coriolopis byrsina | APC5 | 96.1 | [73] |
Coriolopsis byrsina | APC5 | 96.1 | [86] |
Crinipellis campanella Crinipellis perniciosa Crinipellis stipitaria | MB#285848 MB#500896 MB#100767 | 39 95 94 | [87] [87] |
Fusarium sp. | FJ613115.1 | 18.2–74.6 | [88] |
Marasmiellus sp. | CBMAI 1062 | 98.8 | [81] |
Marasmiellus ramealis Marasmius rotula | MB#71897 MB#156778 | 76.5 95 | [87] |
Merulius tremellosus | KUC9161 | 83.6 | [89] |
Penicillum janthinellum | 31.5 and 57 | [75] | |
Penicillum terrestre | 67 and 75 | [75] | |
Peniophora incarnata | KUC8836 | 82.6 | [83] |
Peniophora incarnata | KUC8836 | 97.9 | [67] |
Phanerochaete chrysosporium | 92.2 | [90] | |
Phlebia brevispora | KUC9045 | 63.3 | [82] |
Pleurotus pulmonarius | FO43 | 99 | [80] |
Polyporus sp. | S133 | 71 | [74] |
Pseudotrametes gibbasa | 28.33 | [76] | |
Rhizoctonia zeae | SOL3 | 42 | [78] |
Scopulariopsis brevicaulis | PZ-4 | 64 | [79] |
Trichoderma harzianum | 33 and 65 | [75] | |
Trichoderma sp. | MB#512453 | 37.4 | [91] |
Trichoderma sp. | F03 | 78 | [66] |
3.2. Degradation of Pyrene by Fungi
3.2.1. Aerobic Pyrene Degradation and Coriolopis byrsina APC5
3.2.2. Anaerobic Degradation
4. Degradation of Pyrene by a Consortium
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabrerizo, A.; Dachs, J.; Moeckel, C.; Ojeda, M.-J.; Caballero, G.; Barceló, D.; Jones, K.C. Technology, Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil− air partitioning. Environ. Sci. Technol. 2011, 45, 4740–4747. [Google Scholar] [CrossRef]
- Kweon, O.; Kim, S.-J.; Kim, D.-W.; Kim, J.M.; Kim, H.-l.; Ahn, Y.; Sutherland, J.B.; Cerniglia, C.E. Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. J. Bacteriol. 2014, 196, 3503–3515. [Google Scholar] [CrossRef] [Green Version]
- Primost, M.A.; Commendatore, M.; Torres, P.J.; Bigatti, G. PAHs contamination in edible gastropods from north Patagonian harbor areas. Mar. Pollut. Bull. 2018, 135, 828–831. [Google Scholar] [CrossRef]
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- AFSSA. Avis de l’AFSSA Relatif à une Demande d’avis sur L’évaluation des Risques Présentés par le Benzo[a]pyrene B[a]P et par D’autres Hydrocarbures Aromatiquespolycycliques (HAP), Présents Dans DIVERSES denrées ou Dans Certaines Huiles Végétales, Ainsi que sur les Niveaux de Concentration en HAP Dans les Denrées Au-delà DESQUELS des Problèmes de Santé Risquent de se Poser; Agence Française de Sécurité Sanitaire des Aliments: Paris, France, 2003. [Google Scholar]
- Skupinska, K.; Misiewicz, I.; Kasprzycka-Guttman, T. Polycyclic aromatic hydrocarbons: Physicochemical properties, environmental appearance and impact on living organisms. Acta Pol. Pharm. 2004, 61, 233–240. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Yu, H. Environmental carcinogenic polycyclic aromatic hydrocarbons: Photochemistry and phototoxicity. J. Environ. Sci. Health Part C 2002, 20, 149–183. [Google Scholar] [CrossRef]
- Lemaire, J.; Buès, M.; Kabeche, T.; Hanna, K.; Simonnot, M.-O. Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation. J. Environ. Chem. Eng. 2013, 1, 1261–1268. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.K.; Sharma, S.; Habib, G.; Gupta, T. Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles. Environ. Sci. Pollut. Res. 2015, 22, 12458–12468. [Google Scholar] [CrossRef]
- Pandey, S.K.; Kim, K.-H.; Brown, R.J.C. A review of techniques for the determination of polycyclic aromatic hydrocarbons in air. TrAC Trends Anal. Chem. 2011, 30, 1716–1739. [Google Scholar] [CrossRef]
