Melatonin as a Potential Adjuvant Treatment for COVID-19 beyond Sleep Disorders
Abstract
:1. Introduction
2. COVID-19 and Potential Clinical Applications of Melatonin
3. Physiological Effects of Melatonin Inhibiting COVID-19 Progression
3.1. Renin-Angiotensin System
3.2. Cytokine Suppression
3.3. Free Oxygen Species Scavenging
3.4. Melatonin in Severe Inflammation
4. Melatonin—Hypothesized Use in COVID-19—Impacting the Burden of the Disease
4.1. Melatonin—Adjuvant in COVID-19 Clinical Management
4.2. Melatonin—Anti-SARS-CoV-2 Vaccine Adjuvant
4.3. Transformative Treatment with Melatonin in COVID-19
5. Protective Role of Melatonin in Lung Diseases
6. Discussion
Clinical Data of the Effects of Melatonin in COVID-19
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ibarra-Coronado, E.G.; Pantaleón-Martínez, A.M.; Velazquéz-Moctezuma, J.; Prospéro-García, O.; Méndez-Díaz, M.; Pérez-Tapia, M.; Pavón, L.; Morales-Montor, J. The Bidirectional Relationship between Sleep and Immunity against Infections. J. Immunol. Res. 2015, 2015, 678164. [Google Scholar] [CrossRef] [Green Version]
- Prather, A.A.; Janicki-Deverts, D.; Hall, M.H.; Cohen, S. Behaviorally Assessed Sleep and Susceptibility to the Common Cold. Sleep 2015, 38, 1353–1359. [Google Scholar] [CrossRef]
- Prather, A.A.; Hall, M.; Fury, J.M.; Ross, D.C.; Muldoon, M.F.; Cohen, S.; Marsland, A.L. Sleep and Antibody Response to Hepatitis B Vaccination. Sleep 2012, 35, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Prather, A.A.; Pressman, S.D.; Miller, G.E.; Cohen, S. Temporal Links between Self-Reported Sleep and Antibody Responses to the Influenza Vaccine. Int. J. Behav. Med. 2021, 28, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Vandekerckhove, M.; Wang, Y.-L. Emotion, Emotion Regulation and Sleep: An Intimate Relationship. AIMS Neurosci. 2018, 5, 1–17. [Google Scholar] [CrossRef]
- Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jönsson, B. The Economic Cost of Brain Disorders in Europe. Eur. J. Neurol. 2012, 19, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Baglioni, C.; Bassetti, C.; Bjorvatn, B.; Dolenc Groselj, L.; Ellis, J.G.; Espie, C.A.; Garcia-Borreguero, D.; Gjerstad, M.; Gonçalves, M.; et al. European Guideline for the Diagnosis and Treatment of Insomnia. J. Sleep Res. 2017, 26, 675–700. [Google Scholar] [CrossRef]
- Nowicki, Z.; Grabowski, K.; Cubała, W.J.; Nowicka-Sauer, K.; Zdrojewski, T.; Rutkowski, M.; Bandosz, P. Prevalence of Self-Reported Insomnia in General Population of Poland. Psychiatr. Pol. 2016, 50, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Lin, L.; Zhang, S.; Gong, J.; Liu, J.; Lu, J. Sleep Problems and Medical Isolation during the SARS-CoV-2 Outbreak. Sleep Med. 2020, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Beck, F.; Léger, D.; Fressard, L.; Peretti-Watel, P.; Verger, P. Covid-19 Health Crisis and Lockdown Associated with High Level of Sleep Complaints and Hypnotic Uptake at the Population Level. J. Sleep Res. 2021, 30, e13119. [Google Scholar] [CrossRef]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-Month Neurological and Psychiatric Outcomes in 236 379 Survivors of COVID-19: A Retrospective Cohort Study Using Electronic Health Records. Lancet. Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef]
