Chitin-Derived AVR-48 Prevents Experimental Bronchopulmonary Dysplasia (BPD) and BPD-Associated Pulmonary Hypertension in Newborn Mice
Abstract
:1. Introduction
2. Results
2.1. Safety Profile of AVR-48
2.2. Pharmacokinetic (PK) Profile of AVR-48
2.3. Drug Release and Dose Response Study
2.4. AVR-48 Restored Lung Morphology and Improved Alveolar Cellular Physiology
2.5. AVR-48 Did Not Have Any Adverse Effect with Surfactant
2.6. AVR-48 Increases Lung TLR4 Expression
2.7. AVR-48 Normalizes Two Important Innate Immune Cell Populations in Animals with BPD
2.8. AVR-48 Suppresses Inflammation in the Lungs by Decreasing the Pro-Inflammatory, and Increasing Anti-Inflammatory Cytokines
2.9. AVR-48 Protects the Lungs from Progressing toward BPD-PH
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chemicals and Reagents
4.3. Formulation of AVR-48 for Efficacy and Toxicokinetic Studies
4.4. Hyperoxia Treatment
4.5. Bronchoalveolar Lavage Fluid (BALF) Analysis
4.6. Histology, Immunohistochemistry, and Immunofluorescence
4.7. Morphometry and Quantification
4.8. Western Blot Analysis
4.9. Multiplex ELISA
4.10. Imaging
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhandari, V. Bronchopulmonary Dysplasia; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bhandari, A.; Bhandari, V. Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics 2009, 123, 1562–1573. [Google Scholar] [CrossRef]
- Bhandari, V. Drug therapy trials for the prevention of bronchopulmonary dysplasia: Current and future targets. Front. Pediatr. 2014, 2, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahni, M.; Bhandari, V. Recent advances in understanding and management of bronchopulmonary dysplasia. F1000Research 2020, 9, 703. [Google Scholar] [CrossRef]
- Lui, K.; Lee, S.K.; Kusuda, S.; Adams, M.; Vento, M.; Reichman, B.; Darlow, B.A.; Lehtonen, L.; Modi, N.; Norman, M.; et al. Trends in Outcomes for Neonates Born Very Preterm and Very Low Birth Weight in 11 High-Income Countries. J. Pediatr. 2019, 215, 32–40.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horbar, J.D.; Edwards, E.M.; Greenberg, L.T.; Morrow, K.A.; Soll, R.F.; Buus-Frank, M.E.; Buzas, J.S. Variation in Performance of Neonatal Intensive Care Units in the United States. JAMA Pediatr. 2017, 171, e164396. [Google Scholar] [CrossRef]
- Thebaud, B.; Goss, K.N.; Laughon, M.; Whitsett, J.A.; Abman, S.H.; Steinhorn, R.H.; Aschner, J.L.; Davis, P.G.; McGrath-Morrow, S.A.; Soll, R.F.; et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Prim. 2019, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, K.R.; Abman, S.H. Lung vascular development: Implications for the pathogenesis of bronchopulmonary dysplasia. Annu. Rev. Physiol. 2005, 67, 623–661. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.A.; Roberts, R.S.; Schmidt, B. Drugs to Prevent Bronchopulmonary Dysplasia: Effect of Baseline Risk on the Number Needed to Treat. J. Pediatr. 2020, 222, 244–247. [Google Scholar] [CrossRef]
- Andrews, E.; Sur, A. Is inhaled budesonide a useful adjunct for the prevention or management of bronchopulmonary dysplasia? Arch. Dis. Child. 2020, 105, 508–511. [Google Scholar] [CrossRef]
