Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs)
Abstract
:1. Introduction
1.1. Ca2+-Sensitive Regulation of RetGC Coordinates Visual Recovery
1.2. Ca2+/Mg2+ Binding to GCAPs Control Activation of RetGC
1.3. Mutations in GCAP1 Cause Retinal Disease
2. Results and Discussion
2.1. Structural Architecture of GCAPs
2.1.1. NMR Structure of GCAP2
2.1.2. Crystal Structure of GCAP1
2.1.3. Ca2+-Induced Conformational Changes in GCAP1
2.2. Dimeric Structures of GCAP1 and GCAP2
2.3. GCAP5 Is a Fe2+ Sensor in Zebrafish Photoreceptors
2.4. Druggable Hot Spot on the Structure of GCAP1
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stryer, L. Visual excitation and recovery. J. Biol. Chem. 1991, 266, 10711–10714. [Google Scholar] [CrossRef]
- Baylor, D. How photons start vision. Proc. Natl. Acad. Sci. USA 1996, 93, 560–565. [Google Scholar] [CrossRef] [Green Version]
- Pugh, E.N.; Duda, T.; Sitaramayya, A.; Sharma, R.K.; Pugh, J.E.N. Photoreceptor Guanylate Cyclases: A Review. Biosci. Rep. 1997, 17, 429–473. [Google Scholar] [CrossRef]
- Pugh, E.; Nikonov, S.; Lamb, T. Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr. Opin. Neurobiol. 1999, 9, 410–418. [Google Scholar] [CrossRef]
- Burns, E.M.; A Baylor, D. Activation, Deactivation, and Adaptation in Vertebrate Photoreceptor Cells. Annu. Rev. Neurosci. 2001, 24, 779–805. [Google Scholar] [CrossRef] [Green Version]
- Koch, K.-W.; Stryer, L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nat. Cell Biol. 1988, 334, 64–66. [Google Scholar] [CrossRef]
- Koutalos, Y.; Yau, K.W. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends Neurosci. 1996, 19, 73–81. [Google Scholar] [CrossRef]
- Dizhoor, A. The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 1994, 12, 1345–1352. [Google Scholar] [CrossRef]
- Lowe, D.G.; Dizhoor, A.; Liu, K.; Gu, Q.; Spencer, M.; Laura, R.; Lu, L.; Hurley, J.B. Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc. Natl. Acad. Sci. USA 1995, 92, 5535–5539. [Google Scholar] [CrossRef] [Green Version]
- Duda, T.; Fik-Rymarkiewicz, E.; Venkataraman, V.; Krishnan, R.; Koch, K.-W.; Sharma, R.K. The Calcium-Sensor Guanylate Cyclase Activating Protein Type 2 Specific Site in Rod Outer Segment Membrane Guanylate Cyclase Type 1. Biochemistry 2005, 44, 7336–7345. [Google Scholar] [CrossRef] [PubMed]
- Laura, R.P.; Dizhoor, A.M.; Hurley, J.B. The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. J. Biol. Chem. 1996, 271, 11646–11651. [Google Scholar] [CrossRef] [Green Version]
- Dizhoor, A.M.; Olshevskaya, E.V.; Henzel, W.; Wong, S.C.; Stults, J.T.; Ankoudinova, I.; Hurley, J.B. Cloning, Sequencing, and Expression of a 24-kDa Ca2+-binding Protein Activating Photoreceptor Guanylyl Cyclase. J. Biol. Chem. 1995, 270, 25200–25206. [Google Scholar] [CrossRef] [Green Version]
- Gorczyca, W.; Polans, A.S.; Surgucheva, I.G.; Subbaraya, I.; Baehr, W.; Palczewski, K. Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J. Biol. Chem. 1995, 270, 22029–22036. [Google Scholar] [CrossRef] [Green Version]
- Palczewski, K.; Subbaraya, I.; Gorczyca, W.A.; Helekar, B.S.; Ruiz, C.C.; Ohguro, H.; Huang, J.; Zhao, X.; Crabb, J.W.; Johnson, R.S.; et al. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 1994, 13, 395–404. [Google Scholar] [CrossRef]