- Altena, E.; Baglioni, C.; Espie, C.A.; Ellis, J.; Gavriloff, D.; Holzinger, B.; Schlarb, A.; Frase, L.; Jernelöv, S.; Riemann, D. Dealing with Sleep Problems during Home Confinement Due to the COVID-19 Outbreak: Practical Recommendations from a Task Force of the European CBT-I Academy. J. Sleep Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.R. Temporal Organization of Pineal Melatonin Signaling in Mammals. Mol. Cell. Endocrinol. 2020, 503, 110687. [Google Scholar] [CrossRef]
- Wichniak, A.; Jankowski, K.S.; Skalski, M.; Skwarło-Sońta, K.; Zawilska, J.B.; Żarowski, M.; Poradowska, E.; Jernajczyk, W. Treatment Guidelines for Circadian Rhythm Sleep-Wake Disorders of the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association. Part I. Physiology, Assessment and Therapeutic Methods. Psychiatr. Pol. 2017, 51, 793–814. [Google Scholar] [CrossRef] [PubMed]
- Auger, R.R.; Burgess, H.J.; Emens, J.S.; Deriy, L.V.; Thomas, S.M.; Sharkey, K.M. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-. J. Clin. Sleep Med. 2015, 11, 1199–1236. [Google Scholar] [CrossRef]
- Wichniak, A.; Jankowski, K.S.; Skalski, M.; Skwarło-Sońta, K.; Zawilska, J.B.; Żarowski, M.; Poradowska, E.; Jernajczyk, W. Treatment Guidelines for Circadian Rhythm Sleep—Wake Disorders of the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association. Part II. Diagnosis and Treatment. Psychiatr. Pol. 2017, 51, 815–832. [Google Scholar] [CrossRef]
- Wade, A.G.; Crawford, G.; Ford, I.; McConnachie, A.; Nir, T.; Laudon, M.; Zisapel, N. Prolonged Release Melatonin in the Treatment of Primary Insomnia: Evaluation of the Age Cut-off for Short- and Long-Term Response. Curr. Med. Res. Opin. 2011, 27, 87–98. [Google Scholar] [CrossRef]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Mason, R.J. Pathogenesis of COVID-19 from a Cell Biology Perspective. Eur. Respir. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- AlSamman, M.; Caggiula, A.; Ganguli, S.; Misak, M.; Pourmand, A. Non-Respiratory Presentations of COVID-19, a Clinical Review. Am. J. Emerg. Med. 2020, 38, 2444–2454. [Google Scholar] [CrossRef]
- Polak, S.B.; Van Gool, I.C.; Cohen, D.; von der Thüsen, J.H.; van Paassen, J. A Systematic Review of Pathological Findings in COVID-19: A Pathophysiological Timeline and Possible Mechanisms of Disease Progression. Mod. Pathol. 2020, 33, 2128–2138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, X.; Li, Y.; Chen, H.; Chen, T.; Su, N.; Huang, F.; Zhou, J.; Zhang, B.; Yan, F.; et al. Clinical Course and Outcomes of 344 Intensive Care Patients with COVID-19. Am. J. Respir. Crit. Care Med. 2020, 1430–1434. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Crichton, M.L.; Goeminne, P.C.; Cao, B.; Humbert, M.; Shteinberg, M.; Antoniou, K.M.; Ulrik, C.S.; Parks, H.; Wang, C.; et al. Management of Hospitalized Adults with Coronavirus Disease 2019 (COVID-19): A European Respiratory Society Living Guideline. Eur. Respir. J. 2021, 57. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qiu, H.; Huang, M.; Yang, Y. Lower Mortality of COVID-19 by Early Recognition and Intervention: Experience from Jiangsu Province. Ann. Intensive Care 2020, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleszczyński, K.; Slominski, A.T.; Steinbrink, K.; Reiter, R.J. Clinical Trials for Use of Melatonin to Fight against COVID-19 Are Urgently Needed. Nutrients 2020, 12, 2561. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Brown, G.M.; Pandi-Perumal, S.R. Can Melatonin Be a Potential “Silver Bullet” in Treating COVID-19 Patients? Diseases 2020, 8, 44. [Google Scholar] [CrossRef]
- Shneider, A.; Kudriavtsev, A.; Vakhrusheva, A. Can Melatonin Reduce the Severity of COVID-19 Pandemic? Int. Rev. Immunol. 2020, 39, 153–162. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Brown, G.M.; Pandi-Perumal, S.R. An Urgent Proposal for the Immediate Use of Melatonin as an Adjuvant to Anti- SARS-CoV-2 Vaccination. Melatonin Res. 2021, 4, 206–212. [Google Scholar] [CrossRef]
- Wang, W.; Gao, J. Effects of Melatonin on Protecting against Lung Injury (Review). Exp. Ther. Med. 2021, 21, 228. [Google Scholar] [CrossRef]
- Reiter, R.J.; Abreu-Gonzalez, P.; Marik, P.E.; Dominguez-Rodriguez, A. Therapeutic Algorithm for Use of Melatonin in Patients With COVID-19. Front. Med. 2020, 7, 226. [Google Scholar] [CrossRef]
- Lewandowska, K.; Małkiewicz, M.A.; Siemiński, M.; Cubała, W.J.; Winklewski, P.J.; Mędrzycka-Dąbrowska, W.A. The Role of Melatonin and Melatonin Receptor Agonist in the Prevention of Sleep Disturbances and Delirium in Intensive Care Unit—A Clinical Review. Sleep Med. 2020, 69, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Mihardja, M.; Roy, J.; Wong, K.Y.; Aquili, L.; Heng, B.C.; Chan, Y.S.; Fung, M.L.; Lim, L.W. Therapeutic Potential of Neurogenesis and Melatonin Regulation in Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 2020, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Behn, C.; De Gregorio, N. Melatonin Relations with Energy Metabolism as Possibly Involved in Fatal Mountain Road Traffic Accidents. Int. J. Mol. Sci. 2020, 21, 2184. [Google Scholar] [CrossRef] [Green Version]
- Otamas, A.; Grant, P.J.; Ajjan, R.A. Diabetes and Atherothrombosis: The Circadian Rhythm and Role of Melatonin in Vascular Protection. Diabetes Vasc. Dis. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, I.J.; Huang, C.C.; Liu, S.C.; Tang, C.H. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. Int. J. Mol. Sci. 2020, 21, 2877. [Google Scholar] [CrossRef]
- Pereira, Q.L.C.; de Castro Pernet Hara, C.; Fernandes, R.T.S.; Fagundes, D.L.G.; do Carmo França-Botelho, A.; Gomes, M.A.; França, E.L.; Honorio-França, A.C. Human Colostrum Action against Giardia Lamblia Infection Influenced by Hormones and Advanced Maternal Age. Parasitol. Res. 2018, 117, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.A.; Cipolla-Neto, J.; Amaral, F.G.; Michelini, L.C.; Bader, M.; Baltatu, O.C. The Angiotensin-Melatonin Axis. Int. J. Hypertens. 2013, 2013, 521783. [Google Scholar] [CrossRef]
- Lambert, D.W.; Clarke, N.E.; Hooper, N.M.; Turner, A.J. Calmodulin Interacts with Angiotensin-Converting Enzyme-2 (ACE2) and Inhibits Shedding of Its Ectodomain. FEBS Lett. 2008, 582, 385–390. [Google Scholar] [CrossRef]