- Bassler, D.; Halliday, H.L.; Plavka, R.; Hallman, M.; Shinwell, E.S.; Jarreau, P.H.; Carnielli, V.; van den Anker, J.; Schwab, M.; Poets, C.F. The Neonatal European Study of Inhaled Steroids (NEUROSIS): An eu-funded international randomised controlled trial in preterm infants. Neonatology 2010, 97, 52–55. [Google Scholar] [CrossRef]
- Bassler, D. Inhaled budesonide for the prevention of bronchopulmonary dysplasia. J. Matern. Fetal Neonatal Med. 2017, 30, 2372–2374. [Google Scholar] [CrossRef]
- Bassler, D.; Shinwell, E.S.; Hallman, M.; Jarreau, P.H.; Plavka, R.; Carnielli, V.; Meisner, C.; Engel, C.; Koch, A.; Kreutzer, K.; et al. Long-Term Effects of Inhaled Budesonide for Bronchopulmonary Dysplasia. N. Engl. J. Med. 2018, 378, 148–157. [Google Scholar] [CrossRef]
- Filippone, M.; Nardo, D.; Bonadies, L.; Salvadori, S.; Baraldi, E. Update on Postnatal Corticosteroids to Prevent or Treat Bronchopulmonary Dysplasia. Am. J. Perinatol. 2019, 36, S58–S62. [Google Scholar] [CrossRef] [Green Version]
- Tolia, V.N.; Murthy, K.; McKinley, P.S.; Bennett, M.M.; Clark, R.H. The effect of the national shortage of vitamin A on death or chronic lung disease in extremely low-birth-weight infants. JAMA Pediatr. 2014, 168, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
- Strueby, L.; Thebaud, B. Novel therapeutics for bronchopulmonary dysplasia. Curr. Opin. Pediatr. 2018, 30, 378–383. [Google Scholar] [CrossRef]
- Sahni, M.; Yeboah, B.; Das, P.; Shah, D.; Ponnalagu, D.; Singh, H.; Nelin, L.D.; Bhandari, V. Novel biomarkers of bronchopulmonary dysplasia and bronchopulmonary dysplasia-associated pulmonary hypertension. J. Perinatol. 2020, 40, 1634–1643. [Google Scholar] [CrossRef] [PubMed]
- Meau-Petit, V.; Thouvenin, G.; Guillemot-Lambert, N.; Champion, V.; Tillous-Borde, I.; Flamein, F.; de Saint Blanquat, L.; Essouri, S.; Guilbert, J.; Nathan, N.; et al. Bronchopulmonary dysplasia-associated pulmonary arterial hypertension of very preterm infants. Arch. Pediatr. 2013, 20, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Acharya, S.; Shah, D.; Agarwal, B.; Prahaladan, V.; Bhandari, V. Chitin Analog AVR-25 Prevents Experimental Bronchopulmonary Dysplasia. J. Pediatr. Intensive Care 2020, 9, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Panda, S.K.; Agarwal, B.; Behera, S.; Ali, S.M.; Pulse, M.E.; Solomkin, J.S.; Opal, S.M.; Bhandari, V.; Acharya, S. Novel Chitohexaose Analog Protects Young and Aged mice from CLP Induced Polymicrobial Sepsis. Sci. Rep. 2019, 9, 2904. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Kumar, S.; Tupperwar, N.C.; Vaidya, T.; George, A.; Rath, S.; Bal, V.; Ravindran, B. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. PLoS Pathog. 2012, 8, e1002717. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.; Das, P.; Acharya, S.; Agarwal, B.; Christensen, D.J.; Robertson, S.M.; Bhandari, V. Small Immunomodulatory Molecules as Potential Therapeutics in Experimental Murine Models of Acute Lung Injury (ALI)/Acute Respiratory Distress Syndrome (ARDS). Int. J. Mol. Sci. 2021, 22, 2573. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Curstedt, T.; Agarwal, B.; Prahaladan, V.M.; Ramirez, J.; Bhandari, S.; Syed, M.A.; Salomone, F.; Casiraghi, C.; Pelizzi, N.; et al. Small Molecule Inhibitor Adjuvant Surfactant Therapy Attenuates Ventilator- and Hyperoxia-Induced Lung Injury in Preterm Rabbits. Front. Physiol. 2020, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Leary, S.; Das, P.; Ponnalagu, D.; Singh, H.; Bhandari, V. Genetic Strain and Sex Differences in a Hyperoxia-Induced Mouse Model of Varying Severity of Bronchopulmonary Dysplasia. Am. J. Pathol. 2019, 189, 999–1014. [Google Scholar] [CrossRef]