- Scholten, A.; Koch, K.-W. Differential Calcium Signaling by Cone Specific Guanylate Cyclase-Activating Proteins from the Zebrafish Retina. PLoS ONE 2011, 6, e23117. [Google Scholar] [CrossRef] [Green Version]
- Rätscho, N.; Scholten, A.; Koch, K.-W. Expression profiles of three novel sensory guanylate cyclases and guanylate cyclase-activating proteins in the zebrafish retina. Biochim. Biophys. Acta (BBA) Bioenerg. 2009, 1793, 1110–1114. [Google Scholar] [CrossRef] [Green Version]
- Gray-Keller, M.P.; Detwiler, P. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 1994, 13, 849–861. [Google Scholar] [CrossRef]
- Woodruff, M.L.; Sampath, A.P.; Matthews, H.R.; Krasnoperova, N.V.; Lem, J.; Fain, G.L. Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J. Physiol. 2002, 542, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Dizhoor, A.; Hurley, J.B. Inactivation of EF-hands Makes GCAP-2 (p24) a Constitutive Activator of Photoreceptor Guanylyl Cyclase by Preventing a Ca2+-induced “Activator-to-Inhibitor” Transition. J. Biol. Chem. 1996, 271, 19346–19350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez, A.; Burns, M.E.; Sokal, I.; Dizhoor, A.; Baehr, W.; Palczewski, K.; Baylor, D.A.; Chen, J. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc. Natl. Acad. Sci. USA 2001, 98, 9948–9953. [Google Scholar] [CrossRef] [Green Version]
- Dizhoor, A.M.; Boikov, S.G.; Olshevskaya, E.V. Constitutive Activation of Photoreceptor Guanylate Cyclase by Y99C Mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J. Biol. Chem. 1998, 273, 17311–17314. [Google Scholar] [CrossRef] [Green Version]
- Hodgkin, A.L.; Nunn, B.J. Control of light-sensitive current in salamander rods. J. Physiol. 1988, 403, 439–471. [Google Scholar] [CrossRef]
- Sakurai, K.; Chen, J.; Kefalov, V.J. Role of Guanylyl Cyclase Modulation in Mouse Cone Phototransduction. J. Neurosci. 2011, 31, 7991–8000. [Google Scholar] [CrossRef]
- Dizhoor, A.M.; Olshevskaya, E.V.; Peshenko, I.V. Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): Role in regulation of photoreceptor guanylyl cyclase. Mol. Cell. Biochem. 2009, 334, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Peshenko, I.V.; Dizhoor, A.M. Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: Implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J. Biol. Chem. 2004, 279, 16903–16906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peshenko, I.V.; Dizhoor, A.M. Ca2+ and Mg2+ binding properties of GCAP-1. Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase. J. Biol. Chem. 2006, 281, 23830–23841. [Google Scholar] [CrossRef] [Green Version]
- Peshenko, I.V.; Dizhoor, A.M. Activation and Inhibition of Photoreceptor Guanylyl Cyclase by Guanylyl Cyclase Activating Protein 1 (GCAP-1): THE FUNCTIONAL ROLE OF Mg2+/Ca2+ EXCHANGE IN EF-HAND DOMAINS. J. Biol. Chem. 2007, 282, 21645–21652. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Peshenko, I.; Dizhoor, A.; Ames, J.B. Effects of Ca2+, Mg2+, and Myristoylation on Guanylyl Cyclase Activating Protein 1 Structure and Stability. Biochemistry 2009, 48, 850–862. [Google Scholar] [CrossRef] [Green Version]
- Dell’Orco, D.; Behnen, P.; Linse, S.; Koch, K.-W. Calcium binding, structural stability and guanylate cyclase activation in GCAP1 variants associated with human cone dystrophy. Cell. Mol. Life Sci. 2010, 67, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Marino, V.; Sulmann, S.; Koch, K.-W.; Dell’Orco, D. Structural effects of Mg2+ on the regulatory states of three neuronal calcium sensors operating in vertebrate phototransduction. Biochim. Biophys. Acta (BBA) Bioenerg. 2015, 1853, 2055–2065. [Google Scholar] [CrossRef] [Green Version]
