Role of DSCAM in the Development of Neural Control of Movement and Locomotion
Abstract
:1. Introduction
2. DSCAM as a Signaling Pathway
2.1. Self-Avoidance in Cell and Neurite Spacing
2.2. Developmental Programmed Cell Death Pathway
2.3. Laminar, Cellular, and Dendritic Organization
2.4. Axonal Guidance, Growth, Fasciculation, and Branching
2.5. Establishment and Maintenance of Synaptic Functions
3. Posture and Gait in Dscam Mutant Mice
3.1. Posture
3.2. Intralimb and Interlimb Coordination, and Gait
4. Spinal Locomotor Circuit
4.1. Genetically Identified Spinal Interneuronal Populations
4.2. Spinal Excitatory Interneurons Important to Generating Locomotor Rhythm
4.3. Spinal Commissural Interneurons Are Important in Left–Right Coordination
4.4. Reciprocal Inhibition in Flexor–Extensor Alternation
4.5. Motoneuronal Output: Recurrent Inhibition or Excitatory Drive of the Spinal Locomotor Circuit
5. Sensory Afferents Modulate Locomotor Pattern
5.1. Cutaneous Afferents
5.2. Proprioceptive Afferents
6. Forelimb and Hindlimb Locomotor Coordination
6.1. Propriospinal Interneuronal Pathways
6.2. Functional Role of Propriospinal Pathways in Forelimb–Hindlimb Coordination
7. The Brainstem
7.1. Locomotor Brainstem Circuits
7.1.1. The Lateral Paragigantocellular Nucleus (LPGi)
7.1.2. The Gigantocellular Reticular Nucleus (Gi)
7.2. Respiratory Brainstem Circuits
7.3. Coupling between Locomotion and Respiration
8. The Motor Cortex and Its Corticospinal Pathway
8.1. Development of the Corticospinal Tract
8.2. Functional Organization within the Motor Cortex
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Schmucker, D.; Clemens, J.C.; Shu, H.; Worby, C.A.; Xiao, J.; Muda, M.; Dixon, J.E.; Zipursky, S.L. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 2000, 101, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Hummel, T.; Vasconcelos, M.L.; Clemens, J.C.; Fishilevich, Y.; Vosshall, L.B.; Zipursky, S.L. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron 2003, 37, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.L.; Clemens, J.C.; Neves, G.; Hattori, D.; Flanagan, J.J.; Hummel, T.; Vasconcelos, M.L.; Chess, A.; Zipursky, S.L. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 2004, 43, 673–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, G.L.; Tanglao, S.; Farmer, W.T.; Morin, S.; Brotman, S.; Berberoglu, M.A.; Price, H.; Fernandez, G.C.; Mastick, G.S.; Charron, F.; et al. Dscam guides embryonic axons by Netrin-dependent and -independent functions. Development 2008, 135, 3839–3848. [Google Scholar] [CrossRef] [Green Version]
- Garrett, A.M.; Tadenev, A.L.; Burgess, R.W. DSCAMs: Restoring balance to developmental forces. Front. Mol. Neurosci. 2012, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Mitsogiannis, M.D.; Pancho, A.; Aerts, T.; Sachse, S.M.; Vanlaer, R.; Noterdaeme, L.; Schmucker, D.; Seuntjens, E. Subtle Roles of Down Syndrome Cell Adhesion Molecules in Embryonic Forebrain Development and Neuronal Migration. Front. Cell Dev. Biol. 2020, 8, 624181. [Google Scholar] [CrossRef]
- Montesinos, M.L. Roles for DSCAM and DSCAML1 in central nervous system development and disease. Adv. Neurobiol. 2014, 8, 249–270. [Google Scholar] [CrossRef]
- Montesinos, M.L. Local translation of the Down syndrome cell adhesion molecule (DSCAM) mRNA in the vertebrate central nervous system. J. Neurogenet. 2017, 31, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Li, H. Revisiting Dscam diversity: Lessons from clustered protocadherins. Cell. Mol. Life Sci. 2019, 76, 667–680. [Google Scholar] [CrossRef]
- Schmucker, D.; Chen, B. Dscam and DSCAM: Complex genes in simple animals, complex animals yet simple genes. Genes Dev. 2009, 23, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Barlow, G.M.; Lyons, G.E.; Richardson, J.A.; Sarnat, H.B.; Korenberg, J.R. DSCAM: An endogenous promoter drives expression in the developing CNS and neural crest. Biochem. Biophys. Res. Commun. 2002, 299, 1–6. [Google Scholar] [CrossRef]
- Barlow, G.M.; Micales, B.; Chen, X.N.; Lyons, G.E.; Korenberg, J.R. Mammalian DSCAMs: Roles in the development of the spinal cord, cortex, and cerebellum? Biochem. Biophys. Res. Commun. 2002, 293, 881–891. [Google Scholar] [CrossRef]
- Hattori, D.; Chen, Y.; Matthews, B.J.; Salwinski, L.; Sabatti, C.; Grueber, W.B.; Zipursky, S.L. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature 2009, 461, 644–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, M.E.; Bortnick, R.; Tsubouchi, A.; Baumer, P.; Kondo, M.; Uemura, T.; Schmucker, D. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 2007, 54, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Matthews, B.J.; Kim, M.E.; Flanagan, J.J.; Hattori, D.; Clemens, J.C.; Zipursky, S.L.; Grueber, W.B. Dendrite self-avoidance is controlled by Dscam. Cell 2007, 129, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Soba, P.; Zhu, S.; Emoto, K.; Younger, S.; Yang, S.J.; Yu, H.H.; Lee, T.; Jan, L.Y.; Jan, Y.N. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 2007, 54, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Fuerst, P.G.; Bruce, F.; Tian, M.; Wei, W.; Elstrott, J.; Feller, M.B.; Erskine, L.; Singer, J.H.; Burgess, R.W. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 2009, 64, 484–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huberman, A.D. Mammalian DSCAMs: They won’t help you find a partner, but they’ll guarantee you some personal space. Neuron 2009, 64, 441–443. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 1999, 97, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Ing-Esteves, S.; Kostadinov, D.; Marocha, J.; Sing, A.D.; Joseph, K.S.; Laboulaye, M.A.; Sanes, J.R.; Lefebvre, J.L. Combinatorial Effects of Alpha- and Gamma-Protocadherins on Neuronal Survival and Dendritic Self-Avoidance. J. Neurosci. 2018, 38, 2713–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, J.L.; Kostadinov, D.; Chen, W.V.; Maniatis, T.; Sanes, J.R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 2012, 488, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Goodman, K.M.; Rubinstein, R.; Dan, H.; Bahna, F.; Mannepalli, S.; Ahlsen, G.; Aye Thu, C.; Sampogna, R.V.; Maniatis, T.; Honig, B.; et al. Protocadherin cis-dimer architecture and recognition unit diversity. Proc. Natl. Acad. Sci. USA 2017, 114, E9829–E9837. [Google Scholar] [CrossRef] [Green Version]