- Heitkamp, M.A.; Franklin, W.; Cerniglia, C.E. Microbial Metabolism of Polycyclic Aromatic Hydrocarbons: Isolation and Characterization of a Pyrene-Degrading Bacterium. Appl. Environ. Microbiol. 1988, 54, 2549–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albertsen, M.; Hugenholtz, P.; Skarshewski, A.; Nielsen, K.L.; Tyson, G.W.; Nielsen, P.H. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 2013, 31, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.C.; de Luna, L.Z. Rhizosphere. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 399–406. [Google Scholar]
- Morris, C.E.; Kinkel, L.L. Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. In Phyllosphere Microbiology; APS Press: St. Paul, MN, USA, 2015. [Google Scholar]
- Xu, Y.; Zhou, N.-Y. Engineering, Microbial remediation of aromatics-contaminated soil. Front. Environ. Sci. Eng. 2017, 11, 1. [Google Scholar]
- Lamichhane, S.; Krishna, K.B.; Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 2016, 148, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Picariello, E.; Baldantoni, D.; De Nicola, F.J. Acute effects of PAH contamination on microbial community of different forest soils. Environ. Pollut. 2020, 262, 114378. [Google Scholar] [CrossRef]
- Czarny, J.; Staninska-Pięta, J.; Piotrowska-Cyplik, A.; Juzwa, W.; Wolniewicz, A.; Marecik, R. Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals. J. Hazard. Mater. 2020, 383, 121168. [Google Scholar] [CrossRef]
- Kim, S.J.; Kweon, O.; Jones, R.C.; Freeman, J.P.; Edmondson, R.D.; Cerniglia, C.E. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J. Bacteriol. 2007, 189, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.L.; Zhou, H.W.; Wong, Y.S.; Tam, N.F.Y. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar. Pollut. Bull. 2005, 51, 1054–1061. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Logeshwaran, P.; Lockington, R.; Naidu, R.; Megharaj, M. Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria. Chemosphere 2019, 222, 132–140. [Google Scholar] [CrossRef]
- Ortega-Calvo, J.J.; Marchenko, A.I.; Vorobyov, A.V.; Borovick, R.V. Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol. Ecol. 2003, 44, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Viesser, J.A.; Sugai-Guerios, M.H.; Malucelli, L.C.; Pincerati, M.R.; Karp, S.G.; Maranho, L.T. Petroleum-Tolerant Rhizospheric Bacteria: Isolation, Characterization and Bioremediation Potential. Sci. Rep. 2020, 10, 2060. [Google Scholar] [CrossRef] [PubMed]
- Kweon, O.; Kim, S.-J.; Holland, R.D.; Chen, H.; Kim, D.-W.; Gao, Y.; Yu, L.-R.; Baek, S.; Baek, D.-H.; Ahn, H.; et al. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaaleni PYR-1. J. Bacteriol. 2011, 193, 4326–4337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perini, B.L.B.; Bitencourt, R.L.; Daronch, N.A.; dos Santos Schneider, A.L.; de Oliveira, D. Surfactant-enhanced in-situ enzymatic oxidation: A bioremediation strategy for oxidation of polycyclic aromatic hydrocarbons in contaminated soils and aquifers. J. Environ. Chem. Eng. 2020, 8, 104013. [Google Scholar] [CrossRef]
- Peng, T.; Kan, J.; Hu, J.; Hu, Z. Genes and novel sRNAs involved in PAHs degradation in marine bacteria Rhodococcus sp. P14 revealed by the genome and transcriptome analysis. 3 Biotech. 2020, 10, 140. [Google Scholar] [CrossRef]