- Ames, J.B.; Dizhoor, A.; Ikura, M.; Palczewski, K.; Stryer, L. Three-dimensional Structure of Guanylyl Cyclase Activating Protein-2, a Calcium-sensitive Modulator of Photoreceptor Guanylyl Cyclases. J. Biol. Chem. 1999, 274, 19329–19337. [Google Scholar] [CrossRef] [Green Version]
- Stephen, R.; Bereta, G.; Golczak, M.; Palczewski, K.; Sousa, M.C. Stabilizing Function for Myristoyl Group Revealed by the Crystal Structure of a Neuronal Calcium Sensor, Guanylate Cyclase-Activating Protein 1. Structure 2007, 15, 1392–1402. [Google Scholar] [CrossRef] [Green Version]
- Sampath, A.; Matthews, H.; Cornwall, M.; Fain, G. Bleached Pigment Produces a Maintained Decrease in Outer Segment Ca2+ in Salamander Rods. J. Gen. Physiol. 1998, 111, 53–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Nakatani, K.; Koutalos, Y. Free Magnesium Concentration in Salamander Photoreceptor Outer Segments. J. Physiol. 2003, 553, 125–135. [Google Scholar] [CrossRef]
- Jiang, L.; Baehr, W. GCAP1 Mutations Associated with Autosomal Dominant Cone Dystrophy. Adv. Exp. Med. Biol. 2009, 664, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Behnen, P.; Dell’Orco, D.; Koch, K.-W. Involvement of the calcium sensor GCAP1 in hereditary cone dystrophies. Biol. Chem. 2010, 391, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.; Downes, S.M.; Bessant, D.A.; Taylor, R.; Holder, G.E.; Warren, M.; Bird, A.C.; Bhattacharya, S.S. A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum. Mol. Genet. 1998, 7, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Nong, E.; Lee, W.; Merriam, J.E.; Allikmets, R.; Tsang, S.H. Disease progression in autosomal dominant cone-rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene. Doc. Ophthalmol. 2013, 128, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, V.; Cortivo, G.D.; Oppici, E.; Maltese, P.E.; D’Esposito, F.; Manara, E.; Ziccardi, L.; Falsini, B.; Magli, A.; Bertelli, M.; et al. A novel p. (Glu111Val) missense mutation in GUCA1A associated with cone-rod dystrophy leads to impaired calcium sensing and perturbed second messenger homeostasis in photoreceptors. Hum. Mol. Genet. 2018, 27, 4204–4217. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, S.E.; Li, Y.; Deery, E.C.; Newbold, R.J.; Garibaldi, D.; Bateman, J.B.; Zhang, H.; Lin, W.; Zack, D.; Bhattacharya, S.S.; et al. Identification and Functional Consequences of a New Mutation (E155G) in the Gene for GCAP1 That Causes Autosomal Dominant Cone Dystrophy. Am. J. Hum. Genet. 2001, 69, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Wilkie, S.E.; Newbold, R.J.; Deery, E.; Walker, C.; Stinton, I.; Ramamurthy, V.; Hurley, J.B.; Bhattacharya, S.S.; Warren, M.J.; Hunt, D.M. Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Hum. Mol. Genet. 2000, 9, 3065–3073. [Google Scholar] [CrossRef] [PubMed]
- Olshevskaya, E.V.; Calvert, P.D.; Woodruff, M.L.; Peshenko, I.V.; Savchenko, A.B.; Makino, C.L.; Ho, Y.-S.; Fain, G.L.; Dizhoor, A.M. The Y99C Mutation in Guanylyl Cyclase-Activating Protein 1 Increases Intracellular Ca2+ and Causes Photoreceptor Degeneration in Transgenic Mice. J. Neurosci. 2004, 24, 6078–6085. [Google Scholar] [CrossRef] [PubMed]
