Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos
Abstract
:1. Introduction
2. Results
2.1. Analysis of Physical Properties of Copper Oxide Nanoparticles
2.2. Copper Oxide Nanoparticle and Carbofuran Induce Cardiotoxicity in Zebrafish Larvae
2.3. Molecular Docking of Carbofuran with Zebrafish Endogenous AChE
3. Discussion
4. Material and Methods
4.1. Animal Maintenance and Chemical Exposure
4.2. Chemical
4.3. Characterization of Copper Nanoparticle Properties
4.4. Acute Toxicity Test
4.5. Cardiac Performance Assessment
4.6. Molecular Docking of Carbofuran with Zebrafish Endogenous AChE
4.6.1. Protein Preparation
4.6.2. Ligand Preparation
4.6.3. Molecular Docking
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Compound | Species | Effect |
---|---|---|
Copper and Chlorphyrifos | Zebrafish Danio rerio | Impair swimming behavior [73] |
Mediterranean mussel Mytilus galloprovincialis | Alteration of AChE, glutathione S-transferase (GST), lipid peroxidase (LPO), and metallothioneins (MTs) [74] | |
Copper and lead | Neon tetra Paracheirodon innesi | Increase lead accumulation [75] |
Water flea Ceriodaphnia dubia | Increase mortality rate [76] | |
Copper and dichlorvos | Copepod Tigriopus brevicornis | Increase mortality rate, decrease AChE Activity [35] |
Copper and malathion |
References
- Edwards, C.A. Nature and origins of pollution of aquatic systems by pesticides. In Pesticides in Aquatic Environments; Khan, M.A., Ed.; Springer: Boston, MA, USA, 1977; pp. 11–38. [Google Scholar]
- Aznar-Alemany, Ò.; Eljarrat, E. Bioavailability and bioaccumulation of pyrethroid insecticides in wildlife and humans. Pyrethroid Insectic. 2020, 205–225. [Google Scholar] [CrossRef]
- Eissa, F.; Ghanem, K.; Al-Sisi, M. Occurrence and human health risks of pesticides and antibiotics in Nile tilapia along the Rosetta Nile branch, Egypt. Toxicol. Rep. 2020, 7, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Jonathan, B.; Maina, H.; Barminas, J. Organochlorine Pesticide Residues in five Fish Speciesin the Vicinity of Lake Chad, Baga, Nigerian Sector. Asian J. Sci. Technol. 2020, 11, 10631–10633. [Google Scholar]
- Fakhri, Y.; Nematollahi, A.; Abdi-Moghadam, Z.; Daraei, H.; Ghasemi, S.M. Concentration of Potentially Harmful Elements (PHEs) in Trout Fillet (Rainbow and Brown) Fish: A Global Systematic Review and Meta-analysis and Health Risk Assessment. Biol. Trace Elem. Res. 2020, 199, 3089–3101. [Google Scholar] [CrossRef]
- Deyashi, M.; Chakraborty, S.B. Pesticide induced oxidative stress and the role of antioxidant defense system in animal body. Harvest 2016, 2, 1–14. [Google Scholar]
- Kalyanaraman, B.; Hardy, M.; Zielonka, J. A critical review of methodologies to detect reactive oxygen and nitrogen species stimulated by NADPH oxidase enzymes: Implications in pesticide toxicity. Curr. Pharmacol. Rep. 2016, 2, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Jabłońska-Trypuć, A. Pesticides as inducers of oxidative stress. React. Oxyg. Species 2017, 3, 96–110. [Google Scholar] [CrossRef]
- Gupta, R.C. Carbofuran toxicity. J. Toxicol. Environ. Health 1994, 43, 383–418. [Google Scholar] [CrossRef]
- Cheng, E.; Huang, Y.; Chiang, M.; Hou, Y.; Nien, C. The Study of Pesticide Residues Control by the Combination of AChE Screening and Chemical Analysis: The Taipei Model. J. Taiwan Agric. Res. 2015, 65, 53–63. [Google Scholar]
- Pessoa, P.; Luchmann, K.; Ribeiro, A.; Veras, M.; Correa, J.; Nogueira, A.; Bainy, A.; Carvalho, P. Cholinesterase inhibition and behavioral toxicity of carbofuran on Oreochromis niloticus early life stages. Aquat. Toxicol. 2011, 105, 312–320. [Google Scholar] [CrossRef]
