Integrated Medicine for Chemotherapy-Induced Peripheral Neuropathy
Abstract
:1. Introduction
2. The Current Understanding of CIPN: The Pathophysiology and Molecular Mechanisms
3. Current Treatment of CIPN—In the View of Western Medicine
4. Alternative and Complementary Treatment and Prevention of CIPN
4.1. Chinese Herbal Medicine
4.2. Acupuncture
4.3. Electroacupuncture
4.4. Honeybee Venom Pharmacopuncture
4.5. Challenges of TCM for CIPN
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Winters-Stone, K.M.; Horak, F.; Jacobs, P.G.; Trubowitz, P.; Dieckmann, N.; Stoyles, S.; Faithfull, S. Falls, functioning, and disability among women with persistent symptoms of chemotherapy-induced peripheral neuropathy. J. Clin. Oncol. 2017, 35, 2604–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gewandter, J.S.; Fan, L.; Magnuson, A.; Mustian, K.; Peppone, L.; Heckler, C.; Hopkins, J.; Tejani, M.; Morrow, G.R.; Mohile, S.G. Falls and functional impairments in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN): A University of Rochester CCOP study. Support. Care Cancer 2013, 21, 2059–2066. [Google Scholar] [CrossRef] [Green Version]
- Dorsey, S.G.; Kleckner, I.R.; Barton, D.; Mustian, K.; O’Mara, A.; Germain, D.S.; Cavaletti, G.; Danhauer, S.C.; Hershman, D.L.; Hohmann, A.G.; et al. The national cancer institute clinical trials planning meeting for prevention and treatment of chemotherapy-induced peripheral neuropathy. J. Natl. Cancer Inst. 2019, 111, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, S.; Ergün, M.; Heuvel, S.A.V.D.; van der Wal, S.E.; Scheffer, G.J.; Hooijmans, C.R. A systematic summary and comparison of animal models for chemotherapy induced (peripheral) neuropathy (CIPN). PLoS ONE 2019, 14, e0221787. [Google Scholar] [CrossRef]
- Kanzawa-Lee, G.A.; Knoerl, R.; Donohoe, C.; Bridges, C.M.; Smith, E.M.L. Mechanisms, predictors, and challenges in assessing and managing painful chemotherapy-induced peripheral neuropathy. Semin. Oncol. Nurs. 2019, 35, 253–260. [Google Scholar] [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.-Y.; Mi, W.-L.; Wu, G.-C.; Wang, Y.-Q.; Mao-Ying, Q.-L. Prevention and treatment for chemotherapy-induced peripheral neuropathy: Therapies based on CIPN mechanisms. Curr. Neuropharmacol. 2019, 17, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, V.; Canta, A.R.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett. 2015, 596, 90–107. [Google Scholar] [CrossRef]
- Germain, D.C.S.; O’Mara, A.M.; Mph, J.L.R.; Torres, A.D.; Minasian, L.M. Chemotherapy-induced peripheral neuropathy: Identifying the research gaps and associated changes to clinical trial design. Cancer 2020, 126, 4602–4613. [Google Scholar] [CrossRef] [PubMed]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef]
- Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014, 2, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Knoerl, R. CE: Chemotherapy-induced peripheral neuropathy. AJN Am. J. Nurs. 2021, 121, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Addington, J.; Freimer, M. Chemotherapy-induced peripheral neuropathy: An update on the current understanding. F1000Research 2016, 5, 1466. [Google Scholar] [CrossRef] [Green Version]