- Kostadinov, D.; Sanes, J.R. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. Elife 2015, 4, e08964. [Google Scholar] [CrossRef]
- Rubinstein, R.; Thu, C.A.; Goodman, K.M.; Wolcott, H.N.; Bahna, F.; Mannepalli, S.; Ahlsen, G.; Chevee, M.; Halim, A.; Clausen, H.; et al. Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell 2015, 163, 629–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thu, C.A.; Chen, W.V.; Rubinstein, R.; Chevee, M.; Wolcott, H.N.; Felsovalyi, K.O.; Tapia, J.C.; Shapiro, L.; Honig, B.; Maniatis, T. Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins. Cell 2014, 158, 1045–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett, A.M.; Khalil, A.; Walton, D.O.; Burgess, R.W. DSCAM promotes self-avoidance in the developing mouse retina by masking the functions of cadherin superfamily members. Proc. Natl. Acad. Sci. USA 2018, 115, E10216–E10224. [Google Scholar] [CrossRef] [Green Version]
- Fuerst, P.G.; Koizumi, A.; Masland, R.H.; Burgess, R.W. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 2008, 451, 470–474. [Google Scholar] [CrossRef] [Green Version]
- Arimura, N.; Okada, M.; Taya, S.; Dewa, K.I.; Tsuzuki, A.; Uetake, H.; Miyashita, S.; Hashizume, K.; Shimaoka, K.; Egusa, S.; et al. DSCAM regulates delamination of neurons in the developing midbrain. Sci. Adv. 2020, 6, eaba1693. [Google Scholar] [CrossRef]
- Amano, K.; Fujii, M.; Arata, S.; Tojima, T.; Ogawa, M.; Morita, N.; Shimohata, A.; Furuichi, T.; Itohara, S.; Kamiguchi, H.; et al. DSCAM deficiency causes loss of pre-inspiratory neuron synchroneity and perinatal death. J. Neurosci. 2009, 29, 2984–2996. [Google Scholar] [CrossRef] [Green Version]
- Thiry, L.; Lemieux, M.; Laflamme, O.; Bretzner, F. Role of DSCAM in the development of the spinal locomotor and sensorimotor circuits. J. Neurophysiol. 2016, 115, 1338–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeley, P.W.; Sliff, B.J.; Lee, S.C.; Fuerst, P.G.; Burgess, R.W.; Eglen, S.J.; Reese, B.E. Neuronal clustering and fasciculation phenotype in Dscam- and Bax-deficient mouse retinas. J. Comp. Neurol. 2012, 520, 1349–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Sukeena, J.M.; Simmons, A.B.; Hansen, E.J.; Nuhn, R.E.; Samuels, I.S.; Fuerst, P.G. DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites. J. Neurosci. 2015, 35, 5640–5654. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, G.B.; Kunzelman, L.; Merrill, M.M.; Fuerst, P.G. Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol. Vis. 2014, 20, 1422–1433. [Google Scholar] [PubMed]
- Maynard, K.R.; Stein, E. DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. J. Neurosci. 2012, 32, 16637–16650. [Google Scholar] [CrossRef]
- Schramm, R.D.; Li, S.; Harris, B.S.; Rounds, R.P.; Burgess, R.W.; Ytreberg, F.M.; Fuerst, P.G. A novel mouse Dscam mutation inhibits localization and shedding of DSCAM. PLoS ONE 2012, 7, e52652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuerst, P.G.; Harris, B.S.; Johnson, K.R.; Burgess, R.W. A novel null allele of mouse DSCAM survives to adulthood on an inbred C3H background with reduced phenotypic variability. Genesis 2010, 48, 578–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, A.B.; Merrill, M.M.; Reed, J.C.; Deans, M.R.; Edwards, M.M.; Fuerst, P.G. Defective Angiogenesis and Intraretinal Bleeding in Mouse Models With Disrupted Inner Retinal Lamination. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1563–1577. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Huang, Y.; Chen, J.Y.; Ding, Y.Q.; Song, N.N. DSCAM and DSCAML1 regulate the radial migration and callosal projection in developing cerebral cortex. Brain Res. 2015, 1594, 61–70. [Google Scholar] [CrossRef]
- Santos, R.A.; Fuertes, A.J.C.; Short, G.; Donohue, K.C.; Shao, H.; Quintanilla, J.; Malakzadeh, P.; Cohen-Cory, S. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Neural Dev. 2018, 13, 22. [Google Scholar] [CrossRef] [Green Version]
- Alves-Sampaio, A.; Troca-Marín, J.A.; Montesinos, M.L. NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of Down’s syndrome. J. Neurosci. 2010, 30, 13537–13548. [Google Scholar] [CrossRef]
- Marin-Padilla, M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations: A Golgi study. Brain Res. 1972, 44, 625–629. [Google Scholar] [CrossRef]
- Suetsugu, M.; Mehraein, P. Spine distribution along the apical dendrites of the pyramidal neurons in Down’s syndrome. A quantitative Golgi study. Acta Neuropathol. 1980, 50, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I.; Gullotta, F. Down’s syndrome and Alzheimer’s disease: Dendritic spine counts in the hippocampus. Acta Neuropathol. 1990, 79, 680–685. [Google Scholar] [CrossRef]