- Benítez-King, G.; Ríos, A.; Martínez, A.; Antón-Tay, F. In vitro Inhibition of Ca2+/Calmodulin-Dependent Kinase II Activity by Melatonin. Biochim. Biophys. Acta 1996, 1290, 191–196. [Google Scholar] [CrossRef]
- Romero, M.P.; García-Pergañeda, A.; Guerrero, J.M.; Osuna, C. Membrane-Bound Calmodulin in Xenopus Laevis Oocytes as a Novel Binding Site for Melatonin. FASEB J. 1998, 12, 1401–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.R.; Kaminski, J.J.; Kurt-Jones, E.A.; Fitzgerald, K.A. Pattern Recognition Receptors and the Innate Immune Response to Viral Infection. Viruses 2011, 3, 920–940. [Google Scholar] [CrossRef] [Green Version]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Qin, W.; Lu, W.; Li, H.; Yuan, X.; Li, B.; Zhang, Q.; Xiu, R. Melatonin Inhibits IL1β-Induced MMP9 Expression and Activity in Human Umbilical Vein Endothelial Cells by Suppressing NF-ΚB Activation. J. Endocrinol. 2012, 214, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-D.; Lee, S.E.; Kim, T.-H.; Jin, Y.-H.; Park, Y.S.; Park, C.-S. Melatonin Suppresses Acrolein-Induced IL-8 Production in Human Pulmonary Fibroblasts. J. Pineal Res. 2012, 52, 356–364. [Google Scholar] [CrossRef]
- Hameed, E.N.; Hadi Al Tukmagi, H.F.; Allami, H.C.A. Melatonin Improves Erythropoietin Hyporesponsiveness via Suppression of Inflammation. Rev. Recent Clin. Trials 2019, 14, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Alamili, M.; Bendtzen, K.; Lykkesfeldt, J.; Rosenberg, J.; Gögenur, I. Melatonin Suppresses Markers of Inflammation and Oxidative Damage in a Human Daytime Endotoxemia Model. J. Crit. Care 2014, 29, 184.e9–184.e13. [Google Scholar] [CrossRef]
- da Cunha Pedrosa, A.M.; Weinlich, R.; Mognol, G.P.; Robbs, B.K.; de Biaso Viola, J.P.; Campa, A.; Amarante-Mendes, G.P. Melatonin Protects CD4+ T Cells from Activation-Induced Cell Death by Blocking NFAT-Mediated CD95 Ligand Upregulation. J. Immunol. 2010, 184, 3487–3494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, D.; Xiao, X.; Wang, J.; Liu, L.; Chen, W.; Fu, L.; Xie, F.; Huang, W.; Deng, W. Melatonin Suppresses Proinflammatory Mediators in Lipopolysaccharide-Stimulated CRL1999 Cells via Targeting MAPK, NF-ΚB, c/EBPβ, and P300 Signaling. J. Pineal Res. 2012, 53, 154–165. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and Inflammation-Story of a Double-Edged Blade. J. Pineal Res. 2018, 65, e12525. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Reiter, R.J.; Manchester, L.C.; Yan, M.; El-Sawi, M.; Sainz, R.M.; Mayo, J.C.; Kohen, R.; Allegra, M.; Hardeland, R. Chemical and Physical Properties and Potential Mechanisms: Melatonin as a Broad Spectrum Antioxidant and Free Radical Scavenger. Curr. Top. Med. Chem. 2002, 2, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rubio, M.; Figueira, J.C.; Acuña-Castroviejo, D.; Borobia, A.M.; Escames, G.; de la Oliva, P. A Phase II, Single-Center, Double-Blind, Randomized Placebo-Controlled Trial to Explore the Efficacy and Safety of Intravenous Melatonin in Patients with COVID-19 Admitted to the Intensive Care Unit (MelCOVID Study): A Structured Summary of a Study Proto. Trials 2020, 699. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Tan, D.-X.; Reiter, R.J. Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018, 23, 530. [Google Scholar] [CrossRef] [Green Version]