- Rostock, M.; Jaroslawski, K.; Guethlin, C.; Ludtke, R.; Schröder, S.; Bartsch, H.H. Chemotherapy-induced peripheral neuropathy in cancer patients: A four-arm randomized trial on the effectiveness of electroacupuncture. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brozou, V.; Vadalouca, A.; Zis, P. Pain in platin-induced neuropathies: A systematic review and meta-analysis. Pain Ther. 2018, 7, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, M.D.C.; Kosturakis, A.K.; Eng, C.; Wendelschafer-Crabb, G.; Kennedy, W.R.; Simone, D.A.; Wang, X.S.; Cleeland, C.S.; Dougherty, P.M. A quantitative sensory analysis of peripheral neuropathy in colorectal cancer and its exacerbation by oxaliplatin chemotherapy. Cancer Res. 2014, 74, 5955–5962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; Macleod, M.R.; Colvin, L.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisold, W.; Cavaletti, G.; Windebank, A.J. Peripheral neuropathies from chemotherapeutics and targeted agents: Diagnosis, treatment, and prevention. Neuro-Oncol. 2012, 14, iv45–iv54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younes, A.; Bartlett, N.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.; Forero-Torres, A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med. 2010, 363, 1812–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bono, J.S.; Oudard, S.; Özgüroglu, M.; Hansen, S.; Machiels, J.-P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010, 376, 1147–1154. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Chen, C.; Spencer, A.; Niesvizky, R.; Attal, M.; Stadtmauer, E.A.; Petrucci, M.T.; Yu, Z.; Olesnyckyj, M.; Zeldis, J.B.; et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia 2009, 23, 2147–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, P.; Pylypenko, H.; Grosicki, S.; Karamanesht, I.; Leleu, X.; Grishunina, M.; Rekhtman, G.; Masliak, Z.; Robak, T.; Shubina, A.; et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: A randomised, phase 3, non-inferiority study. Lancet Oncol. 2011, 12, 431–440. [Google Scholar] [CrossRef]
- Stewart, A.K.; Rajkumar, S.V.; Dimopoulos, M.A.; Masszi, T.; Spicka, I.; Oriol, A.; Hajek, R.; Rosinol, L.; Siegel, D.S.; Mihaylov, G.G.; et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 2015, 372, 142–152. [Google Scholar] [CrossRef]
- Kumar, S.K.; Berdeja, J.G.; Niesvizky, R.; Lonial, S.; Laubach, J.P.; Hamadani, M.; Stewart, A.K.; Hari, P.; Roy, V.; Vescio, R.; et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: An open-label phase 1/2 study. Lancet Oncol. 2014, 15, 1503–1512. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Bruna, J.; Marmiroli, P.; Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity (CIPN): An update. Crit. Rev. Oncol. 2012, 82, 51–77. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Kavelaars, A.; Dougherty, P.M.; Heijnen, C.J. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018, 124, 2289–2298. [Google Scholar] [CrossRef]
- Boyette-Davis, J.A.; Hou, S.; Abdi, S.; Dougherty, P.M. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag. 2018, 8, 363–375. [Google Scholar] [CrossRef]
- Starobova, H.; Vetter, I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Brugnoletti, F.; Morris, E.B.; Laningham, F.H.; Patay, Z.; Pauley, J.L.; Pui, C.-H.; Jeha, S.; Inaba, H. Recurrent intrathecal methotrexate induced neurotoxicity in an adolescent with acute lymphoblastic leukemia: Serial clinical and radiologic findings. Pediatr. Blood Cancer 2009, 52, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Diaz, P.L.; Furfari, A.; Wan, B.A.; Lam, H.; Charames, G.; Drost, L.; Fefekos, A.; Ohearn, S.; Blake, A.; Asthana, R.; et al. Predictive biomarkers of chemotherapy-induced peripheral neuropathy: A review. Biomark. Med. 2018, 12, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Boora, G.K.; Kanwar, R.; Kulkarni, A.A.; Abyzov, A.; Sloan, J.A.; Ruddy, K.J.; Banck, M.S.; Loprinzi, C.L.; Beutler, A.S. Testing of candidate single nucleotide variants associated with paclitaxel neuropathy in the trial NCCTG N08C1 (Alliance). Cancer Med. 2016, 5, 631–639. [Google Scholar] [CrossRef]