- Purohit, A.A.; Li, W.; Qu, C.; Dwyer, T.; Shao, Q.; Guan, K.L.; Liu, G. Down syndrome cell adhesion molecule (DSCAM) associates with uncoordinated-5C (UNC5C) in netrin-1-mediated growth cone collapse. J. Biol. Chem. 2012, 287, 27126–27138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Li, W.; Wang, L.; Kar, A.; Guan, K.L.; Rao, Y.; Wu, J.Y. DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc. Natl. Acad. Sci. USA 2009, 106, 2951–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, A.; Nikolaev, A.; Suresh, G.; Zheng, Y.; Tessier-Lavigne, M.; Stein, E. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell 2008, 133, 1241–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Shao, Q.; Qu, C.; Yang, T.; Dwyer, T.; Liu, G. Coordinated interaction of Down syndrome cell adhesion molecule and deleted in colorectal cancer with dynamic TUBB3 mediates Netrin-1-induced axon branching. Neuroscience 2015, 293, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Palmesino, E.; Haddick, P.C.; Tessier-Lavigne, M.; Kania, A. Genetic analysis of DSCAM’s role as a Netrin-1 receptor in vertebrates. J. Neurosci. 2012, 32, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Cohen, O.; Vald, L.; Yamagata, M.; Sanes, J.R.; Klar, A. Roles of DSCAM in axonal decussation and fasciculation of chick spinal interneurons. Int. J. Dev. Biol. 2017, 61, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Bruce, F.M.; Brown, S.; Smith, J.N.; Fuerst, P.G.; Erskine, L. DSCAM promotes axon fasciculation and growth in the developing optic pathway. Proc. Natl. Acad. Sci. USA 2017, 114, 1702–1707. [Google Scholar] [CrossRef] [Green Version]
- Laflamme, O.D.; Lemieux, M.; Thiry, L.; Bretzner, F. DSCAM Mutation Impairs Motor Cortex Network Dynamic and Voluntary Motor Functions. Cereb. Cortex 2019, 29, 2313–2330. [Google Scholar] [CrossRef]
- Yamagata, M.; Sanes, J.R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 2008, 451, 465–469. [Google Scholar] [CrossRef]
- Li, H.L.; Huang, B.S.; Vishwasrao, H.; Sutedja, N.; Chen, W.; Jin, I.; Hawkins, R.D.; Bailey, C.H.; Kandel, E.R. Dscam mediates remodeling of glutamate receptors in Aplysia during de novo and learning-related synapse formation. Neuron 2009, 61, 527–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Welshhans, K. Netrin-1 induces local translation of down syndrome cell adhesion molecule in axonal growth cones. Dev. Neurobiol. 2016, 76, 799–816. [Google Scholar] [CrossRef]
- Yamagata, M.; Sanes, J.R. Synaptic localization and function of Sidekick recognition molecules require MAGI scaffolding proteins. J. Neurosci. 2010, 30, 3579–3588. [Google Scholar] [CrossRef] [Green Version]
- Asrar, S.; Meng, Y.; Zhou, Z.; Todorovski, Z.; Huang, W.W.; Jia, Z. Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology 2009, 56, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.G.; O’Dell, T.J.; Karl, K.A.; Stein, P.L.; Soriano, P.; Kandel, E.R. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 1992, 258, 1903–1910. [Google Scholar] [CrossRef] [Green Version]
- Sachse, S.M.; Lievens, S.; Ribeiro, L.F.; Dascenco, D.; Masschaele, D.; Horre, K.; Misbaer, A.; Vanderroost, N.; De Smet, A.S.; Salta, E.; et al. Nuclear import of the DSCAM-cytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO J. 2019, 38, e99669. [Google Scholar] [CrossRef] [PubMed]
- Best, T.K.; Cho-Clark, M.; Siarey, R.J.; Galdzicki, Z. Speeding of miniature excitatory post-synaptic currents in Ts65Dn cultured hippocampal neurons. Neurosci. Lett. 2008, 438, 356–361. [Google Scholar] [CrossRef]
- Hanson, J.E.; Blank, M.; Valenzuela, R.A.; Garner, C.C.; Madison, D.V. The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down’s syndrome. J. Physiol. 2007, 579, 53–67. [Google Scholar] [CrossRef]
- Cramer, N.P.; Xu, X.F.; Haydar, T.; Galdzicki, Z. Altered intrinsic and network properties of neocortical neurons in the Ts65Dn mouse model of Down syndrome. Physiol. Rep. 2015, 3, e12655. [Google Scholar] [CrossRef]
- Di Filippo, M.; Tozzi, A.; Ghiglieri, V.; Picconi, B.; Costa, C.; Cipriani, S.; Tantucci, M.; Belcastro, V.; Calabresi, P. Impaired plasticity at specific subset of striatal synapses in the Ts65Dn mouse model of Down syndrome. Biol. Psychiatry 2010, 67, 666–671. [Google Scholar] [CrossRef]
- Belichenko, N.P.; Belichenko, P.V.; Kleschevnikov, A.M.; Salehi, A.; Reeves, R.H.; Mobley, W.C. The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J. Neurosci. 2009, 29, 5938–5948. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C.; Grybko, M.J. Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: A model of Down syndrome. Neurosci. Lett. 2005, 382, 317–322. [Google Scholar] [CrossRef]
- Deidda, G.; Parrini, M.; Naskar, S.; Bozarth, I.F.; Contestabile, A.; Cancedda, L. Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome. Nat. Med. 2015, 21, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Sharma, A.; Xu, W.; Gerum, S.; Alldred, M.J.; Subbanna, S.; Basavarajappa, B.S.; Pawlik, M.; Ohno, M.; Ginsberg, S.D.; et al. Glutamatergic transmission aberration: A major cause of behavioral deficits in a murine model of Down’s syndrome. J. Neurosci. 2014, 34, 5099–5106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siarey, R.J.; Villar, A.J.; Epstein, C.J.; Galdzicki, Z. Abnormal synaptic plasticity in the Ts1Cje segmental trisomy 16 mouse model of Down syndrome. Neuropharmacology 2005, 49, 122–128. [Google Scholar] [CrossRef]
- Kleschevnikov, A.M.; Belichenko, P.V.; Villar, A.J.; Epstein, C.J.; Malenka, R.C.; Mobley, W.C. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J. Neurosci. 2004, 24, 8153–8160. [Google Scholar] [CrossRef] [Green Version]