- Kim, S.-J.; Song, J.; Kweon, O.; Holland, R.D.; Kim, D.-W.; Kim, J.; Yu, L.-R.; Cerniglia, C.E. Functional robustness of a polycyclic aromatic hydrocarbon metabolic network examined in a nidA aromatic ring-hydroxylating oxygenase mutant of Mycobacterium vanbaalenii PYR-1. Appl. Environ. Microbiol. 2012, 78, 3715–3723. [Google Scholar] [CrossRef] [Green Version]
- Kuony, S. Caractérisation D’arène Dioxygénases Impliquées Dans la Biodégradation des Hydrocarbures Aromatiques Polycycliques Chez Mycobacterium sp. 6PY1; Université Joseph-Fourier—Grenoble I: Grenoble, France, 2005. [Google Scholar]
- Saito, A.; Iwabuchi, T.; Harayama, S. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 1999, 38, 1331–1337. [Google Scholar] [CrossRef]
- Eaton, R.W. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J. Bacteriol. 2001, 183, 3689–3703. [Google Scholar] [CrossRef] [Green Version]
- Stingley, R.L.; Khan, A.A.; Cerniglia, C.E. Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem. Biophys. Res. Commun. 2004, 322, 133–146. [Google Scholar] [CrossRef]
- Stingley, R.L.; Brezna, B.; Khan, A.A.; Cerniglia, C.E. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 2004, 150, 3749–3761. [Google Scholar] [CrossRef] [Green Version]
- Habe, H.; Miyakoshi, M.; Chung, J.; Kasuga, K.; Yoshida, T.; Nojiri, H.; Omori, T. Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl. Microbiol. Biotechnol. 2003, 61, 44–54. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Zhou, N. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons. Front. Environ. Sci. Eng. 2020, 14, 1–11. [Google Scholar] [CrossRef]
- Stanislauskienė, R.; Rudenkov, M.; Karvelis, L.; Gasparavičiūtė, R.; Meškienė, R.; Časaitė, V.; Meškys, R.J. Analysis of phthalate degradation operon from Arthrobacter sp. 68b. Biologija 2011, 57. [Google Scholar] [CrossRef] [Green Version]
- Iwagami, S.G.; Yang, K.; Davies, J. Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065. Appl. Environ. Microbiol. 2000, 66, 1499–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habe, H.; Chung, J.-S.; Ishida, A.; Kasuga, K.; Ide, K.; Takemura, T.; Nojiri, H.; Yamane, H.; Omori, T. The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the β-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria. Microbiology 2005, 151, 3713–3722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eulberg, D.; Lakner, S.; Golovleva, L.A.; Schlömann, M. Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: Evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity. J. Bacteriol. 1998, 180, 1072–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parales, R.; Harwood, C. Regulation of the pcaIJ genes for aromatic acid degradation in Pseudomonas putida. J. Bacteriol. 1993, 175, 5829–5838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiliza, T.E. Selection and Identification of Novel Mycobacterium tuberculosis Phage-Displayed Biomarkers by Immunoscreening Against Patients’ Serum Samples. Ph.D. Thesis, University of KwaZulu-Natal, Berea, South Africa, 2018. [Google Scholar]
- Liang, Y.; Gardner, D.R.; Miller, C.D.; Chen, D.; Anderson, A.J.; Weimer, B.C.; Sims, R.C. Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl. Environ. Microbiol. 2006, 72, 7821–7828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweon, O.; Kim, S.-J.; Freeman, J.P.; Song, J.; Baek, S.; Cerniglia, C.E. Substrate Specificity and Structural Characteristics of the Novel Rieske Nonheme Iron Aromatic Ring-Hydroxylating Oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. MBio 2020, 11, e00135.10. [Google Scholar] [CrossRef]