- Bhandari, V.; Choo-Wing, R.; Lee, C.G.; Yusuf, K.; Nedrelow, J.H.; Ambalavanan, N.; Malkus, H.; Homer, R.J.; Elias, J.A. Developmental regulation of NO-mediated VEGF-induced effects in the lung. Am. J. Respir. Cell. Mol. Biol. 2008, 39, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Shirasawa, M.; Fujiwara, N.; Hirabayashi, S.; Ohno, H.; Iida, J.; Makita, K.; Hata, Y. Receptor for advanced glycation end-products is a marker of type I lung alveolar cells. Genes Cells 2004, 9, 165–174. [Google Scholar] [CrossRef]
- Fehrenbach, H.; Kasper, M.; Tschernig, T.; Shearman, M.S.; Schuh, D.; Muller, M. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell. Mol. Biol. 1998, 44, 1147–1157. [Google Scholar]
- Kalina, M.; Mason, R.J.; Shannon, J.M. Surfactant protein C is expressed in alveolar type II cells but not in Clara cells of rat lung. Am. J. Respir. Cell. Mol. Biol. 1992, 6, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ma, J.; Woods, P.S.; Chesarino, N.M.; Liu, C.; Lee, L.J.; Nana-Sinkam, S.P.; Davis, I.C. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes. J. Control. Release 2015, 203, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Aghai, Z.H.; Faqiri, S.; Saslow, J.G.; Nakhla, T.; Farhath, S.; Kumar, A.; Eydelman, R.; Strande, L.; Stahl, G.; Leone, P.; et al. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: Attenuation by dexamethasone. J. Perinatol. 2008, 28, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, V.; Choo-Wing, R.; Lee, C.G.; Zhu, Z.; Nedrelow, J.H.; Chupp, G.L.; Zhang, X.; Matthay, M.A.; Ware, L.B.; Homer, R.J.; et al. Hyperoxia causes angiopoietin 2—Mediated acute lung injury and necrotic cell death. Nat. Med. 2006, 12, 1286–1293. [Google Scholar] [CrossRef] [Green Version]
- Gilfillan, M.; Das, P.; Shah, D.; Alam, M.A.; Bhandari, V. Inhibition of microRNA-451 is associated with increased expression of Macrophage Migration Inhibitory Factor and mitgation of the cardio-pulmonary phenotype in a murine model of Bronchopulmonary Dysplasia. Respir. Res. 2020, 21, 92. [Google Scholar] [CrossRef] [Green Version]
- Sureshbabu, A.; Syed, M.; Das, P.; Janer, C.; Pryhuber, G.; Rahman, A.; Andersson, S.; Homer, R.J.; Bhandari, V. Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice. Am. J. Respir. Cell. Mol. Biol. 2016, 55, 722–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, M.; Das, P.; Pawar, A.; Aghai, Z.H.; Kaskinen, A.; Zhuang, Z.W.; Ambalavanan, N.; Pryhuber, G.; Andersson, S.; Bhandari, V. Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs. Nat. Commun. 2017, 8, 1173. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, C.; Zhang, X.; Weng, X.; Sheng, A.; Zhu, Y.; Chen, S.; Zheng, X.; Lu, C. High Neutrophil-to-Lymphocyte Ratio Is an Early Predictor of Bronchopulmonary Dysplasia. Front. Pediatr. 2019, 7, 464. [Google Scholar] [CrossRef]
- De Paepe, M.E.; Hanley, L.C.; Lacourse, Z.; Pasquariello, T.; Mao, Q. Pulmonary dendritic cells in lungs of preterm infants: Neglected participants in bronchopulmonary dysplasia? Pediatr. Dev. Pathol. 2011, 14, 20–27. [Google Scholar] [CrossRef]