- Cvetkovska, V.; Hibbert, A.D.; Emran, F.; Chen, B.E. Overexpression of Down syndrome cell adhesion molecule impairs precise synaptic targeting. Nat. Neurosci. 2013, 16, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Lowe, S.A.; Hodge, J.J.L.; Usowicz, M.M. A third copy of the Down syndrome cell adhesion molecule (Dscam) causes synaptic and locomotor dysfunction in Drosophila. Neurobiol. Dis. 2018, 110, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ye, H.; Shen, Y.; Xu, Q.; Zhu, L.; Liu, J.; Wu, J.Y. Dscam mutation leads to hydrocephalus and decreased motor function. Protein Cell 2011, 2, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, M.; Laflamme, O.; Thiry, L.; Boulanger-Piette, A.; Frenette, J.; Bretzner, F. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM. J. Neurophysiol. 2016, 115, 1355–1371. [Google Scholar] [CrossRef] [Green Version]
- Yimlamai, D.; Konnikova, L.; Moss, L.G.; Jay, D.G. The zebrafish down syndrome cell adhesion molecule is involved in cell movement during embryogenesis. Dev. Biol. 2005, 279, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhu, Z.; Mao, S.; Qiu, X.; Qian, B.; Liu, Z.; Qiu, Y. Lack of association between DSCAM gene polymorphisms and adolescent idiopathic scoliosis susceptibility in a Chinese Han population. J. Back Musculoskelet. Rehabil. 2015, 28, 681–687. [Google Scholar] [CrossRef]
- Sharma, S.; Gao, X.; Londono, D.; Devroy, S.E.; Mauldin, K.N.; Frankel, J.T.; Brandon, J.M.; Zhang, D.; Li, Q.Z.; Dobbs, M.B.; et al. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum. Mol. Genet. 2011, 20, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Roussel, M.; Lemieux, M.; Bretzner, F. Using mouse genetics to investigate supraspinal pathways of the brain important to locomotion. In The Neural Control of Movement; Whelan, P.J., Sharples, S.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 269–313. [Google Scholar]
- Lemieux, M.; Josset, N.; Roussel, M.; Couraud, S.; Bretzner, F. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits. Front. Neurosci. 2016, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbin, M.; Gasc, J.P.; Renous, S. Symmetrical and asymmetrical gaits in the mouse: Patterns to increase velocity. J. Comp. Physiol. 2004, 190, 895–906. [Google Scholar] [CrossRef]
- Bellardita, C.; Kiehn, O. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks. Curr. Biol. 2015, 25, 1426–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, M. Analysis of tetrapod gaits: General considerations and symmetrical gaits. In Neural Control of Movement; Herman, R.M., Grillner, S., Stein, P.S., Stuart, D.G., Eds.; Plenum: New York, NY, USA, 1976; pp. 203–236. [Google Scholar] [CrossRef]
- Chipman, P.H.; Franz, C.K.; Nelson, A.; Schachner, M.; Rafuse, V.F. Neural cell adhesion molecule is required for stability of reinnervated neuromuscular junctions. Eur. J. Neurosci. 2010, 31, 238–249. [Google Scholar] [CrossRef]
- Chipman, P.H.; Schachner, M.; Rafuse, V.F. Presynaptic NCAM is required for motor neurons to functionally expand their peripheral field of innervation in partially denervated muscles. J. Neurosci. 2014, 34, 10497–10510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafuse, V.F.; Polo-Parada, L.; Landmesser, L.T. Structural and functional alterations of neuromuscular junctions in NCAM-deficient mice. J. Neurosci. 2000, 20, 6529–6539. [Google Scholar] [CrossRef] [Green Version]
- Polo-Parada, L.; Bose, C.M.; Landmesser, L.T. Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron 2001, 32, 815–828. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.C.; Feldman, J.L.; Schmidt, B.J. Neural mechanisms generating locomotion studied in mammalian brain stem-spinal cord in vitro. FASEB J. 1988, 2, 2283–2288. [Google Scholar] [CrossRef]
- Smith, J.C.; Feldman, J.L. In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J. Neurosci. Methods 1987, 21, 321–333. [Google Scholar] [CrossRef]
- Thiry, L.; Roussel, M.; Lemieux, M.; Bretzner, F. Using mouse genetics to study the developing spinal locomotor circuit. In The Neural Control of Movement; Whelan, P.J., Sharples, S.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 237–267. [Google Scholar]
- Bonnot, A.; Morin, D.; Viala, D. Genesis of spontaneous rhythmic motor patterns in the lumbosacral spinal cord of neonate mouse. Brain Res. Dev. Brain Res. 1998, 108, 89–99. [Google Scholar] [CrossRef]
- Jiang, Z.; Carlin, K.P.; Brownstone, R.M. An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks. Brain Res. 1999, 816, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Whelan, P.; Bonnot, A.; O’Donovan, M.J. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J. Neurophysiol. 2000, 84, 2821–2833. [Google Scholar] [CrossRef]
- Mentis, G.Z.; Alvarez, F.J.; Bonnot, A.; Richards, D.S.; Gonzalez-Forero, D.; Zerda, R.; O’Donovan, M.J. Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord. Proc. Natl. Acad. Sci. USA 2005, 102, 7344–7349. [Google Scholar] [CrossRef] [Green Version]
- Thiry, L.; Lemieux, M.; Bretzner, F. Age- and Speed-Dependent Modulation of Locomotor Gaits in DSCAM2J Mutant Mice. J. Neurophysiol. 2018, 119, 723–737. [Google Scholar] [CrossRef]
- Briscoe, J.; Pierani, A.; Jessell, T.M.; Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 2000, 101, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Jessell, T.M. Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nat. Rev. 2000, 1, 20–29. [Google Scholar] [CrossRef]