- Yuan, K.; Xie, X.; Wang, X.; Lin, L.; Yang, L.; Luan, T.; Chen, B. Transcriptional response of Mycobacterium sp. strain A1-PYR to multiple polycyclic aromatic hydrocarbon contaminations. Environ. Pollut. 2018, 243, 824–832. [Google Scholar] [CrossRef]
- Kumari, S.; Regar, R.K.; Bajaj, A.; Ch, R.; Satyanarayana, G.N.V.; Mudiam, M.K.R.; Manickam, N. Simultaneous biodegradation of polyaromatic hydrocarbons by a Stenotrophomonas sp: Characterization of nid genes and effect of surfactants on degradation. Indian J. Microbiol. 2017, 57, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Yan, J.; Wang, L.; Zhang, Y.; Liu, D.; Geng, H.; Xiong, L. Characterization of the phthalate acid catabolic gene cluster in phthalate acid esters transforming bacterium-Gordonia sp. strain HS-NH1. Int. Biodeterior. Biodegrad. 2016, 106, 34–40. [Google Scholar] [CrossRef]
- Heitkamp, M.A.; Freeman, J.P.; Miller, D.W.; Cerniglia, C.E. Pyrene degradation by a Mycobacterium sp.: Identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 1988, 54, 2556–2565. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Hattori, M.; Aoki-Kinoshita, K.F.; Itoh, M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 2006, 34 (Suppl. 1), D354–D357. [Google Scholar] [CrossRef]
- Ghosh, I.; Jasmine, J.; Mukherji, S. Biodegradation of pyrene by a Pseudomonas aeruginosa strain RS1 isolated from refinery sludge. Bioresour. Technol. 2014, 166, 548–558. [Google Scholar] [CrossRef]
- Bugg, T.D. Dioxygenase enzymes: Catalytic mechanisms and chemical models. Tetrahedron 2003, 59, 7075–7101. [Google Scholar] [CrossRef]
- Sarkar, B.; Kulharia, M.; Mantha, A.K. Understanding human thiol dioxygenase enzymes: Structure to function, and biology to pathology. Int. J. Exp. Pathol. 2017, 98, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-H.; Freeman, J.P.; Moody, J.D.; Engesser, K.-H.; Cerniglia, C.E. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Microbiol. Biotechnol. 2005, 67, 275–285. [Google Scholar] [CrossRef]
- Child, R.; Miller, C.; Liang, Y.; Sims, R.C.; Anderson, A.J. Pyrene mineralization by Mycobacterium sp. strain KMS in a barley rhizosphere. J. Environ. Qual. 2007, 36, 1260–1265. [Google Scholar] [CrossRef]
- Chang, B.V.; Chang, I.T.; Yuan, S.Y. Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bull. Environ. Contam. Toxicol. 2008, 80, 145–149. [Google Scholar] [CrossRef]
- Premnath, N.; Mohanrasu, K.; Guru Raj Rao, R.; Dinesh, G.H.; Prakash, G.S.; Ananthi, V.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A crucial review on polycyclic aromatic Hydrocarbons—Environmental occurrence and strategies for microbial degradation. Chemosphere 2021, 280, 130608. [Google Scholar] [CrossRef] [PubMed]
- Zada, S.; Zhou, H.; Xie, J.; Hu, Z.; Ali, S.; Sajjad, W.; Wang, H. Bacterial degradation of pyrene: Biochemical reactions and mechanisms. Int. Biodeterior. Biodegrad. 2021, 162, 105233. [Google Scholar] [CrossRef]