- Pérez-González, A.; Castañeda-Arriaga, R.; Álvarez-Idaboy, J.R.; Reiter, R.J.; Galano, A. Melatonin and Its Metabolites as Chemical Agents Capable of Directly Repairing Oxidized DNA. J. Pineal Res. 2019, 66, e12539. [Google Scholar] [CrossRef]
- Carrillo-Vico, A.; Lardone, P.J.; Naji, L.; Fernández-Santos, J.M.; Martín-Lacave, I.; Guerrero, J.M.; Calvo, J.R. Beneficial Pleiotropic Actions of Melatonin in an Experimental Model of Septic Shock in Mice: Regulation of pro-/Anti-Inflammatory Cytokine Network, Protection against Oxidative Damage and Anti-Apoptotic Effects. J. Pineal Res. 2005, 39, 400–408. [Google Scholar] [CrossRef]
- Yavuz, T.; Kaya, D.; Behçet, M.; Ozturk, E.; Yavuz, O. Effects of Melatonin on Candida Sepsis in an Experimental Rat Model. Adv. Ther. 2007, 24, 91–100. [Google Scholar] [CrossRef]
- Chen, J.; Xia, H.; Zhang, L.; Zhang, H.; Wang, D.; Tao, X. Protective Effects of Melatonin on Sepsis-Induced Liver Injury and Dysregulation of Gluconeogenesis in Rats through Activating SIRT1/STAT3 Pathway. Biomed. Pharmacother. 2019, 117, 109150. [Google Scholar] [CrossRef] [PubMed]
- Biancatelli, R.M.L.C.; Berrill, M.; Mohammed, Y.H.; Marik, P.E. Melatonin for the Treatment of Sepsis: The Scientific Rationale. J. Thorac. Dis. 2020, S54–S65. [Google Scholar] [CrossRef] [PubMed]
- Galley, H.F.; Lowes, D.A.; Allen, L.; Cameron, G.; Aucott, L.S.; Webster, N.R. Melatonin as a Potential Therapy for Sepsis: A Phase I Dose Escalation Study and an Ex Vivo Whole Blood Model under Conditions of Sepsis. J. Pineal Res. 2014, 56, 427–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, L.C.; Escames, G.; Ortiz, F.; Ros, E.; Acuña-Castroviejo, D. Melatonin Restores the Mitochondrial Production of ATP in Septic Mice. Neuro Endocrinol. Lett. 2006, 27, 623–630. [Google Scholar]
- Gitto, E.; Karbownik, M.; Reiter, R.J.; Tan, D.X.; Cuzzocrea, S.; Chiurazzi, P.; Cordaro, S.; Corona, G.; Trimarchi, G.; Barberi, I. Effects of Melatonin Treatment in Septic Newborns. Pediatr. Res. 2001, 50, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escames, G.; León, J.; Macías, M.; Khaldy, H.; Acuña-Castroviejo, D. Melatonin Counteracts Lipopolysaccharide-Induced Expression and Activity of Mitochondrial Nitric Oxide Synthase in Rats. FASEB J. 2003, 17, 932–934. [Google Scholar] [CrossRef]
- Lowes, D.A.; Almawash, A.M.; Webster, N.R.; Reid, V.L.; Galley, H.F. Melatonin and Structurally Similar Compounds Have Differing Effects on Inflammation and Mitochondrial Function in Endothelial Cells under Conditions Mimicking Sepsis. Br. J. Anaesth. 2011, 107, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, G.; Reiter, R.J. Melatonin: Roles in Influenza, Covid-19, and Other Viral Infections. Rev. Med. Virol. 2020, 30, e2109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, X.; Ni, L.; Di, X.; Ma, B.; Niu, S.; Liu, C.; Reiter, R.J. COVID-19: Melatonin as a Potential Adjuvant Treatment. Life Sci. 2020. [Google Scholar] [CrossRef]
- Maestroni, G. Exogenous Melatonin as Potential Adjuvant in Anti-SarsCov2 Vaccines. J. Neuroimmune Pharmacol. 2020, 15, 572–573. [Google Scholar] [CrossRef]