- Boije, H.; Kullander, K. Origin and circuitry of spinal locomotor interneurons generating different speeds. Curr. Opin. Neurobiol. 2018, 53, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Sagner, A.; Briscoe, J. Establishing neuronal diversity in the spinal cord: A time and a place. Development 2019, 146, dev182154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosgnach, S.; Bikoff, J.B.; Dougherty, K.J.; El Manira, A.; Lanuza, G.M.; Zhang, Y. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits. J. Neurosci. 2017, 37, 10835–10841. [Google Scholar] [CrossRef] [Green Version]
- Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. 2016, 17, 224–238. [Google Scholar] [CrossRef]
- Goulding, M. Circuits controlling vertebrate locomotion: Moving in a new direction. Nat. Rev. 2009, 10, 507–518. [Google Scholar] [CrossRef]
- Harris-Warrick, R.M. General principles of rhythmogenesis in central pattern generator networks. Prog. Brain Res. 2010, 187, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Hinckley, C.A.; Hartley, R.; Wu, L.; Todd, A.; Ziskind-Conhaim, L. Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord. J. Neurophysiol. 2005, 93, 1439–1449. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.M.; Hartley, R.; Maxwell, D.J.; Todd, A.J.; Lieberam, I.; Kaltschmidt, J.A.; Yoshida, Y.; Jessell, T.M.; Brownstone, R.M. Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J. Neurosci. 2005, 25, 5710–5719. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, K.J.; Zagoraiou, L.; Satoh, D.; Rozani, I.; Doobar, S.; Arber, S.; Jessell, T.M.; Kiehn, O. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons. Neuron 2013, 80, 920–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crone, S.A.; Quinlan, K.A.; Zagoraiou, L.; Droho, S.; Restrepo, C.E.; Lundfald, L.; Endo, T.; Setlak, J.; Jessell, T.M.; Kiehn, O.; et al. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 2008, 60, 70–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crone, S.A.; Zhong, G.; Harris-Warrick, R.; Sharma, K. In mice lacking V2a interneurons, gait depends on speed of locomotion. J. Neurosci. 2009, 29, 7098–7109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Narayan, S.; Geiman, E.; Lanuza, G.M.; Velasquez, T.; Shanks, B.; Akay, T.; Dyck, J.; Pearson, K.; Gosgnach, S.; et al. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 2008, 60, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Beg, A.A.; Sommer, J.E.; Martin, J.H.; Scheiffele, P. alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits. Neuron 2007, 55, 768–778. [Google Scholar] [CrossRef] [Green Version]
- Borgius, L.; Nishimaru, H.; Caldeira, V.; Kunugise, Y.; Low, P.; Reig, R.; Itohara, S.; Iwasato, T.; Kiehn, O. Spinal glutamatergic neurons defined by EphA4 signaling are essential components of normal locomotor circuits. J. Neurosci. 2014, 34, 3841–3853. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, J.P.; Georgiou, J.; Ruston, J.; Bladt, F.; Sherman, A.; Warner, N.; Saab, B.J.; Scott, R.; Roder, J.C.; Pawson, T. Nck adaptor proteins control the organization of neuronal circuits important for walking. Proc. Natl. Acad. Sci. USA 2007, 104, 20973–20978. [Google Scholar] [CrossRef] [Green Version]
- Kullander, K.; Butt, S.J.; Lebret, J.M.; Lundfald, L.; Restrepo, C.E.; Rydstrom, A.; Klein, R.; Kiehn, O. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 2003, 299, 1889–1892. [Google Scholar] [CrossRef] [PubMed]
- Kullander, K.; Croll, S.D.; Zimmer, M.; Pan, L.; McClain, J.; Hughes, V.; Zabski, S.; DeChiara, T.M.; Klein, R.; Yancopoulos, G.D.; et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. 2001, 15, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Renshaw, B. Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 1946, 9, 191–204. [Google Scholar] [CrossRef]
- Eccles, J.C.; Fatt, P.; Landgren, S. Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle. J. Neurophysiol. 1956, 19, 75–98. [Google Scholar] [CrossRef]
- Gosgnach, S.; Lanuza, G.M.; Butt, S.J.B.; Saueressig, H.; Zhang, Y.; Velasquez, T.; Riethmacher, D.; Callaway, E.M.; Kiehn, O.; Goulding, M. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 2006, 440, 215–219. [Google Scholar] [CrossRef]
- Zhang, J.; Lanuza, G.M.; Britz, O.; Wang, Z.; Siembab, V.C.; Zhang, Y.; Velasquez, T.; Alvarez, F.J.; Frank, E.; Goulding, M. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 2014, 82, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Britz, O.; Zhang, J.; Grossmann, K.S.; Dyck, J.; Kim, J.C.; Dymecki, S.; Gosgnach, S.; Goulding, M. A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements. Elife 2015, 4, e04718. [Google Scholar] [CrossRef]
- Eccles, J.C.; Fatt, P.; Koketsu, K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. 1954, 126, 524–562. [Google Scholar] [CrossRef] [PubMed]
- Hultborn, H.; Jankowska, E.; Lindstrom, S. Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J. Physiol. 1971, 215, 613–636. [Google Scholar] [CrossRef]
- Gatto, G.; Smith, K.M.; Ross, S.E.; Goulding, M. Neuronal diversity in the somatosensory system: Bridging the gap between cell type and function. Curr. Opin. Neurobiol. 2019, 56, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Abraira, V.E.; Ginty, D.D. The sensory neurons of touch. Neuron 2013, 79, 618–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forssberg, H.; Grillner, S.; Rossignol, S. Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 1975, 85, 103–107. [Google Scholar] [CrossRef]
- Forssberg, H.; Grillner, S.; Rossignol, S. Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res. 1977, 132, 121–139. [Google Scholar] [CrossRef]
- Mayer, W.P.; Akay, T. Stumbling corrective reaction elicited by mechanical and electrical stimulation of the saphenous nerve in walking mice. J. Exp. Biol. 2018, 221, jeb178095. [Google Scholar] [CrossRef] [Green Version]