- Hernandez-Moreno, D.; Pérez-López, M.; Soler, F.; Gravato, C.; Guilhermino, L. Effects of carbofuran on the sea bass (Dicentrarchus labrax L.): Study of biomarkers and behaviour alterations. Ecotoxicol. Environ. Saf. 2011, 74, 1905–1912. [Google Scholar] [CrossRef]
- Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990, 87, 245–254. [Google Scholar] [CrossRef]
- Kamboj, S.S.; Kumar, V.; Kamboj, A.; Sandhir, R. Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell. Mol. Neurobiol. 2008, 28, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Rai, D.K.; Sharma, B. Carbofuran-induced oxidative stress in mammalian brain. Mol. Biotechnol. 2007, 37, 66. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, F.; Gao, J.; Zhai, W.; Zhou, Z.; Liu, D.; Wang, P. Bioaccumulation and Metabolism of Carbosulfan in Zebrafish (Danio rerio) and the Toxic Effects of Its Metabolites. J. Agric. Food Chem. 2019, 67, 12348–12356. [Google Scholar] [CrossRef]
- Fu, D.-J.; Li, P.; Song, J.; Zhang, S.-Y.; Xie, H.-Z. Mechanisms of synergistic neurotoxicity induced by two high risk pesticide residues–Chlorpyrifos and Carbofuran via oxidative stress. Toxicol. Vitr. 2019, 54, 338–344. [Google Scholar] [CrossRef]
- Floyd, R.A. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. Soc. Exp. Biol. Med. 1999, 222, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Januar, H.; Hidayah, I.; Hermana, I. Seasonal heavy metals accumulation in the soft tissue of Anadara granosa mollusc form Tanjung Balai, Indonesia. AIMS Environ. Sci. 2019, 6, 356–366. [Google Scholar] [CrossRef]
- Norouzi, M.; Bagheri Tavani, M.; Ghodrati, S.; Amirjanati, A. Toxic heavy metal concentration in soft tissues of gray mullet Liza aurata (Mugilidae: Perciformes) during the sexual maturity and sexual rest. Iran. J. Fish. Sci. 2017, 16, 920–934. [Google Scholar]
- Hafeez, A.; Razzaq, A.; Mahmood, T.; Jhanzab, H.M. Potential of copper nanoparticles to increase growth and yield of wheat. J. Nanosci. Adv. Technol. 2015, 1, 6–11. [Google Scholar]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J.K.; da Silva, S.S. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol. Rev. 2018, 7, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Mendikute, A.; Cajaraville, M. Comparative effects of cadmium, copper, paraquat and benzo [a] pyrene on the actin cytoskeleton and production of reactive oxygen species (ROS) in mussel haemocytes. Toxicol. Vitr. 2003, 17, 539–546. [Google Scholar] [CrossRef]
- Davis, A.; Smith, G. Fallout over Disneyland. Earth Isl. J. 2002, 17, 28–29. [Google Scholar]
- Zietz, B. Prevalence of elevated copper concentrations in tap water in two areas of Germany used for infant feeding and possible health implications. Eur. J. Med. Res. 1999, 4, 298. [Google Scholar]
- Philips, N.; Hwang, H.; Chauhan, S.; Leonardi, D.; Gonzalez, S. Stimulation of cell proliferation and expression of matrixmetalloproteinase-1 and interluekin-8 genes in dermal fibroblasts by copper. Connect. Tissue Res. 2010, 51, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, H.; Wang, Y.; Shao, Y.; Wang, B.; Wang, Y.; Xing, M. Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus. Ecotoxicol. Environ. Saf. 2018, 148, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-D.; Wu, H.-H.; Malhotra, N.; Liu, Y.-C.; Wu, Y.-H.; Lin, Y.-N.; Saputra, F.; Santoso, F.; Chen, K.H.-C. Expression and Purification of Recombinant GHK Tripeptides Are Able to Protect against Acute Cardiotoxicity from Exposure to Waterborne-Copper in Zebrafish. Biomolecules 2020, 10, 1202. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Esquivel, L.; Marín-Hernández, A.; Pavón, N.; Carvajal, K.; Moreno-Sánchez, R. Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism. Toxicol. Appl. Pharmacol. 2006, 212, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Eimon, P.M.; Rubinstein, A.L. The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin. Drug Metab. Toxicol. 2009, 5, 393–401. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Staudt, D.; Stainier, D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu. Rev. Genet. 2012, 46, 397–418. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, L.; Meng, Z.; Su, M.; Zhang, S.; Huang, P.; Jiang, F.; Liao, X.; Cao, Z.; Lu, H. Clethodim exposure induced development toxicity and behaviour alteration in early stages of zebrafish life. Environ. Pollut. 2019, 255, 113218. [Google Scholar] [CrossRef]
- Strokal, M.; Spanier, J.E.; Kroeze, C.; Koelmans, A.A.; Flörke, M.; Franssen, W.; Hofstra, N.; Langan, S.; Tang, T.; van Vliet, M.T. Global multi-pollutant modelling of water quality: Scientific challenges and future directions. Curr. Opin. Environ. Sustain. 2019, 36, 116–125. [Google Scholar] [CrossRef]
- Forget, J.; Pavillon, J.F.; Beliaeff, B.; Bocquené, G. Joint action of pollutant combinations (pesticides and metals) on survival (LC50 values) and acetylcholinesterase activity of Tigriopus brevicornis (Copepoda, Harpacticoida). Environ. Toxicol. Chem. Int. J. 1999, 18, 912–918. [Google Scholar] [CrossRef]
- Parada, J.; Rubilar, O.; Diez, M.; Cea, M.; da Silva, A.S.A.; Rodríguez-Rodríguez, C.; Tortella, G. Combined pollution of copper nanoparticles and atrazine in soil: Effects on dissipation of the pesticide and on microbiological community profiles. J. Hazard. Mater. 2019, 361, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978. [Google Scholar] [CrossRef]
- Xu, J.; Ji, W.; Shen, Z.; Li, W.; Tang, S.; Ye, X.; Jia, D.; Xin, X. Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 1999, 30, 413–415. [Google Scholar] [CrossRef]
- Reichardt, W.; Gompf, F.; Ain, M.; Wanklyn, B. Lattice dynamics of cupric oxide. Z. Für Phys. B Condens. Matter 1990, 81, 19–24. [Google Scholar] [CrossRef]
- Chrzanowski, J.; Irwin, J. Raman scattering from cupric oxide. Solid State Commun. 1989, 70, 11–14. [Google Scholar] [CrossRef]
- Goldstein, H.; Kim, D.-s.; Peter, Y.Y.; Bourne, L.; Chaminade, J.; Nganga, L. Raman study of CuO single crystals. Phys. Rev. B 1990, 41, 7192. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, D.; Jiao, X. Fabrication of CuO pricky microspheres with tunable size by a simple solution route. J. Phys. Chem. B 2005, 109, 13561–13566. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-J.; Guo, L.; Li, D.-S.; Fu, F.; Wang, W.-L.; Yan, H.-T. Study on spectroscopic properties of CuO nanoparticles. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2008, 28, 788–792. [Google Scholar] [PubMed]
- Palacios, E.; Juárez-López, G.; Monhemius, A. Infrared spectroscopy of metal carboxylates: II. Analysis of Fe (III), Ni and Zn carboxylate solutions. Hydrometallurgy 2004, 72, 139–148. [Google Scholar] [CrossRef]
- Hunter, R. Electrokinetics and the zeta potential. Found. Colloid Sci. 2001, 2, 376–377. [Google Scholar]
- Sishi, B.J. Autophagy Upregulation Reduces Doxorubicin-Induced Cardiotoxicity. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Elsevier: Amsterdam, The Netherlands, 2015; pp. 157–173. [Google Scholar]
- Mohrman, D.E.; Heller, L.J. Cardiovascular Physiology, 7th ed.; McGraw-Hill Professional Education: New York, NY, USA, 2010. [Google Scholar]