- Cardinal-Fernández, P.; Lorente, J.A.; Ballén-Barragán, A.; Matute-Bello, G. Acute Respiratory Distress Syndrome and Diffuse Alveolar Damage. New Insights on a Complex Relationship. Ann. Am. Thorac. Soc. 2017, 14, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Ozdinc, S.; Oz, G.; Ozdemir, C.; Kilic, I.; Karakaya, Z.; Bal, A.; Koken, T.; Solak, O. Melatonin: Is It an Effective Antioxidant for Pulmonary Contusion? J. Surg. Res. 2016, 204, 445–451. [Google Scholar] [CrossRef]
- Taslidere, E.; Esrefoglu, M.; Elbe, H.; Cetin, A.; Ates, B. Protective Effects of Melatonin and Quercetin on Experimental Lung Injury Induced by Carbon Tetrachloride in Rats. Exp. Lung Res. 2014, 40, 59–65. [Google Scholar] [CrossRef]
- Chiu, M.-H.; Su, C.-L.; Chen, C.-F.; Chen, K.-H.; Wang, D.; Wang, J.-J. Protective Effect of Melatonin on Liver Ischemia-Reperfusion Induced Pulmonary Microvascular Injury in Rats. Transplant. Proc. 2012, 44, 962–965. [Google Scholar] [CrossRef]
- Esteban, M.Á.; Cuesta, A.; Chaves-Pozo, E.; Meseguer, J. Influence of Melatonin on the Immune System of Fish: A Review. Int. J. Mol. Sci. 2013, 14, 7979–7999. [Google Scholar] [CrossRef]
- Ceraulo, L.; Ferrugia, M.; Tesoriere, L.; Segreto, S.; Livrea, M.A.; Turco Liveri, V. Interactions of Melatonin with Membrane Models: Portioning of Melatonin in AOT and Lecithin Reversed Micelles. J. Pineal Res. 1999, 26, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Bouhafs, R.K.L.; Jarstrand, C. Effects of Antioxidants on Surfactant Peroxidation by Stimulated Human Polymorphonuclear Leukocytes. Free Radic. Res. 2002, 36, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Poissy, J.; Goutay, J.; Caplan, M.; Parmentier, E.; Duburcq, T.; Lassalle, F.; Jeanpierre, E.; Rauch, A.; Labreuche, J.; Susen, S. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation 2020, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, P.H.; Spillmann, M.; Bärtschi, C.; Ehlert, U.; von Känel, R. Oral Melatonin Reduces Blood Coagulation Activity: A Placebo-Controlled Study in Healthy Young Men. J. Pineal Res. 2008, 44, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Tobin, M.J.; Jubran, A.; Laghi, F. Noninvasive Strategies in COVID-19: Epistemology, Randomised Trials, Guidelines, Physiology. Eur. Respir. J. 2021. [Google Scholar] [CrossRef]
- Marsico, S.; Bellido, L.A.D.C.; Zuccarino, F. Spontaneous Pneumothorax in COVID-19 Patients. Arch. Bronconeumol. 2021, 57 (Suppl. 1), 66. [Google Scholar] [CrossRef]
- Pedreira, P.R.; García-Prieto, E.; Parra, D.; Astudillo, A.; Diaz, E.; Taboada, F.; Albaiceta, G.M. Effects of Melatonin in an Experimental Model of Ventilator-Induced Lung Injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295, L820-7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavem, K.; Ghanima, W.; Olsen, M.K.; Gilboe, H.M.; Einvik, G. Persistent Symptoms 1.5-6 Months after COVID-19 in Non-Hospitalized Subjects: A Population-Based Cohort Study. Thorax 2020, 76, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Knight, M.; A’Court, C.; Buxton, M.; Husain, L. Management of Post-Acute Covid-19 in Primary Care. BMJ 2020, 370, m3026. [Google Scholar] [CrossRef]