- Bhandari, V. Developmental differences in the role of interleukins in hyperoxic lung injury in animal models. Front. Biosci 2002, 7, d1624–d1633. [Google Scholar] [CrossRef]
- Bhandari, V.; Elias, J.A. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free. Radic. Biol. Med. 2006, 41, 4–18. [Google Scholar] [CrossRef]
- Speer, C.P. Pulmonary inflammation and bronchopulmonary dysplasia. J. Perinatol. 2006, 26, S57–S62. [Google Scholar] [CrossRef] [Green Version]
- Hansmann, G.; Sallmon, H.; Roehr, C.C.; Kourembanas, S.; Austin, E.D.; Koestenberger, M.; Austin, E.D. Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr. Res. 2021, 89, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Choo-Wing, R.; Sureshbabu, A.; Fan, J.; Leng, L.; Yu, S.; Jiang, D.; Noble, P.; Homer, R.J.; Bucala, R.; et al. A critical regulatory role for macrophage migration inhibitory factor in hyperoxia-induced injury in the developing murine lung. PLoS ONE 2013, 8, e60560. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.F.; Kuo, N.T.; Farver, C.F.; McMahon, J.T.; Chang, C.H.; Agani, F.H.; Haxhiu, M.A.; Martin, R.J. Effects of hyperoxia on nitric oxide synthase expression, nitric oxide activity, and lung injury in rat pups. Pediatr. Res. 1999, 45, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alejandre-Alcazar, M.A.; Kwapiszewska, G.; Reiss, I.; Amarie, O.V.; Marsh, L.M.; Sevilla-Perez, J.; Wygrecka, M.; Eul, B.; Kobrich, S.; Hesse, M.; et al. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 292, L537–L549. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Orriols, M.; Walther, F.J.; Laghmani, E.H.; Hoogeboom, A.M.; Hogen-Esch, A.C.B.; Hiemstra, P.S.; Folkerts, G.; Goumans, M.T.H.; Dijke, P.T.; et al. Bone Morphogenetic Protein 9 Protects against Neonatal Hyperoxia-Induced Impairment of Alveolarization and Pulmonary Inflammation. Front. Physiol. 2017, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.V.; Nardiello, C.; Solaligue, D.E.S.; Rodríguez-Castillo, J.A.; Rath, P.; Mayer, K.; Vadász, I.; Herold, S.; Ahlbrecht, K.; Seeger, W.; et al. Stereological analysis of individual lung lobes during normal and aberrant mouse lung alveolarisation. J. Anat. 2018, 232, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Maniscalco, W.M.; Watkins, R.H.; O’Reilly, M.A.; Shea, C.P. Increased epithelial cell proliferation in very premature baboons with chronic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 283, L991–L1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tryka, A.F.; Witschi, H.; Gosslee, D.G.; McArthur, A.H.; Clapp, N.K. Patterns of cell proliferation during recovery from oxygen injury. Species differences. Am. Rev. Respir. Dis. 1986, 133, 1055–1059. [Google Scholar]
- Yee, M.; Vitiello, P.F.; Roper, J.M.; Staversky, R.J.; Wright, T.W.; McGrath-Morrow, S.A.; Maniscalco, W.M.; Finkelstein, J.N.; O’Reilly, M.A. Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 291, L1101–L1111. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jiang, P.; Du, M.; Chen, K.; Chen, A.; Wang, Y.; Cao, F.; Deng, S.; Xu, Y. Hyperoxia-induced immature brain injury through the TLR4 signaling pathway in newborn mice. Brain Res. 2015, 1610, 51–60. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Liu, Y.; Shu, L.; Wang, N.; Wu, Y.; Sun, X.; Wang, L. Attenuation of hyperoxia-induced lung injury in neonatal rats by 1alpha,25-Dihydroxyvitamin D3. Exp. Lung Res. 2015, 41, 344–352. [Google Scholar] [CrossRef]