- Sokal, I.; Li, N.; Surgucheva, I.; Warren, M.; Payne, A.; Bhattacharya, S.S.; Baehr, W.; Palczewski, K. GCAP1(Y99C) Mutant Is Constitutively Active in Autosomal Dominant Cone Dystrophy. Mol. Cell 1998, 2, 129–133. [Google Scholar] [CrossRef]
- Olshevskaya, E.V.; Peshenko, I.V.; Savchenko, A.B.; Dizhoor, A.M. Retinal Guanylyl Cyclase Isozyme 1 Is the Preferential In Vivo Target for Constitutively Active GCAP1 Mutants Causing Congenital Degeneration of Photoreceptors. J. Neurosci. 2012, 32, 7208–7217. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.L.; Olshevskaya, E.V.; Savchenko, A.B.; Peshenko, I.V.; Barrett, R.; Bush, R.A.; Sieving, P.A.; Fain, G.L.; Dizhoor, A.M. Constitutive Excitation by Gly90Asp Rhodopsin Rescues Rods from Degeneration Caused by Elevated Production of cGMP in the Dark. J. Neurosci. 2007, 27, 8805–8815. [Google Scholar] [CrossRef]
- Peshenko, I.V.; Olshevskaya, E.V.; Dizhoor, A.M. Binding of guanylyl cyclase activating protein 1 (GCAP1) to retinal guanylyl cyclase (RetGC1): The role of individual EF-hands. J. Biol. Chem. 2008, 283, 21747–21757. [Google Scholar] [CrossRef] [Green Version]
- Ermilov, A.N.; Olshevskaya, E.V.; Dizhoor, A. Instead of Binding Calcium, One of the EF-hand Structures in Guanylyl Cyclase Activating Protein-2 Is Required for Targeting Photoreceptor Guanylyl Cyclase. J. Biol. Chem. 2001, 276, 48143–48148. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Peshenko, I.V.; Olshevskaya, E.V.; Dizhoor, A.; Ames, J.B. Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State. J. Biol. Chem. 2016, 291, 4429–4441. [Google Scholar] [CrossRef] [Green Version]
- Ames, J.B.; Ishima, R.; Tanaka, T.; Gordon, J.I.; Stryer, L.; Ikura, M. Molecular mechanics of calcium–myristoyl switches. Nat. Cell Biol. 1997, 389, 198–202. [Google Scholar] [CrossRef]
- Flaherty, K.M.; Zozulya, S.; Stryer, L.; McKay, D.B. Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 1993, 75, 709–716. [Google Scholar] [CrossRef]
- Ames, J.B.; Porumb, T.; Tanaka, T.; Ikura, M.; Stryer, L. Amino-terminal Myristoylation Induces Cooperative Calcium Binding to Recoverin. J. Biol. Chem. 1995, 270, 4526–4533. [Google Scholar] [CrossRef] [Green Version]
- Theisgen, S.; Scheidt, H.A.; Magalhães, A.; Bonagamba, T.J.; Huster, D. A solid-state NMR study of the structure and dynamics of the myristoylated N-terminus of the guanylate cyclase-activating protein-2. Biochim. Biophys. Acta (BBA) Biomembr. 2010, 1798, 266–274. [Google Scholar] [CrossRef]
- Vogel, A.; Schröder, T.; Lange, C.; Huster, D. Characterization of the myristoyl lipid modification of membrane-bound GCAP-2 by 2H solid-state NMR spectroscopy. Biochim. Biophys. Acta (BBA) Biomembr. 2007, 1768, 3171–3181. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-Y.; Koch, K.-W. Calcium- and Myristoyl-Dependent Properties of Guanylate Cyclase-Activating Protein-1 and Protein-2. Biochemistry 2002, 41, 13021–13028. [Google Scholar] [CrossRef] [PubMed]
- Margetić, A.; Nannemann, D.; Meiler, J.; Huster, D.; Theisgen, S. Guanylate Cyclase-Activating Protein-2 Undergoes Structural Changes upon Binding to Detergent Micelles and Bicelles. Biochim. Biophys. Acta (BBA) Biomembr. 2014, 1838, 2767–2777. [Google Scholar] [CrossRef] [Green Version]