- Bouyer, L.J.; Rossignol, S. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats. J. Neurophysiol. 2003, 90, 3625–3639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouyer, L.J.; Rossignol, S. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. J. Neurophysiol. 2003, 90, 3640–3653. [Google Scholar] [CrossRef]
- Bui, T.V.; Akay, T.; Loubani, O.; Hnasko, T.S.; Jessell, T.M.; Brownstone, R.M. Circuits for grasping: Spinal dI3 interneurons mediate cutaneous control of motor behavior. Neuron 2013, 78, 191–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akay, T. Sensory Feedback Control of Locomotor Pattern Generation in Cats and Mice. Neuroscience 2020, 450, 161–167. [Google Scholar] [CrossRef]
- Rossignol, S.; Dubuc, R.; Gossard, J.P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 2006, 86, 89–154. [Google Scholar] [CrossRef]
- Grillner, S.; Rossignol, S. On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 1978, 146, 269–277. [Google Scholar] [CrossRef]
- Hiebert, G.W.; Whelan, P.J.; Prochazka, A.; Pearson, K.G. Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J. Neurophysiol. 1996, 75, 1126–1137. [Google Scholar] [CrossRef] [Green Version]
- Duysens, J.; Pearson, K.G. Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res. 1980, 187, 321–332. [Google Scholar] [CrossRef]
- Lam, T.; Pearson, K.G. Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. J. Neurophysiol. 2001, 86, 1321–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McVea, D.A.; Donelan, J.M.; Tachibana, A.; Pearson, K.G. A role for hip position in initiating the swing-to-stance transition in walking cats. J. Neurophysiol. 2005, 94, 3497–3508. [Google Scholar] [CrossRef]
- Takeoka, A.; Vollenweider, I.; Courtine, G.; Arber, S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 2014, 159, 1626–1639. [Google Scholar] [CrossRef] [Green Version]
- Akay, T.; Tourtellotte, W.G.; Arber, S.; Jessell, T.M. Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc. Natl. Acad. Sci. USA 2014, 111, 16877–16882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, W.P.; Murray, A.J.; Brenner-Morton, S.; Jessell, T.M.; Tourtellotte, W.G.; Akay, T. Role of muscle spindle feedback in regulating muscle activity strength during walking at different speed in mice. J. Neurophysiol. 2018, 120, 2484–2497. [Google Scholar] [CrossRef]
- Miller, S.; Reitsma, D.J.; van der Meche, F.G. Functional organization of long ascending propriospinal pathways linking lumbo-sacral and cervical segments in the cat. Brain Res. 1973, 62, 169–188. [Google Scholar] [CrossRef]
- Miller, S.; Van Der Burg, J.; Van Der Meche, F. Coordination of movements of the kindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res. 1975, 91, 217–237. [Google Scholar] [CrossRef]
- Jankowska, E.; Lundberg, A.; Roberts, W.J.; Stuart, D. A long propriospinal system with direct effect on motoneurones and on interneurones in the cat lumbosacral cord. Exp. Brain Res. 1974, 21, 169–194. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, E.; Lundberg, A.; Stuart, D. Propriospinal control of last order interneurones of spinal reflex pathways in the cat. Brain Res. 1973, 53, 227–231. [Google Scholar] [CrossRef]
- Ruder, L.; Takeoka, A.; Arber, S. Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability. Neuron 2016, 92, 1063–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talpalar, A.E.; Bouvier, J.; Borgius, L.; Fortin, G.; Pierani, A.; Kiehn, O. Dual-mode operation of neuronal networks involved in left-right alternation. Nature 2013, 500, 85–88. [Google Scholar] [CrossRef]
- Mitchell, E.J.; McCallum, S.; Dewar, D.; Maxwell, D.J. Corticospinal and Reticulospinal Contacts on Cervical Commissural and Long Descending Propriospinal Neurons in the Adult Rat Spinal Cord; Evidence for Powerful Reticulospinal Connections. PLoS ONE 2016, 11, e0152094. [Google Scholar] [CrossRef] [Green Version]
- Bannatyne, B.A.; Edgley, S.A.; Hammar, I.; Jankowska, E.; Maxwell, D.J. Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions. Eur. J. Neurosci. 2003, 18, 2273–2284. [Google Scholar] [CrossRef]
- Brownstone, R.M.; Chopek, J.W. Reticulospinal Systems for Tuning Motor Commands. Front. Neural Circuits 2018, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Gatto, G.; Goulding, M. Locomotion Control: Brainstem Circuits Satisfy the Need for Speed. Curr. Biol. 2018, 28, R256–R259. [Google Scholar] [CrossRef] [Green Version]
- Ruder, L.; Arber, S. Brainstem Circuits Controlling Action Diversification. Annu. Rev. Neurosci. 2019, 42, 485–504. [Google Scholar] [CrossRef]
- Capelli, P.; Pivetta, C.; Soledad Esposito, M.; Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 2017, 551, 373–377. [Google Scholar] [CrossRef]
- Josset, N.; Roussel, M.; Lemieux, M.; Lafrance-Zoubga, D.; Rastqar, A.; Bretzner, F. Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse. Curr. Biol. 2018, 28, 884–901.e3. [Google Scholar] [CrossRef] [Green Version]
- Caggiano, V.; Leiras, R.; Goni-Erro, H.; Masini, D.; Bellardita, C.; Bouvier, J.; Caldeira, V.; Fisone, G.; Kiehn, O. Midbrain circuits that set locomotor speed and gait selection. Nature 2018, 553, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Ausborn, J.; Shevtsova, N.A.; Caggiano, V.; Danner, S.M.; Rybak, I.A. Computational modeling of brainstem circuits controlling locomotor frequency and gait. eLife 2019, 8, e43587. [Google Scholar] [CrossRef]