- Yuan, S.Y.; Chang, B.V. Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan. J. Environ. Sci. Health Part B 2007, 42, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ye, J.; Lyu, L.; Wu, Q.; Zhang, R. Anaerobic Biodegradation of Pyrene by Paracoccus denitrificans Under Various Nitrate/Nitrite-Reducing Conditions. Water Air Soil Pollut. 2013, 224, 1–10. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Wu, H.; Yang, M.; Zhang, H.; Hao, Z.; Jiang, H. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Adv. 2017, 7, 46690–46698. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, X.; Li, L.; Lin, C.; Dong, W.; Shen, W.; Yong, X.; Jia, H.; Wu, X.; Zhou, J. Anaerobic biodegradation of pyrene by Klebsiella sp. LZ6 and its proposed metabolic pathway. Environ. Technol. 2020, 41, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Song, X.; Kong, J.; Shen, C.; Huang, T.; Hu, Z. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biogeochem. 2014, 25, 825–833. [Google Scholar] [CrossRef]
- Nzila, A. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ. Pollut. 2018, 239, 788–802. [Google Scholar] [CrossRef]
- Srivastava, S.; Kumar, M. Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Sustainable Approach. In Sustainable Green Technologies for Environmental Management; Springer Science and Business Media LLC: Berlin, Germany, 2019; pp. 111–139. [Google Scholar]
- Fernández, N.; Marchelli, P.; Tenreiro, R.; Chaves, S.; Fontenla, S.B. Are the rhizosphere fungal communities of Nothofagus alpina established in two different environments influenced by plant genetic diversity? For. Ecol. Manag. 2020, 473, 118269. [Google Scholar] [CrossRef]
- Al Farraj, D.A.; Hadibarata, T.; Elshikh, M.S.; Al Khulaifi, M.M.; Kristanti, R.A. Biotransformation and Degradation Pathway of Pyrene by Filamentous Soil Fungus Trichoderma sp. F03. Water Air Soil Pollut. 2020, 231, 168. [Google Scholar] [CrossRef]
- Lee, H.; Jang, Y.; Choi, Y.-S.; Kim, M.-J.; Lee, J.; Lee, H.; Hong, J.-H.; Lee, Y.M.; Kim, G.-H.; Kim, J.-J. Biotechnological procedures to select white rot fungi for the degradation of PAHs. J. Microbiol. Methods 2014, 97, 56–62. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, G.; Wu, Z.; Wen, X.; Zhong, H.; Zhong, Z.; Bian, F.; Gai, X. Agroforestry alters the rhizosphere soil bacterial and fungal communities of moso bamboo plantations in subtropical China. Appl. Soil Ecol. 2019, 143, 192–200. [Google Scholar] [CrossRef]
- Ravelet, C.; Krivobok, S.; Sage, L.; Steiman, R. Biodegradation of pyrene by sediment fungi. Chemosphere 2000, 40, 557–563. [Google Scholar] [CrossRef]
- Aranda, E.; Godoy, P.; Reina, R.; Badia-Fabregat, M.; Rosell, M.; Marco-Urrea, E.; García-Romera, I. Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of Penicillium oxalicum. Int. Biodeterior. Biodegrad. 2017, 122, 141–150. [Google Scholar] [CrossRef]
- Novotný, Č.; Svobodová, K.; Erbanová, P.; Cajthaml, T.; Kasinath, A.; Lang, E.; Šašek, V. Biochemistry, Ligninolytic fungi in bioremediation: Extracellular enzyme production and degradation rate. Soil Biol. Biochem. 2004, 36, 1545–1551. [Google Scholar] [CrossRef]
- Zhang, S.; Ning, Y.; Zhang, X.; Zhao, Y.; Yang, X.; Wu, K.; Yang, S.; La, G.; Sun, X.; Li, X. Contrasting characteristics of anthracene and pyrene degradation by wood rot fungus Pycnoporus sanguineus H1. Int. Biodeterior. Biodegrad. 2015, 105, 228–232. [Google Scholar] [CrossRef]
- Agrawal, N.; Shahi, S.K. Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. Int. Biodeterior. Biodegrad. 2017, 122, 69–81. [Google Scholar] [CrossRef]
- Hadibarata, T.; Kristanti, R.A.; Fulazzaky, M.A.; Nugroho, A.E. Characterization of pyrene biodegradation by white-rot fungus Polyporus sp. S133. Biotechnol. Appl. Biochem. 2012, 59, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Saraswathy, A.; Hallberg, R. Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol. Lett. 2002, 210, 227–232. [Google Scholar] [CrossRef]