- Olshevskaya, E.V.; Hughes, R.E.; Hurley, J.B.; Dizhoor, A. Calcium Binding, but Not a Calcium-Myristoyl Switch, Controls the Ability of Guanylyl Cyclase-activating Protein GCAP-2 to Regulate Photoreceptor Guanylyl Cyclase. J. Biol. Chem. 1997, 272, 14327–14333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikura, M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 1996, 21, 14–17. [Google Scholar] [CrossRef]
- Peshenko, I.V. Calcium-myristoyl Tug. J. Biol. Chem. 2012, 287, 13972–13984. [Google Scholar] [CrossRef] [Green Version]
- Marino, V.; Dell’Orco, D. Allosteric communication pathways routed by Ca2+/Mg2+ exchange in GCAP1 selectively switch target regulation modes. Sci. Rep. 2016, 6, 34277. [Google Scholar] [CrossRef]
- Lim, S.; Peshenko, I.V.; Dizhoor, A.; Ames, J.B. Structural Insights for Activation of Retinal Guanylate Cyclase by GCAP1. PLoS ONE 2013, 8, e81822. [Google Scholar] [CrossRef] [Green Version]
- Bonì, F.; Marino, V.; Bidoia, C.; Mastrangelo, E.; Barbiroli, A.; Dell’Orco, D.; Milani, M. Modulation of Guanylate Cyclase Activating Protein 1 (GCAP1) Dimeric Assembly by Ca2+ or Mg2+: Hints to Understand Protein Activity. Biomolecules 2020, 10, 1408. [Google Scholar] [CrossRef]
- Lim, S.; Scholten, A.; Manchala, G.; Cudia, D.; Zlomke-Sell, S.-K.; Koch, K.-W.; Ames, J.B. Structural Characterization of Ferrous Ion Binding to Retinal Guanylate Cyclase Activator Protein 5 from Zebrafish Photoreceptors. Biochemistry 2017, 56, 6652–6661. [Google Scholar] [CrossRef] [PubMed]
- Olshevskaya, E.V.; Ermilov, A.N.; Dizhoor, A. Dimerization of Guanylyl Cyclase-activating Protein and a Mechanism of Photoreceptor Guanylyl Cyclase Activation. J. Biol. Chem. 1999, 274, 25583–25587. [Google Scholar] [CrossRef] [Green Version]
- Peshenko, I.V.; Olshevskaya, E.V.; Yao, S.; Ezzeldin, H.H.; Pittler, S.; Dizhoor, A.M. Activation of Retinal Guanylyl Cyclase RetGC1 by GCAP1: Stoichiometry of Binding and Effect of New LCA-Related Mutations. Biochemistry 2010, 49, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortivo, G.D.; Marino, V.; Bonì, F.; Milani, M.; Dell’Orco, D. Missense mutations affecting Ca2+-coordination in GCAP1 lead to cone-rod dystrophies by altering protein structural and functional properties. Biochim. Biophys. Acta (BBA) Bioenerg. 2020, 1867, 118794. [Google Scholar] [CrossRef]
- Monod, J.; Wyman, J.; Changeux, J.-P. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 1965, 12, 88–118. [Google Scholar] [CrossRef]
- Lim, S.; Roseman, G.; Peshenko, I.; Manchala, G.; Cudia, D.; Dizhoor, A.; Millhauser, G.; Ames, J.B. Retinal guanylyl cyclase activating protein 1 forms a functional dimer. PLoS ONE 2018, 13, e0193947. [Google Scholar] [CrossRef] [Green Version]
- Pettelkau, J.; Schröder, T.; Ihling, C.H.; Olausson, B.E.S.; Kölbel, K.; Lange, C.; Sinz, A. Structural Insights into Retinal Guanylylcyclase–GCAP-2 Interaction Determined by Cross-Linking and Mass Spectrometry. Biochemistry 2012, 51, 4932–4949. [Google Scholar] [CrossRef]
- Ames, J.B. Dimerization of Neuronal Calcium Sensor Proteins. Front. Mol. Neurosci. 2018, 11, 397. [Google Scholar] [CrossRef]
- Abbas, S.; Marino, V.; Weisschuh, N.; Kieninger, S.; Solaki, M.; Dell’Orco, D.; Koch, K.-W. Neuronal Calcium Sensor GCAP1 Encoded by GUCA1A Exhibits Heterogeneous Functional Properties in Two Cases of Retinitis Pigmentosa. ACS Chem. Neurosci. 2020, 11, 1458–1470. [Google Scholar] [CrossRef]