- George, P.M.; Barratt, S.L.; Condliffe, R.; Desai, S.R.; Devaraj, A.; Forrest, I.; Gibbons, M.A.; Hart, N.; Jenkins, R.G.; McAuley, D.F.; et al. Respiratory Follow-up of Patients with COVID-19 Pneumonia. Thorax 2020, 75, 1009–1016. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, J.; Su, W.; Shan, H.; Zhang, B.; Wang, Y.; Shabanova, A.; Shan, H.; Liang, H. Melatonin Protects against Lung Fibrosis by Regulating the Hippo/YAP Pathway. Int. J. Mol. Sci. 2018, 19, 1118. [Google Scholar] [CrossRef] [Green Version]
- Edgar, B.A. From Cell Structure to Transcription: Hippo Forges a New Path. Cell 2006, 124, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Wei, X.; Li, W.; Udan, R.S.; Yang, Q.; Kim, J.; Xie, J.; Ikenoue, T.; Yu, J.; Li, L.; et al. Inactivation of YAP Oncoprotein by the Hippo Pathway Is Involved in Cell Contact Inhibition and Tissue Growth Control. Genes Dev. 2007, 21, 2747–2761. [Google Scholar] [CrossRef] [Green Version]
- Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Mitigation of Radiation-Induced Lung Pneumonitis and Fibrosis Using Metformin and Melatonin: A Histopathological Study. Medicina 2019, 55, 417. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Zhang, W.; Qiao, J.; Peng, Z.; Chai, X. Melatonin Protects against COPD by Attenuating Apoptosis and Endoplasmic Reticulum Stress via Upregulating SIRT1 Expression in Rats. Can. J. Physiol. Pharmacol. 2019, 97, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhang, W.; Qiao, J.; He, B. Melatonin Attenuates Airway Inflammation via SIRT1 Dependent Inhibition of NLRP3 Inflammasome and IL-1β in Rats with COPD. Int. Immunopharmacol. 2018, 62, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.-R.; Park, J.-W.; Lee, I.-C.; Ko, J.-W.; Park, S.-H.; Kim, J.-S.; Kim, J.-C.; Ahn, K.-S.; Shin, I.-S. Melatonin Suppresses Fibrotic Responses Induced by Cigarette Smoke via Downregulation of TGF-Β1. Oncotarget 2017, 8, 95692–95703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinzadeh, A.; Javad-Moosavi, S.A.; Reiter, R.J.; Hemati, K.; Ghaznavi, H.; Mehrzadi, S. Idiopathic Pulmonary Fibrosis (IPF) Signaling Pathways and Protective Roles of Melatonin. Life Sci. 2018, 201, 17–29. [Google Scholar] [CrossRef]
- Yu, Q.; Yu, X.; Zhong, X.; Ma, Y.; Wu, Y.; Bian, T.; Huang, M.; Zeng, X. Melatonin Modulates Airway Smooth Muscle Cell Phenotype by Targeting the STAT3/Akt/GSK-3β Pathway in Experimental Asthma. Cell Tissue Res. 2020, 380, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Shin, I.-S.; Park, J.-W.; Shin, N.-R.; Jeon, C.-M.; Kwon, O.-K.; Kim, J.-S.; Kim, J.-C.; Oh, S.-R.; Ahn, K.-S. Melatonin Reduces Airway Inflammation in Ovalbumin-Induced Asthma. Immunobiology 2014, 219, 901–908. [Google Scholar] [CrossRef]
- Artigas, L.; Coma, M.; Matos-Filipe, P.; Aguirre-Plans, J.; Farrés, J.; Valls, R.; Fernandez-Fuentes, N.; de la Haba-Rodriguez, J.; Olvera, A.; Barbera, J.; et al. In-Silico Drug Repurposing Study Predicts the Combination of Pirfenidone and Melatonin as a Promising Candidate Therapy to Reduce SARS-CoV-2 Infection Progression and Respiratory Distress Caused by Cytokine Storm. PLoS ONE 2020, 15, e0240149. [Google Scholar] [CrossRef] [PubMed]