- Mahmoudpour, S.H.; Bandapalli, O.R.; Filho, M.I.D.S.; Campo, C.; Hemminki, K.; Goldschmidt, H.; Merz, M.; Försti, A. Chemotherapy-induced peripheral neuropathy: Evidence from genome-wide association studies and replication within multiple myeloma patients. BMC Cancer 2018, 18, 820. [Google Scholar] [CrossRef] [Green Version]
- Azoulay, D.; Giryes, S.; Nasser, R.; Sharon, R.; Horowitz, N.A. Prediction of chemotherapy-induced peripheral neuropathy in patients with lymphoma and myeloma: The roles of brain-derived neurotropic factor protein levels and a gene polymorphism. J. Clin. Neurol. 2019, 15, 511–516. [Google Scholar] [CrossRef]
- Cliff, J.; Jorgensen, A.; Lord, R.; Azam, F.; Cossar, L.; Carr, D.; Pirmohamed, M. The molecular genetics of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Crit. Rev. Oncol. 2017, 120, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kwok, J.; Asher, R.; Lee, C.; Beale, P.; Selle, F.; Friedlander, M. Clinical and genetic predictors of paclitaxel neurotoxicity based on patient—Versus clinician-reported incidence and severity of neurotoxicity in the ICON7 trial. Ann. Oncol. 2017, 28, 2733–2740. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Pankratz, V.S.; Velazquez, A.I.; Aakre, J.A.; Loprinzi, C.L.; Staff, N.; Windebank, A.J.; Yang, P. Candidate pathway-based genetic association study of platinum and platinum-taxane related toxicity in a cohort of primary lung cancer patients. J. Neurol. Sci. 2015, 349, 124–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boora, G.K.; Kulkarni, A.A.; Kanwar, R.; Beyerlein, P.; Qin, R.; Banck, M.S.; Ruddy, K.J.; Pleticha, J.; Lynch, C.A.; Behrens, R.J.; et al. Association of the Charcot—Marie—Tooth disease gene ARHGEF10 with paclitaxel induced peripheral neuropathy in NCCTG N08CA (Alliance). J. Neurol. Sci. 2015, 357, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Adjei, A.; Lopez, C.; Schaid, D.; Sloan, J.; Le-Rademacher, J.; Loprinzi, C.; Norman, A.; Olson, J.; Couch, F.; Beutler, A.; et al. Genetic predictors of chemotherapy-induced peripheral neuropathy from paclitaxel, carboplatin and oxaliplatin: NCCTG/Alliance N08C1, N08CA and N08CB study. Cancers 2021, 13, 1084. [Google Scholar] [CrossRef] [PubMed]
- Tamburin, S.; Park, S.B.; Alberti, P.; Demichelis, C.; Schenone, A.; Argyriou, A.A. Taxane and epothilone-induced peripheral neurotoxicity: From pathogenesis to treatment. J. Peripher. Nerv. Syst. 2019, 24, S40–S51. [Google Scholar] [CrossRef]
- Trendowski, M.R.; El Charif, O.; Dinh, P.C., Jr.; Travis, L.B.; Dolan, M.E. Genetic and modifiable risk factors contributing to cisplatin-induced toxicities. Clin. Cancer Res. 2019, 25, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Terrazzino, S.; Argyriou, A.A.; Cargnin, S.; Antonacopoulou, A.G.; Briani, C.; Bruna, J.; Velasco, R.; Alberti, P.; Campagnolo, M.; Lonardi, S.; et al. Genetic determinants of chronic oxaliplatin-induced peripheral neurotoxicity: A genome-wide study replication and meta-analysis. J. Peripher. Nerv. Syst. 2015, 20, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Tafani, C.; Psimaras, D.; Ricard, D. Chemotherapy-induced peripheral neuropathy in the adult. Curr. Opin. Oncol. 2014, 26, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Argyriou, A.A.; Cavaletti, G.; Antonacopoulou, A.; Genazzani, A.A.; Briani, C.; Bruna, J.; Terrazzino, S.; Velasco, R.; Alberti, P.; Campagnolo, M.; et al. Voltage-gated sodium channel polymorphisms play a pivotal role in the development of oxaliplatin-induced peripheral neurotoxicity: Results from a prospective multicenter study. Cancer 2013, 119, 3570–3577. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, C.R.; Jiang, C.; Andriessen, A.S.; Wang, K.; Wang, Z.; Ding, H.; Zhao, J.; Luo, X.; Lee, M.S.; Lei, Y.L.; et al. STING controls nociception via type I interferon signalling in sensory neurons. Nature 2021, 591, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, M.; Imai, S.; Matsumoto, M.; Iguma, Y.; Kawaguchi-Sakita, N.; Kotake, T.; Iwamitsu, Y.; Ntogwa, M.; Hiraiwa, R.; Nagayasu, K.; et al. Pronociceptive roles of Schwann cell-derived galectin-3 in taxane-induced peripheral neuropathy. Cancer Res. 2021, 81, 2207–2219. [Google Scholar] [CrossRef] [PubMed]
- Faivre, S.; Chan, D.; Salinas, R.; Woynarowska, B.; Woynarowski, J.M. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem. Pharmacol. 2003, 66, 225–237. [Google Scholar] [CrossRef]
- Zwelling, L.A.; Anderson, T.; Kohn, K.W. DNA-protein and DNA interstrand cross-linking by cis- and trans-platinum (II) diamminedichloride in L1210 mouse leukemia cells and relation to cytotoxicity. Cancer Res. 1979, 39, 365–369. [Google Scholar]
- Alcindor, T.; Beauger, N. Oxaliplatin: A review in the era of molecularly targeted therapy. Curr. Oncol. 2011, 18, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Todd, R.C.; Lippard, S.J. Inhibition of transcription by platinum antitumor compounds. Metallomics 2009, 1, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Grolleau, F.; Gamelin, L.; Boisdron-Celle, M.; Lapied, B.; Pelhate, M.; Gamelin, E. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J. Neurophysiol. 2001, 85, 2293–2297. [Google Scholar] [CrossRef]
- Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253–265. [Google Scholar] [CrossRef]
- Dorr, R.T. Pharmacology of the taxanes. Pharmacotherapy 1997, 17, 96S–104S. [Google Scholar] [PubMed]
- Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; de Carvalho-Barbosa, M.; Kavelaars, A.; Heijnen, C.J.; Albrecht, P.J.; Dougherty, P.M. Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy. J. Pain 2016, 17, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Alessandri-Haber, N.; Dina, O.A.; Joseph, E.K.; Reichling, D.B.; Levine, J.D. Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J. Neurosci. 2008, 28, 1046–1057. [Google Scholar] [CrossRef]
- Bleyer, W.A.; Frisby, S.A.; Oliverio, V.T. Uptake and binding of vincristine by murine leukemia cells. Biochem. Pharmacol. 1975, 24, 633–639. [Google Scholar] [CrossRef]
- Gan, P.P.; McCarroll, J.A.; Po’uha, S.T.; Kamath, K.; Jordan, M.A.; Kavallaris, M. Microtubule dynamics, mitotic arrest, and apoptosis: Drug-induced differential effects of βIII-tubulin. Mol. Cancer Ther. 2010, 9, 1339–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zhang, Y.-G.; Lin, G.-A.; Xie, H.-Q.; Pan, H.-T.; Huang, B.-Q.; Liu, J.-D.; Liu, H.; Zhang, N.; Li, L.; et al. Spinal changes of a newly isolated neuropeptide endomorphin-2 concomitant with vincristine-induced allodynia. PLoS ONE 2014, 9, e89583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-H.; Cherng, W.-J.; Yang, N.-I.; Hsu, C.-M.; Yeh, C.-H.; Lan, Y.-J.; Wang, J.-S.; Verma, S. Cyclosporine increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. Am. J. Physiol. Integr. Comp. Physiol. 2008, 294, R811–R818. [Google Scholar] [CrossRef]
- Thibault, K.; Rivals, I.; M’Dahoma, S.; Dubacq, S.; Pezet, S.; Calvino, B. Structural and molecular alterations of primary afferent fibres in the spinal dorsal horn in vincristine-induced neuropathy in rat. J. Mol. Neurosci. 2013, 51, 880–892. [Google Scholar] [CrossRef]