- Peshenko, I.V.; Olshevskaya, E.V.; Lim, S.; Ames, J.B.; Dizhoor, A.M. Identification of Target Binding Site in Photoreceptor Guanylyl Cyclase-activating Protein 1 (GCAP1). J. Biol. Chem. 2014, 289, 10140–10154. [Google Scholar] [CrossRef] [Green Version]
- Pettelkau, J.; Thondorf, I.; Theisgen, S.; Lilie, H.; Schröder, T.; Arlt, C.; Ihling, C.H.; Sinz, A. Structural Analysis of Guanylyl Cyclase-Activating Protein-2 (GCAP-2) Homodimer by Stable Isotope-Labeling, Chemical Cross-Linking, and Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 1969–1979. [Google Scholar] [CrossRef]
- Duda, T.; Pertzev, A.; Sharma, R.K. Differential Ca2+ Sensor Guanylate Cyclase Activating Protein Modes of Photoreceptor Rod Outer Segment Membrane Guanylate Cyclase Signaling. Biochemistry 2012, 51, 4650–4657. [Google Scholar] [CrossRef] [Green Version]
- Peshenko, I.V.; Olshevskaya, E.V.; Dizhoor, A.M. Evaluating the Role of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Domains in Binding Guanylyl Cyclase-activating Proteins (GCAPs). J. Biol. Chem. 2015, 290, 6913–6924. [Google Scholar] [CrossRef] [Green Version]
- Laura, R.P.; Hurley, J.B. The Kinase Homology Domain of Retinal Guanylyl Cyclases 1 and 2 Specifies the Affinity and Cooperativity of Interaction with Guanylyl Cyclase Activating Protein-2. Biochemistry 1998, 37, 11264–11271. [Google Scholar] [CrossRef] [PubMed]
- Imanishi, Y.; Yang, L.; Sokal, I.; Filipek, S.; Palczewski, K.; Baehr, W. Diversity of Guanylate Cyclase-Activating Proteins (GCAPs) in Teleost Fish: Characterization of Three Novel GCAPs (GCAP4, GCAP5, GCAP7) from Zebrafish (Danio rerio) and Prediction of Eight GCAPs (GCAP1-8) in Pufferfish (Fugu rubripes). J. Mol. Evol. 2004, 59, 204–217. [Google Scholar] [CrossRef] [Green Version]
- Demaré, F.; Kurtz, D.M.; Nordlund, P. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. Nat. Struct. Mol. Biol. 1996, 3, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Emerson, J.; Cabelli, D.E.; Kurtz, D.M. An engineered two-iron superoxide reductase lacking the [Fe(SCys)4] site retains its catalytic properties in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2003, 100, 3802–3807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Liu, Y.-P.; Yan, X.-X.; Liang, D.-C. Structural and functional characterization of Cys4 zinc finger motif in the recombination mediator protein RecR. DNA Repair 2014, 24, 10–14. [Google Scholar] [CrossRef]
- Redenti, S.; Ripps, H.; Chappell, R.L. Zinc release at the synaptic terminals of rod photoreceptors. Exp. Eye Res. 2007, 85, 580–584. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ames, J.B. Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs). Int. J. Mol. Sci. 2021, 22, 8731. https://doi.org/10.3390/ijms22168731
Ames JB. Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs). International Journal of Molecular Sciences. 2021; 22(16):8731. https://doi.org/10.3390/ijms22168731
Chicago/Turabian StyleAmes, James B. 2021. "Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs)" International Journal of Molecular Sciences 22, no. 16: 8731. https://doi.org/10.3390/ijms22168731
APA StyleAmes, J. B. (2021). Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs). International Journal of Molecular Sciences, 22(16), 8731. https://doi.org/10.3390/ijms22168731