- Tam, J.S.Y.; Coller, J.K.; Hughes, P.A.; Prestidge, C.A.; Bowen, J.M. Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian J. Gastroenterol. 2021, 40, 5–21. [Google Scholar] [CrossRef]
- Curtale, G.; Mirolo, M.; Renzi, T.A.; Rossato, M.; Bazzoni, F.; Locati, M. Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc. Natl. Acad. Sci. USA 2013, 110, 11499–11504. [Google Scholar] [CrossRef] [Green Version]
- Abman, S.H. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease. Adv. Exp. Med. Biol. 2010, 661, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.; White, R.J.; Awad, H.A.; Bates, W.A.; McGrath-Morrow, S.A.; O’Reilly, M.A. Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. Am. J. Pathol. 2011, 178, 2601–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, S.; Das, P.; Agarwal, B. Novel Immunomodulating Small Molecules. U.S. Patent Application No. WO-2020010090-A1, 9 January 2020. [Google Scholar]
- National Institutes of Health. Image J, version 1.5; NIH: Bethesda, MD, USA, 2016.
- CellSens, version 1.18; Olympus: Tokyo, Japan, 2019.
- Cooney, T.P.; Thurlbeck, W.M. The radial alveolar count method of Emery and Mithal: A reappraisal 1—Postnatal lung growth. Thorax 1982, 37, 572–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adobe. Adobe Phostoshop, version 22.4.2; Adobe Inc.: San Jose, CA, USA, 2021.
- GraphPad. GraphPad Prism, version 8.4.3; GraphPad Software: San Diego, CA, USA, 2020.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.; Acharya, S.; Prahaladan, V.M.; Kumova, O.K.; Malaeb, S.; Behera, S.; Agarwal, B.; Christensen, D.J.; Carey, A.J.; Bhandari, V. Chitin-Derived AVR-48 Prevents Experimental Bronchopulmonary Dysplasia (BPD) and BPD-Associated Pulmonary Hypertension in Newborn Mice. Int. J. Mol. Sci. 2021, 22, 8547. https://doi.org/10.3390/ijms22168547
Das P, Acharya S, Prahaladan VM, Kumova OK, Malaeb S, Behera S, Agarwal B, Christensen DJ, Carey AJ, Bhandari V. Chitin-Derived AVR-48 Prevents Experimental Bronchopulmonary Dysplasia (BPD) and BPD-Associated Pulmonary Hypertension in Newborn Mice. International Journal of Molecular Sciences. 2021; 22(16):8547. https://doi.org/10.3390/ijms22168547
Chicago/Turabian StyleDas, Pragnya, Suchismita Acharya, Varsha M. Prahaladan, Ogan K. Kumova, Shadi Malaeb, Sumita Behera, Beamon Agarwal, Dale J. Christensen, Alison J. Carey, and Vineet Bhandari. 2021. "Chitin-Derived AVR-48 Prevents Experimental Bronchopulmonary Dysplasia (BPD) and BPD-Associated Pulmonary Hypertension in Newborn Mice" International Journal of Molecular Sciences 22, no. 16: 8547. https://doi.org/10.3390/ijms22168547
APA StyleDas, P., Acharya, S., Prahaladan, V. M., Kumova, O. K., Malaeb, S., Behera, S., Agarwal, B., Christensen, D. J., Carey, A. J., & Bhandari, V. (2021). Chitin-Derived AVR-48 Prevents Experimental Bronchopulmonary Dysplasia (BPD) and BPD-Associated Pulmonary Hypertension in Newborn Mice. International Journal of Molecular Sciences, 22(16), 8547. https://doi.org/10.3390/ijms22168547