- Ramlall, V.; Zucker, J.; Tatonetti, N. Melatonin Is Significantly Associated with Survival of Intubated COVID-19 Patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Castillo, R.R.; Quizon, G.R.A.; Juco, M.J.M.; Roman, A.D.E.; De Leon, D.G.; Punzalan, F.E.R.; Guingon, R.B.L.; Morales, D.D.; Tan, D.-X.; Reiter, R.J. Melatonin as Adjuvant Treatment for Coronavirus Disease 2019 Pneumonia Patients Requiring Hospitalization (MAC-19 PRO): A Case Series. Melatonin Res. 2020, 3, 297–310. [Google Scholar] [CrossRef]
- Ziaei, A.; Davoodian, P.; Dadvand, H.; Safa, O.; Hassanipour, S.; Omidi, M.; Masjedi, M.; Mahmoudikia, F.; Rafiee, B.; Fathalipour, M. Evaluation of the Efficacy and Safety of Melatonin in Moderately Ill Patients with COVID-19: A Structured Summary of a Study Protocol for a Randomized Controlled Trial. Trials 2020, 882. [Google Scholar] [CrossRef] [PubMed]
COVID-19 Phase | Effect of Melatonin Treatment | Recommended Dose |
---|---|---|
Prophylaxis | Circadian sleep–wake rhythm disorder treatment | 0.5–5 mg |
Insomnia treatment Adjuvant to anti-SARS-CoV-2 vaccines | 2–5 mg 1 0.5–2 mg 2 | |
Early infection phase/mild clinical symptoms | Improvement of sleep quality Inhibition of viral invasion Free oxygen species scavenging Cytokine suppression | 2–12 mg 3 |
Pulmonary phase/severe clinical symptoms | Improvement of sleep quality Anti-inflammatory effects Reduction of “cytokine-storm” Protection of lungs and tissues from oxidative injury Risk reduction of ventilator-induced lung injury | 2–12 mg 3,4 |
Post-infection period | Improvement of sleep quality Stabilization of the disrupted circadian sleep rhythm Antioxidant properties Reduction of post-covid pulmonary fibrosis | 0.5–5 mg |
In Vitro Studies | Animal Models | Human Studies |
---|---|---|
Inhibition of calmodulin [40] | Regulation of anti/proinflammatory cytokines balance [56] | Inhibition of IL-6, IL-1, TNF-alpha [47] |
Inhibition of metalloproteinases [45] | Restoration of ATP production [61] | Reduction of the concentration of IL-1 beta [48] |
Reduction of the production of IL-8 [46] | Organ protection [58] | Reduction of lipid peroxidation [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wichniak, A.; Kania, A.; Siemiński, M.; Cubała, W.J. Melatonin as a Potential Adjuvant Treatment for COVID-19 beyond Sleep Disorders. Int. J. Mol. Sci. 2021, 22, 8623. https://doi.org/10.3390/ijms22168623
Wichniak A, Kania A, Siemiński M, Cubała WJ. Melatonin as a Potential Adjuvant Treatment for COVID-19 beyond Sleep Disorders. International Journal of Molecular Sciences. 2021; 22(16):8623. https://doi.org/10.3390/ijms22168623
Chicago/Turabian StyleWichniak, Adam, Aleksander Kania, Mariusz Siemiński, and Wiesław Jerzy Cubała. 2021. "Melatonin as a Potential Adjuvant Treatment for COVID-19 beyond Sleep Disorders" International Journal of Molecular Sciences 22, no. 16: 8623. https://doi.org/10.3390/ijms22168623
APA StyleWichniak, A., Kania, A., Siemiński, M., & Cubała, W. J. (2021). Melatonin as a Potential Adjuvant Treatment for COVID-19 beyond Sleep Disorders. International Journal of Molecular Sciences, 22(16), 8623. https://doi.org/10.3390/ijms22168623