- Bretzner, F.; Brownstone, R.M. Lhx3-Chx10 reticulospinal neurons in locomotor circuits. J. Neurosci. 2013, 33, 14681–14692. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, J.; Caggiano, V.; Leiras, R.; Caldeira, V.; Bellardita, C.; Balueva, K.; Fuchs, A.; Kiehn, O. Descending Command Neurons in the Brainstem that Halt Locomotion. Cell 2015, 163, 1191–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemieux, M.; Bretzner, F. Glutamatergic neurons of the gigantocellular reticular nucleus shape locomotor pattern and rhythm in the freely behaving mouse. PLoS Biol. 2019, 17, e2003880. [Google Scholar] [CrossRef] [PubMed]
- Amano, K.; Fujii, M.; Arata, S.; Ogawa, M.; Yamakawa, K.; Arata, A. Loss of pre-inspiratory neuron synchroneity in mice with DSCAM deficiency. Adv. Exp. Med. Biol. 2010, 669, 15–19. [Google Scholar] [CrossRef]
- Smith, J.C.; Ellenberger, H.H.; Ballanyi, K.; Richter, D.W.; Feldman, J.L. Pre-Botzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 1991, 254, 726–729. [Google Scholar] [CrossRef]
- Schwarzacher, S.W.; Rub, U.; Deller, T. Neuroanatomical characteristics of the human pre-Botzinger complex and its involvement in neurodegenerative brainstem diseases. Brain 2011, 134, 24–35. [Google Scholar] [CrossRef]
- Hayes, J.A.; Kottick, A.; Picardo, M.C.D.; Halleran, A.D.; Smith, R.D.; Smith, G.D.; Saha, M.S.; Del Negro, C.A. Transcriptome of neonatal preBotzinger complex neurones in Dbx1 reporter mice. Sci. Rep. 2017, 7, 8669. [Google Scholar] [CrossRef] [PubMed]
- Picardo, M.C.; Weragalaarachchi, K.T.; Akins, V.T.; Del Negro, C.A. Physiological and morphological properties of Dbx1-derived respiratory neurons in the pre-Botzinger complex of neonatal mice. J. Physiol. 2013, 591, 2687–2703. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Kam, K.; Sherman, D.; Janczewski, W.A.; Zheng, Y.; Feldman, J.L. Defining preBotzinger Complex Rhythm- and Pattern-Generating Neural Microcircuits In Vivo. Neuron 2016, 91, 602–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baertsch, N.A.; Baertsch, H.C.; Ramirez, J.M. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms. Nat. Commun. 2018, 9, 843. [Google Scholar] [CrossRef]
- Wang, X.; Hayes, J.A.; Revill, A.L.; Song, H.; Kottick, A.; Vann, N.C.; LaMar, M.D.; Picardo, M.C.; Akins, V.T.; Funk, G.D.; et al. Laser ablation of Dbx1 neurons in the pre-Botzinger complex stops inspiratory rhythm and impairs output in neonatal mice. Elife 2014, 3, e03427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, T.M.; Garcia, A.J., 3rd; Baertsch, N.A.; Pollak, J.; Bloom, J.C.; Wei, A.D.; Rai, K.G.; Ramirez, J.M. A novel excitatory network for the control of breathing. Nature 2016, 536, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Guyenet, P.G.; Bayliss, D.A.; Stornetta, R.L.; Fortuna, M.G.; Abbott, S.B.; DePuy, S.D. Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir. Physiol. Neurobiol. 2009, 168, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huckstepp, R.T.; Henderson, L.E.; Cardoza, K.P.; Feldman, J.L. Interactions between respiratory oscillators in adult rats. Elife 2016, 5, e14203. [Google Scholar] [CrossRef] [PubMed]
- Huckstepp, R.T.; Cardoza, K.P.; Henderson, L.E.; Feldman, J.L. Role of parafacial nuclei in control of breathing in adult rats. J. Neurosci. 2015, 35, 1052–1067. [Google Scholar] [CrossRef] [Green Version]
- Pearce, R.A.; Stornetta, R.L.; Guyenet, P.G. Retrotrapezoid nucleus in the rat. Neurosci. Lett. 1989, 101, 138–142. [Google Scholar] [CrossRef]
- Onimaru, H.; Ikeda, K.; Kawakami, K. Phox2b, RTN/pFRG neurons and respiratory rhythmogenesis. Respir. Physiol. Neurobiol. 2009, 168, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Pagliardini, S.; Janczewski, W.A.; Tan, W.; Dickson, C.T.; Deisseroth, K.; Feldman, J.L. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J. Neurosci. 2011, 31, 2895–2905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.N.; Tanabe, F.M.; Moreira, T.S.; Takakura, A.C. Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats. Respir. Physiol. Neurobiol. 2016, 227, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Del Negro, C.A.; Funk, G.D.; Feldman, J.L. Breathing matters. Nat. Rev. Neurosci. 2018, 19, 351–367. [Google Scholar] [CrossRef]
- Ramirez, J.M.; Baertsch, N. Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology 2018, 33, 302–316. [Google Scholar] [CrossRef]
- Ramirez, J.M.; Baertsch, N.A. The Dynamic Basis of Respiratory Rhythm Generation: One Breath at a Time. Annu. Rev. Neurosci. 2018, 41, 475–499. [Google Scholar] [CrossRef]
- Bramble, D.M.; Carrier, D.R. Running and breathing in mammals. Science 1983, 219, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Boggs, D.F. Interactions between locomotion and ventilation in tetrapods. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 133, 269–288. [Google Scholar] [CrossRef]
- Waisbren, S.J.; Whiting, C.S.; Nadel, E.R. Effects of passive limb movement on pulmonary ventilation. Yale J. Biol. Med. 1990, 63, 549–556. [Google Scholar] [PubMed]
- Morin, D.; Viala, D. Coordinations of locomotor and respiratory rhythms in vitro are critically dependent on hindlimb sensory inputs. J. Neurosci. 2002, 22, 4756–4765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gal, J.P.; Juvin, L.; Cardoit, L.; Morin, D. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord. J. Neurosci. 2016, 36, 926–937. [Google Scholar] [CrossRef] [Green Version]
- Le Gal, J.P.; Juvin, L.; Cardoit, L.; Thoby-Brisson, M.; Morin, D. Remote control of respiratory neural network by spinal locomotor generators. PLoS ONE 2014, 9, e89670. [Google Scholar] [CrossRef]
