An Integrated Analysis of Intracellular Metabolites and Virulence Gene Expression during Biofilm Development of a Clinical Isolate of Candida tropicalis on Distinct Surfaces
Abstract
:1. Introduction
2. Results
2.1. Biofilm Formation
2.2. GC-MS Analysis of Intracellular Metabolites
2.2.1. Multivariate Data Analysis
2.2.2. Univariate Data Analysis
2.3. Comparative Quantitation of Virulence and Stress Response Genes Expression
3. Discussion
4. Materials and Methods
4.1. C. tropicalis Strains and Growth Condition
4.2. Development and Quantification of Biofilms
4.3. GC-MS Analysis of Intracellular Metabolites
4.3.1. Sample Preparation
4.3.2. GC-MS Analysis
4.3.3. Data Processing and Statistical Analysis
4.4. RNA Extraction and Expression Profiling by Real-Time qRT-PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swartjes, J.J.; Sharma, P.K.; Kooten, T.V.; van der Mei, H.C.; Mahmoudi, M.; Busscher, H.J.; Rochford, E.T. Current developments in antimicrobial surface coatings for biomedical applications. Curr. Med. Chem. 2015, 22, 2116–2129. [Google Scholar] [CrossRef] [Green Version]
- Negri, M.; Silva, S.; Henriques, M.; Oliveira, R. Insights into Candida tropicalis nosocomial infections and virulence factors. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1399–1412. [Google Scholar] [CrossRef] [Green Version]
- Negri, M.; Silva, S.; Breda, D.; Henriques, M.; Azeredo, J.; Oliveira, R. Candida tropicalis biofilms: Effect on urinary epithelial cells. Microb. Pathog. 2012, 53, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.B.; Li, W.G.; Liu, X.S.; Che, J.; Lu, J.X.; Wu, Y. The activities of adhesion and biofilm formation by Candida tropicalis clinical isolates display significant correlation with its multilocus sequence typing. Mycopathologia 2017, 182, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, W.; Liu, X.; Che, J.; Wu, Y.; Lu, J. Distinct expression levels of ALS, LIP, and SAP genes in Candida tropicalis with diverse virulent activities. Front. Microbiol. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- De-la-Pinta, I.; Cobos, M.; Ibarretxe, J.; Montoya, E.; Eraso, E.; Guraya, T.; Quindós, G. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. Mater. Med. 2019, 30, 77. [Google Scholar] [CrossRef] [PubMed]
- Loos, C.; Syrovets, T.; Musyanovych, A.; Mailänder, V.; Landfester, K.; Ulrich Nienhaus, G.; Simmet, T. Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. Beilstein J. Nanotechnol. 2014, 5, 2403–2412. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Guan, Y.; Park, Y.; Choi, Y.E.; Kim, H.S.; Park, J. Optimization of PTFE coating on pdms surfaces for inhibition of hydrophobic molecule absorption for increased optical detection sensitivity. Sensors 2021, 21, 1754. [Google Scholar] [CrossRef] [PubMed]
- Styczynski, M.P.; Moxley, J.F.; Tong, L.V.; Walther, J.L.; Jensen, K.L.; Stephanopoulos, G.N. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal. Chem. 2007, 79, 966–973. [Google Scholar] [CrossRef] [PubMed]
- MATLAB. Available online: www.mathworks.com (accessed on 8 July 2021).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.M.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect. Immun. 2002, 70, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Kanematsu, H.; Barry, D.M. Biofilm and Materials Science; Springer: New York, NY, USA, 2015; ISBN 9783319145655. [Google Scholar]
- Galdiero, E.; Salvatore, M.M.; Maione, A.; de Alteriis, E.; Andolfi, A.; Salvatore, F.; Guida, M. GC-MS-based metabolomics study of single-and dual-species biofilms of Candida albicans and Klebsiella pneumoniae. Int. J. Mol. Sci. 2021, 22, 3496. [Google Scholar] [CrossRef]
- Galdiero, E.; Salvatore, M.M.; Maione, A.; Carraturo, F.; Galdiero, S.; Andolfi, A.; Salvatore, F.; Guida, M. Impact of the peptide WMR-K on dual-Species biofilm Candida albicans/Klebsiella pneumoniae and on the untargeted metabolomic profile. Pathogens 2021, 10, 214. [Google Scholar] [CrossRef] [PubMed]