- Jing, C.; Yan, C.-J.; Yuan, X.-T.; Zhu, L.-P. Biosynthesis of copper oxide nanoparticles and their potential synergistic effect on alloxan induced oxidative stress conditions during cardiac injury in Sprague–Dawley rats. J. Photochem. Photobiol. B Biol. 2019, 198, 111557. [Google Scholar] [CrossRef]
- Park, Y.U.; Yoon, C.S.; Kim, J.H.; Park, J.H.; Cheong, S.W. Numerical variations and spontaneous malformations in the early embryos of the Korean salamander, Hynobius leechii, in the farmlands of Korea. Environ. Toxicol. 2010, 25, 533–544. [Google Scholar] [CrossRef]
- Ko, S.-K. Effects of Pesticides (Benomyl, Carbofuran, Thiobencarb) on the Asian Toad (Bufo Gargarizans) Embryo Development. Korean J. Environ. Ecol. 2020, 34, 207–215. [Google Scholar] [CrossRef]
- Sharma, A.K.; Kumar, A.; Sahu, M.; Sharma, G.; Datusalia, A.K.; Rajput, S.K. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc. Res. 2018, 120, 59–66. [Google Scholar] [CrossRef]
- Majewski, M.; Lis, B.; Olas, B.; Ognik, K.; Juśkiewicz, J. Dietary supplementation with copper nanoparticles influences the markers of oxidative stress and modulates vasodilation of thoracic arteries in young Wistar rats. PLoS ONE 2020, 15, e0229282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zou, Z.; Wang, B.; Xu, G.; Wu, Q.; Zhang, Y.; Yuan, Z.; Yang, X.; Yu, C. Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. Biomaterials 2018, 161, 228–239. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zou, Z.; Wang, B.; Xu, G.; Chen, C.; Qin, X.; Yu, C.; Zhang, J. Copper Oxide Nanoparticles Induce Oxidative DNA Damage and Cell Death via Copper Ion-Mediated P38 MAPK Activation in Vascular Endothelial Cells. Int. J. Nanomed. 2020, 15, 3291. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, S.; Anaimalai Thirumurthi, N.; Raghunath, A.; Vijayakumar, S.; Perumal, E. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos. J. Appl. Toxicol. 2016, 36, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Angelé-Martínez, C.; Nguyen, K.V.T.; Ameer, F.S.; Anker, J.N.; Brumaghim, J.L. Reactive oxygen species generation by copper (II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 2017, 11, 278–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron 2012, 76, 116–129. [Google Scholar] [CrossRef] [Green Version]
- Aidley, D.J. The Physiology of Excitable Cells; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Jaiswal, S.K.; Siddiqi, N.J.; Sharma, B. Carbofuran induced oxidative stress in rat heart: Ameliorative effect of vitamin C. Int. Sch. Res. Not. 2013, 2013, 824102. [Google Scholar] [CrossRef] [Green Version]
- Munshi, N.V.; Olson, E.N. Improving cardiac rhythm with a biological pacemaker. Science 2014, 345, 268–269. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.W. Central nervous system control of cardiac rhythm. Cardiology 1976, 61, 7–19. [Google Scholar] [CrossRef]
- Tessadori, F.; van Weerd, J.H.; Burkhard, S.B.; Verkerk, A.O.; de Pater, E.; Boukens, B.J.; Vink, A.; Christoffels, V.M.; Bakkers, J. Identification and functional characterization of cardiac pacemaker cells in zebrafish. PLoS ONE 2012, 7, e47644. [Google Scholar] [CrossRef] [Green Version]
- Herring, N.; Kalla, M.; Paterson, D.J. The autonomic nervous system and cardiac arrhythmias: Current concepts and emerging therapies. Nat. Rev. Cardiol. 2019, 16, 707–726. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, A.; Teixeira, R.; Bonetto, J.; Bahr, A.; Türck, P.; de Castro, A.; Campos-Carraro, C.; Visioli, F.; Fernandes-Piedras, T.; Casali, K. Role of inflammation, oxidative stress, and autonomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hypertension. Mol. Cell. Biochem. 2020, 464, 93–109. [Google Scholar] [CrossRef]