- Wen, J.; Gao, D.; Zhang, B.; Liang, H. Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. Int. Biodeterior. Biodegrad. 2011, 65, 600–604. [Google Scholar] [CrossRef]
- Hadibarata, T.; Zubir, M.M.F.A.; Rubiyatno, C.T.Z.; Yusoff, A.R.M.; Salim, M.R.; Fulazzaky, M.A.; Seng, B.; Nugroho, A.E. Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiol. 2013, 58, 385–391. [Google Scholar] [CrossRef]
- Khudhair, A.B.; Hadibarata, T.; Yusoff, A.R.M.; Teh, Z.C.; Adnan, L.A.; Kamyab, H. Pyrene Metabolism by New Species Isolated from Soil Rhizoctonia Zeae SOL3. Water Air Soil Pollut. 2015, 226, 1–9. [Google Scholar] [CrossRef]
- Mao, J.; Guan, W. Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric. Scand. Sect. B Soil Plant Sci. 2016, 66, 399–405. [Google Scholar]
- Hadibarata, T.; Teh, Z.C. Optimization of pyrene degradation by white-rot fungus Pleurotus pulmonarius F043 and characterization of its metabolites. Bioprocess Biosyst. Eng. 2014, 37, 1679–1684. [Google Scholar] [CrossRef] [PubMed]
- Vieira, G.A.L.; Magrini, M.J.; Bonugli-Santos, R.; Rodrigues, M.V.N.; Sette, L.D. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: Optimization of the degradation process. Braz. J. Microbiol. 2018, 49, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Lee, H.; Kim, J.-J. Simultaneous Degradation of Polycyclic Aromatic Hydrocarbons by Attractive Ligninolytic Enzymes from Phlebia brevispora KUC9045. Environ. Biol. Res. 2016, 34, 201–207. [Google Scholar] [CrossRef]
- Lee, H.; Yun, S.Y.; Jang, S.; Kim, G.-H.; Kim, J.-J. Bioremediation of Polycyclic Aromatic Hydrocarbons in Creo-sote-Contaminated Soil by Peniophora incarnata KUC8836. Bioremediat. J. 2015, 19, 1–8. [Google Scholar] [CrossRef]
- Haritash, A.; Kaushik, C.J. Degradation of low molecular weight polycyclic aromatic hydrocarbons by microor-ganisms isolated from contaminated soil. J. Hazard Mater. 2016, 6, 808–819. [Google Scholar]
- Birolli, W.; Santos, D.; Alvarenga, N.; Garcia, A.C.; Romao, L.; Porto, A.L. Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Mar. Pollut. Bull. 2018, 129, 525–533. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Chowdhary, P. Emerging and Eco-Friendly Approaches for Waste Management; Springer: Berlin, Germany, 2019. [Google Scholar]
- Lange, B.; Kremer, S.; Anke, H.; Sterner, O. Metabolism of pyrene by basidiomycetous fungi of the genera Crinipellis, Marasmius, and Marasmiellus. Can. J. Microbiol. 1996, 42, 1179–1183. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Stagnitti, F.; Wang, X.; Zhang, H.; Gong, Z.; Liu, W.; Xiong, X.; Li, L.; Austin, C.; et al. Bio-degradation of pyrene and phenanthrene in soil using immobilized fungi Fusarium sp. Bull. Environ. Contam. Toxicol. 2005, 75, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jang, Y.; Kim, J.-M.; Kim, G.-H.; Kim, J.-J. White-rot fungusMerulius tremellosusKUC9161 identified as an effective degrader of polycyclic aromatic hydrocarbons. J. Basic Microbiol. 2013, 53, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, K.; Kumar, R.; Bishnoi, N.R. Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil. J. Sci. Ind. Res. 2008, 67, 538–542. [Google Scholar]
- Mineki, S.; Suzuki, K.; Iwata, K.; Nakajima, D.; Goto, S. Degradation of Polyaromatic Hydrocarbons by Fungi Isolated from Soil in Japan. Polycycl. Aromat. Compd. 2014, 35, 120–128. [Google Scholar] [CrossRef]