- Félix, C.; Salvatore, M.M.; Dellagreca, M.; Meneses, R.; Duarte, A.S.; Salvatore, F.; Naviglio, D.; Gallo, M.; Jorrín-Novo, J.V.; Alves, A.; et al. Production of toxic metabolites by two strains of Lasiodiplodia theobromae, isolated from a coconut tree and a human patient. Mycologia 2018, 110, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhu, Z.; Chen, X.; Yao, X.; Zhao, L.; Wang, H.; Yan, L.; Wu, H.; Chai, Y.; Jiang, Y. Effect of amphotericin B on the metabolic profiles of Candida albicans. J. Proteome Res. 2013, 12, 2921–2932. [Google Scholar] [CrossRef] [PubMed]
- Galdiero, E.; Di Onofrio, V.; Maione, A.; Gambino, E.; Gesuele, R.; Menale, B.; Ciaravolo, M.; Carraturo, F.; Guida, M. Allium ursinum and Allium oschaninii against Klebsiella pneumoniae and Candida albicans mono-and polymicrobic biofilms in in vitro static and dynamic models. Microorganisms 2020, 8, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, N.C.; O’Neill, L.A.J. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 2018, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Wong, B.; Murray, J.S.; Castellanos, M.; Croen, K.D. D-Arabitol metabolism in Candida albicans: Studies of the biosynthetic pathway and the gene that encodes NAD-dependent D-arabitol dehydrogenase. J. Bacteriol. 1993, 175, 6314–6320. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Lv, J.; Wang, H.; Wang, B.; Li, Z.; Deng, Z. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Appl. Microbiol. Biotechnol. 2014, 98, 3539–3552. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Fan, X.; Zhang, J.; Tang, P.; Yuan, Q. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genet. Biol. 2015, 82, 1–8. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Simoneit, B.R.T. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. J. Chromatogr. A 2007, 1141, 271–278. [Google Scholar] [CrossRef]
- Zou, H.; Fang, H.M.; Zhu, Y.; Wang, Y. Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth. Mol. Microbiol. 2010, 75, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Hogan, D.A.; Muhlschlegel, F.A. Candida albicans developmental regulation: Adenylyl cyclase as a coincidence detector of parallel signals. Curr. Opin. Microbiol. 2011, 14, 682–686. [Google Scholar] [CrossRef]
- Naglik, J.R.; Challacombe, S.J.; Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 2003, 67, 400–428. [Google Scholar] [CrossRef] [Green Version]
- do Rosário Esteves Guimarães, C.; de Freitas, H.F.; Barros, T.F. Upregulation of secreted aspartyl proteinase genes of fluconazole-sensitive Candida albicans isolates. Mol. Biol. Rep. 2019, 46, 6147–6154. [Google Scholar] [CrossRef]
- Lehnberg, B. DSM-German collection of microorganisms and cell cultures in Braunschweig. Bioforum 1991, 14, 159–191. [Google Scholar]
- de Alteriis, E.; Lombardi, L.; Falanga, A.; Napolano, M.; Galdiero, S.; Siciliano, A.; Carotenuto, R.; Guida, M.; Galdiero, E. Polymicrobial antibiofilm activity of the membranotropic peptide gH625 and its analogue. Microb. Pathog. 2018, 125, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Zhao, L.; Wang, Y.; Hao, F.; Sun, P.; He, P.; Liu, Y.; Huang, J.; Liu, X.; Liu, X.; et al. Microbial metabolomics and network analysis reveal fungistatic effect of basil (Ocimum basilicum) oil on Candida albicans. J. Ethnopharmacol. 2020, 260, 113002. [Google Scholar] [CrossRef]
- Zhao, L.; Ni, Y.; Su, M.; Li, H.; Dong, F.; Chen, W.; Wei, R.; Zhang, L.; Guiraud, S.P.; Martin, F.P.; et al. High throughput and quantitative measurement of microbial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatization. Anal. Chem. 2017, 89, 5565–5577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guida, M.; Salvatore, M.M.; Salvatore, F. A strategy for GC/MS quantification of polar compounds via their silylated surrogates: Silylation and quantification of biological amino acids. J. Anal. Bioanal. Tech. 2015, 6, 1. [Google Scholar]
- AMDIS. Available online: www.amdis.net (accessed on 9 July 2021).