- Flora, S.; Tandon, S. Effect of combined exposure to cadmium and ethanol on regional brain biogenic amine levels in the rat. Biochem. Int. 1987, 15, 863–871. [Google Scholar]
- Institóris, L.; Siroki, O.; Ündeger, Ü.; Basaran, N.; Banerjee, B.; Dési, I. Detection of the effects of repeated dose combined propoxur and heavy metal exposure by measurement of certain toxicological, haematological and immune function parameters in rats. Toxicology 2001, 163, 185–193. [Google Scholar] [CrossRef]
- Ku, T.; Yan, W.; Jia, W.; Yun, Y.; Zhu, N.; Li, G.; Sang, N. Characterization of synergistic embryotoxicity of nickel and buprofezin in zebrafish. Environ. Sci. Technol. 2015, 49, 4600–4608. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Gupta, V.K.; Kumar, A.; Sharma, B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 2017, 5, 70. [Google Scholar] [CrossRef]
- Umar Mustapha, M.; Halimoon, N.; Wan Johari, W.L.; Abd Shukor, M. Enhanced carbofuran degradation using immobilized and free cells of Enterobacter sp. isolated from soil. Molecules 2020, 25, 2771. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Applegate, T.J. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase. J. Agric. Food Chem. 2006, 54, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Donnelly Jr, T.E. Effects of CuCl2 on the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart. Biochim. Biophys. Acta (BBA) Gen. Subj. 1978, 543, 273–282. [Google Scholar] [CrossRef]
- Zuki, N.M.; Ismail, N.; Omar, F.M. Evaluation of zeta potential and particle size measurements of multiple coagulants in semiconductor wastewater. In Proceedings of the AIP Conference Proceedings, Penang, Malaysia, 11 December 2018; p. 020036. [Google Scholar]
- Tilton, F.A.; Bammler, T.K.; Gallagher, E.P. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2011, 153, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Perić, L.; Burić, P. The effect of copper and chlorpyrifos co-exposure on biomarkers in the marine mussel Mytilus galloprovincialis. Chemosphere 2019, 225, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Liang, T.; Cao, J.; Dawson, R.; Liu, C. Synergistic effect of copper and lead uptake by fish. Ecotoxicol. Environ. Saf. 1999, 44, 190–195. [Google Scholar] [CrossRef]
- Cooper, N.L.; Bidwell, J.R.; Kumar, A. Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicol. Environ. Saf. 2009, 72, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saputra, F.; Uapipatanakul, B.; Lee, J.-S.; Hung, S.-M.; Huang, J.-C.; Pang, Y.-C.; Muñoz, J.E.R.; Macabeo, A.P.G.; Chen, K.H.-C.; Hsiao, C.-D. Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos. Int. J. Mol. Sci. 2021, 22, 8259. https://doi.org/10.3390/ijms22158259
Saputra F, Uapipatanakul B, Lee J-S, Hung S-M, Huang J-C, Pang Y-C, Muñoz JER, Macabeo APG, Chen KH-C, Hsiao C-D. Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos. International Journal of Molecular Sciences. 2021; 22(15):8259. https://doi.org/10.3390/ijms22158259
Chicago/Turabian StyleSaputra, Ferry, Boontida Uapipatanakul, Jiann-Shing Lee, Shih-Min Hung, Jong-Chin Huang, Yun-Chieh Pang, John Emmanuel R. Muñoz, Allan Patrick G. Macabeo, Kelvin H.-C. Chen, and Chung-Der Hsiao. 2021. "Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos" International Journal of Molecular Sciences 22, no. 15: 8259. https://doi.org/10.3390/ijms22158259
APA StyleSaputra, F., Uapipatanakul, B., Lee, J. -S., Hung, S. -M., Huang, J. -C., Pang, Y. -C., Muñoz, J. E. R., Macabeo, A. P. G., Chen, K. H. -C., & Hsiao, C. -D. (2021). Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos. International Journal of Molecular Sciences, 22(15), 8259. https://doi.org/10.3390/ijms22158259