- Eldridge, F.L.; Millhorn, D.E.; Waldrop, T.G. Exercise hyperpnea and locomotion: Parallel activation from the hypothalamus. Science 1981, 211, 844–846. [Google Scholar] [CrossRef]
- Usseglio, G.; Gatier, E.; Heuze, A.; Herent, C.; Bouvier, J. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons. Curr. Biol. 2020, 30, 4665–4681. [Google Scholar] [CrossRef]
- Cregg, J.M.; Leiras, R.; Montalant, A.; Wanken, P.; Wickersham, I.R.; Kiehn, O. Brainstem neurons that command mammalian locomotor asymmetries. Nat. Neurosci. 2020, 23, 730–740. [Google Scholar] [CrossRef]
- Crone, S.A.; Viemari, J.C.; Droho, S.; Mrejeru, A.; Ramirez, J.M.; Sharma, K. Irregular Breathing in Mice following Genetic Ablation of V2a Neurons. J. Neurosci. 2012, 32, 7895–7906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tennant, K.A.; Adkins, D.L.; Donlan, N.A.; Asay, A.L.; Thomas, N.; Kleim, J.A.; Jones, T.A. The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. Cereb. Cortex 2011, 21, 865–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roaf, H.E.; Sherrington, C.S. Experiments in examination of the ‘locked-jaw’ induced by tetanus toxin. J. Physiol. 1906, 34, 315–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.G.; Sherrington, C.S. Observations on the localisation in the motor cortex of the baboon (“Papio anubis”). J. Physiol. 1911, 43, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Asanuma, H.; Stoney, S.D., Jr.; Abzug, C. Relationship between afferent input and motor outflow in cat motorsensory cortex. J. Neurophysiol. 1968, 31, 670–681. [Google Scholar] [CrossRef]
- Stoney, S.D., Jr.; Thompson, W.D.; Asanuma, H. Excitation of pyramidal tract cells by intracortical microstimulation: Effective extent of stimulating current. J. Neurophysiol. 1968, 31, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Kleim, J.A.; Barbay, S.; Nudo, R.J. Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 1998, 80, 3321–3325. [Google Scholar] [CrossRef]
- Nudo, R.J.; Milliken, G.W.; Jenkins, W.M.; Merzenich, M.M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 1996, 16, 785–807. [Google Scholar] [CrossRef] [Green Version]
- Canedo, A. Primary motor cortex influences on the descending and ascending systems. Prog. Neurobiol. 1997, 51, 287–335. [Google Scholar] [CrossRef]
- Anderson, C.T.; Sheets, P.L.; Kiritani, T.; Shepherd, G.M. Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nat. Neurosci. 2010, 13, 739–744. [Google Scholar] [CrossRef]
- Kiritani, T.; Wickersham, I.R.; Seung, H.S.; Shepherd, G.M. Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J. Neurosci. 2012, 32, 4992–5001. [Google Scholar] [CrossRef]
- Akintunde, A.; Buxton, D.F. Origins and collateralization of corticospinal, corticopontine, corticorubral and corticostriatal tracts: A multiple retrograde fluorescent tracing study. Brain Res. 1992, 586, 208–218. [Google Scholar] [CrossRef]
- Gao, W.J.; Zheng, Z.H. Target-specific differences in somatodendritic morphology of layer V pyramidal neurons in rat motor cortex. J. Comp. Neurol. 2004, 476, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Runker, A.E.; Little, G.E.; Suto, F.; Fujisawa, H.; Mitchell, K.J. Semaphorin-6A controls guidance of corticospinal tract axons at multiple choice points. Neural Dev. 2008, 3, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakeman, L.B.; Chen, Y.; Lucin, K.M.; McTigue, D.M. Mice lacking L1 cell adhesion molecule have deficits in locomotion and exhibit enhanced corticospinal tract sprouting following mild contusion injury to the spinal cord. Eur. J. Neurosci. 2006, 23, 1997–2011. [Google Scholar] [CrossRef]
- Rolf, B.; Bastmeyer, M.; Schachner, M.; Bartsch, U. Pathfinding errors of corticospinal axons in neural cell adhesion molecule-deficient mice. J. Neurosci. 2002, 22, 8357–8362. [Google Scholar] [CrossRef] [Green Version]
- Welniarz, Q.; Morel, M.P.; Pourchet, O.; Gallea, C.; Lamy, J.C.; Cincotta, M.; Doulazmi, M.; Belle, M.; Meneret, A.; Trouillard, O.; et al. Non cell-autonomous role of DCC in the guidance of the corticospinal tract at the midline. Sci. Rep. 2017, 7, 410. [Google Scholar] [CrossRef] [Green Version]
- Finger, J.H.; Bronson, R.T.; Harris, B.; Johnson, K.; Przyborski, S.A.; Ackerman, S.L. The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J. Neurosci. 2002, 22, 10346–10356. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.; Li, W.; Shao, Q.; Dwyer, T.; Huang, H.; Yang, T.; Liu, G. c-Jun N-terminal kinase 1 (JNK1) is required for coordination of netrin signaling in axon guidance. J. Biol. Chem. 2013, 288, 1883–1895. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, S.; Friel, K.M.; Martin, J.H. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity. J. Neurophysiol. 2009, 101, 1283–1293. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemieux, M.; Thiry, L.; Laflamme, O.D.; Bretzner, F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int. J. Mol. Sci. 2021, 22, 8511. https://doi.org/10.3390/ijms22168511
Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. International Journal of Molecular Sciences. 2021; 22(16):8511. https://doi.org/10.3390/ijms22168511
Chicago/Turabian StyleLemieux, Maxime, Louise Thiry, Olivier D. Laflamme, and Frédéric Bretzner. 2021. "Role of DSCAM in the Development of Neural Control of Movement and Locomotion" International Journal of Molecular Sciences 22, no. 16: 8511. https://doi.org/10.3390/ijms22168511
APA StyleLemieux, M., Thiry, L., Laflamme, O. D., & Bretzner, F. (2021). Role of DSCAM in the Development of Neural Control of Movement and Locomotion. International Journal of Molecular Sciences, 22(16), 8511. https://doi.org/10.3390/ijms22168511