- NIST 14. Available online: https://www.nist.gov/srd/nist-standard-reference-database-1a (accessed on 9 July 2021).
- Golm Metabolome Database. Available online: http://gmd.mpimp-golm.mpg.de/ (accessed on 9 July 2021).
- Hummel, J.; Strehmel, N.; Selbig, J.; Walther, D.; Kopka, J. Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics 2010, 6, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, M.M.; Nicoletti, R.; Salvatore, F.; Naviglio, D.; Andolfi, A. GC–MS approaches for the screening of metabolites produced by marine-derived Aspergillus. Mar. Chem. 2018, 206, 19–33. [Google Scholar] [CrossRef]
- Riesgo, A.; Pérez-Porro, A.R.; Carmona, S.; Leys, S.P.; Giribet, G. Optimization of preservation and storage time of sponge tissues to obtain quality mRNA for next-generation sequencing. Mol. Ecol. Resour. 2012, 12, 312–322. [Google Scholar] [CrossRef]
Name | ID_## | VIP | In Class |
---|---|---|---|
Trehalose, 8 TMS (RI = 2815) | ID_62 | 1.671 | [3] |
Glycerol monostearate, 2 TMS (RI = 2794) | ID_31 | 1.532 | [1,2] |
l-Monopalmitin, 2 TMS (RI = 2599) | ID_30 | 1.515 | [1,2,3] |
Succinic acid, 2 TMS (RI = 1321) | ID_37 | 1.338 | [2,3] |
d-Mannitol, 6 TMS (RI = 1968) | ID_26 | 1.326 | [1,3] |
l-Tyrosine, 3 TMS (RI = 1962) | ID_25 | 1.156 | [1,2,3] |
l-Lysine, 3 TMS (RI = 1722) | ID_34 | 1.148 | [1,3] |
Phosphoric acid, 3 TMS (RI = 1292) | ID_8 | 1.118 | [1,2,3] |
Methyl bis(trimethylsilyl) phosphate (RI = 1199) | ID_67 | 1.058 | [3] |
l-Proline, 2 TMS (RI = 1310) | ID_9 | 0.997 | [1,2,3] |
Tromethamine N-acetyl, 3 TMS (RI = 1614) | ID_19 | 0.996 | [1,3] |
Tromethamine, 4 TMS (RI = 1537) | ID_15 | 0.986 | [1,2,3] |
Lactic Acid, 2 TMS (RI = 1079) | ID_3 | 0.962 | [1,3] |
Leucine, 2 TMS (RI = 1284) | ID_32 | 0.945 | [1,2,3] |
Arachidic acid, TMS (RI = 2442) | ID_29 | 0.926 | [1] |
Vitamin B6, 3 TMS (RI = 1923) | ID_24 | 0.921 | [1,3] |
l-Aspartic acid, 3 TMS (RI = 1544) | ID_16 | 0.918 | [1,3] |
Fumaric acid, 2 TMS (RI = 1353) | ID_10 | 0.912 | [1,3] |
9-Hexadecenoic acid, (Z)-, TMS (RI = 2035) | ID_46 | 0.908 | [2] |
l-Threonine, 3 TMS (RI = 1402) | ID_12 | 0.893 | [1,2,3] |
Phosphoric acid, bis(trimethylsilyl) 2,3-bis[(trimethylsilyl)oxy]propyl ester (RI = 1793) | ID_22 | 0.891 | [1,2,3] |
l-Alanine, 2 TMS (RI = 1120) | ID_4 | 0.889 | [1,2,3] |
l-5-Oxoproline, 2 TMS (RI = 1546) | ID_17 | 0.885 | [1,2,3] |
l-Glutamic acid, 3 TMS (RI = 1640) | ID_20 | 0.884 | [1,2,3] |