- Winquist, E.; Björklöf, K.; Schultz, E.; Räsänen, M.; Salonen, K.; Anasonye, F.; Cajthaml, T.; Steffen, K.T.; Jørgensen, K.S.; Tuomela, M. Bioremediation of PAH-contaminated soil with fungi—From laboratory to field scale. Int. Biodeterior. Biodegrad. 2014, 86, 238–247. [Google Scholar] [CrossRef]
- Aydin, S.; Karaçay, H.A.; Shahi, A.; Gökçe, S.; Ince, B.; Ince, O. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol. Rev. 2017, 31, 61–72. [Google Scholar] [CrossRef]
- Ichinose, H. Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol. Appl. Biochem. 2013, 60, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakova, N.N.; Nikiforova, S.V.; Makarov, O.E.; Chernyshova, M.P.; Pankin, K.E.; Turkovskaya, O.V. Influence of cul-tivation conditions on pyrene degradation by the fungus Pleurotus ostreatus D1. World J. Microbiol. Biotechnol. 2009, 26, 205–211. [Google Scholar] [CrossRef]
- Lladó, S.; Covino, S.; Solanas, A.; Viñas, M.; Petruccioli, M.; D’Annibale, A. Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. J. Hazard. Mater. 2013, 248-249, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautista, L.F.; Morales, G.; Sanz, R. Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Bioresour. Technol. 2010, 101, 8541–8548. [Google Scholar] [CrossRef]
- Mouhamadou, B.; Faure, M.; Sage, L.; Marçais, J.; Souard, F.; Geremia, R.A. Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol. 2013, 117, 268–274. [Google Scholar] [CrossRef]
- Majeau, J.-A.; Brar, S.K.; Tyagi, R.D. Laccases for removal of recalcitrant and emerging pollutants. Bioresour. Technol. 2010, 101, 2331–2350. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hou, Y.; Sun, G. Synergistic degradation of pyrene and volatilization of arsenic by cocultures of bacteria and a fungus. Front. Environ. Sci. Eng. 2012, 7, 191–199. [Google Scholar] [CrossRef]
- Kotterman, M.J.J.; Vis, E.H.; Field, J.A. Successive Mineralization and Detoxification of Benzo[a]pyrene by the White Rot Fungus Bjerkandera sp. Strain BOS55 and Indigenous Microflora. Appl. Environ. Microbiol. 1998, 64, 2853–2858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, X.; Liu, W.; Li, P.; Kong, L.; Ren, W.; Wu, H.; Tu, Y. Degradation of pyrene by immobilized microorganisms in saline-alkaline soil. J. Environ. Sci. 2012, 24, 1662–1669. [Google Scholar] [CrossRef]
- Luo, S.; Chen, B.; Lin, L.; Wang, X.; Tam, N.F.-Y.; Luan, T. Pyrene Degradation Accelerated by Constructed Consortium of Bacterium and Microalga: Effects of Degradation Products on the Microalgal Growth. Environ. Sci. Technol. 2014, 48, 13917–13924. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elyamine, A.M.; Kan, J.; Meng, S.; Tao, P.; Wang, H.; Hu, Z. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. Int. J. Mol. Sci. 2021, 22, 8202. https://doi.org/10.3390/ijms22158202
Elyamine AM, Kan J, Meng S, Tao P, Wang H, Hu Z. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. International Journal of Molecular Sciences. 2021; 22(15):8202. https://doi.org/10.3390/ijms22158202
Chicago/Turabian StyleElyamine, Ali Mohamed, Jie Kan, Shanshan Meng, Peng Tao, Hui Wang, and Zhong Hu. 2021. "Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes" International Journal of Molecular Sciences 22, no. 15: 8202. https://doi.org/10.3390/ijms22158202
APA StyleElyamine, A. M., Kan, J., Meng, S., Tao, P., Wang, H., & Hu, Z. (2021). Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. International Journal of Molecular Sciences, 22(15), 8202. https://doi.org/10.3390/ijms22158202