Malic acid, 3 TMS (RI = 1504) | ID_14 | 0.883 | [1,2,3] |
Citric acid, 4 TMS (RI = 1846) | ID_36 | 0.859 | [1,3] |
l-Serine, 3 TMS (RI = 1374) | ID_11 | 0.833 | [1,2,3] |
Stearic acid, TMS (RI = 2246) | ID_28 | 0.824 | [1,2,3] |
l-Phenylalanine, 2 TMS (RI = 1646) | ID_39 | 0.793 | [2] |
Glycine, 2 TMS (RI = 1133) | ID_5 | 0.788 | [1,2,3] |
9,12-Octadecadienoic acid (Z,Z)-, TMS (RI = 2237) | ID_48 | 0.751 | [2] |
l-Valine, 2 TMS (RI = 1229) | ID_7 | 0.747 | [1,2,3] |
Palmitic Acid, TMS (RI = 2050) | ID_27 | 0.747 | [1,2,3] |
9-Octadecenoic acid, (E)-, TMS (RI = 2237) | ID_49 | 0.723 | [2] |
d-Arabitol, 5 TMS (RI = 1761) | ID_21 | 0.609 | [1,2,3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvatore, M.M.; Maione, A.; Albarano, L.; de Alteriis, E.; Carraturo, F.; Andolfi, A.; Salvatore, F.; Galdiero, E.; Guida, M. An Integrated Analysis of Intracellular Metabolites and Virulence Gene Expression during Biofilm Development of a Clinical Isolate of Candida tropicalis on Distinct Surfaces. Int. J. Mol. Sci. 2021, 22, 9038. https://doi.org/10.3390/ijms22169038
Salvatore MM, Maione A, Albarano L, de Alteriis E, Carraturo F, Andolfi A, Salvatore F, Galdiero E, Guida M. An Integrated Analysis of Intracellular Metabolites and Virulence Gene Expression during Biofilm Development of a Clinical Isolate of Candida tropicalis on Distinct Surfaces. International Journal of Molecular Sciences. 2021; 22(16):9038. https://doi.org/10.3390/ijms22169038
Chicago/Turabian StyleSalvatore, Maria Michela, Angela Maione, Luisa Albarano, Elisabetta de Alteriis, Federica Carraturo, Anna Andolfi, Francesco Salvatore, Emilia Galdiero, and Marco Guida. 2021. "An Integrated Analysis of Intracellular Metabolites and Virulence Gene Expression during Biofilm Development of a Clinical Isolate of Candida tropicalis on Distinct Surfaces" International Journal of Molecular Sciences 22, no. 16: 9038. https://doi.org/10.3390/ijms22169038
APA StyleSalvatore, M. M., Maione, A., Albarano, L., de Alteriis, E., Carraturo, F., Andolfi, A., Salvatore, F., Galdiero, E., & Guida, M. (2021). An Integrated Analysis of Intracellular Metabolites and Virulence Gene Expression during Biofilm Development of a Clinical Isolate of Candida tropicalis on Distinct Surfaces. International Journal of Molecular Sciences, 22(16), 9038. https://doi.org/10.3390/ijms22169038