- Albers, J.W.; Chaudhry, V.; Cavaletti, G.; Donehower, R.C. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst. Rev. 2014, 3, CD005228. [Google Scholar] [CrossRef]
- Majithia, N.; Temkin, S.M.; Ruddy, K.J.; Beutler, A.S.; Hershman, D.L.; Loprinzi, C.L. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: Outcomes and lessons. Support. Care Cancer 2016, 24, 1439–1447. [Google Scholar] [CrossRef]
- Pachman, D.R.; Barton, D.L.; Watson, J.C.; Loprinzi, C.L. Chemotherapy-induced peripheral neuropathy: Prevention and treatment. Clin. Pharmacol. Ther. 2011, 90, 377–387. [Google Scholar] [CrossRef]
- Smith, E.M.L.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N.; et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 2013, 309, 1359–1367. [Google Scholar] [CrossRef]
- Rossignol, J.; Cozzi, B.; Liebaert, F.; Hatton, S.; Viallard, M.-L.; Hermine, O.; Greco, C. High concentration of topical amitriptyline for treating chemotherapy-induced neuropathies. Support. Care Cancer 2019, 27, 3053–3059. [Google Scholar] [CrossRef]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef]
- Hershman, D.L.; Lacchetti, C.; Dworkin, R.H.; Lavoie Smith, E.M.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Gavin, P.; Lavino, A.; Lustberg, M.B.; et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2014, 32, 1941–1967. [Google Scholar] [CrossRef] [Green Version]
- Schloss, J.; Colosimo, M. B Vitamin Complex and Chemotherapy-Induced Peripheral Neuropathy. Curr. Oncol. Rep. 2017, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Schloss, J.M.; Colosimo, M.; Airey, C.; Masci, P.; Linnane, A.W.; Vitetta, L. A randomised, placebo-controlled trial assessing the efficacy of an oral B group vitamin in preventing the development of chemotherapy-induced peripheral neuropathy (CIPN). Support. Care Cancer 2016, 25, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Kottschade, L.A.; Sloan, J.A.; Mazurczak, M.A.; Johnson, D.B.; Murphy, B.; Rowland, K.M.; Smith, D.A.; Berg, A.; Stella, P.J.; Loprinzi, C.L. The use of vitamin E for prevention of chemotherapy-induced peripheral neuropathy: A phase III double-blind, placebo controlled study—N05C31. J. Clin. Oncol. 2009, 27, 9532. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Kalofonos, H.P. Vitamin E for preventing chemotherapy-induced peripheral neuropathy. Support. Care Cancer 2011, 19, 725–726. [Google Scholar] [CrossRef]
- Kottschade, L.A.; Sloan, J.A.; Mazurczak, M.A.; Johnson, D.B.; Murphy, B.P.; Rowland, K.M.; Smith, D.A.; Berg, A.R.; Stella, P.J.; Loprinzi, C.L. The use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy: Results of a randomized phase III clinical trial. Support. Care Cancer 2010, 19, 1769–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco, R.; Simó, M.; Santos, C.; Gil, M.; Salazar, R.; Galan, M.; Palmero, R.; Alé, A.; Bruna, J.P. 251 serum levels of vitamin E and nerve growth factor in patients developing chemotherapy-induced peripheral neuropathy. Neuro-Oncology 2012, 14, 81. [Google Scholar]
- Eum, S.; Choi, H.-D.; Chang, M.-J.; Choi, H.-C.; Ko, Y.-J.; Ahn, J.-S.; Shin, W.-G.; Lee, J.-Y. Protective effects of vitamin E on chemotherapy-induced peripheral neuropathy: A meta-analysis of randomized controlled trials. Int. J. Vitam. Nutr. Res. 2013, 83, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Kottschade, L.; Sloan, J.; Loprinzi, C. Second response to the letter to the editor referencing the manuscript the “Use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy: Results of a randomized phase III clinical trial”. Support. Care Cancer 2012, 21, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Anoushirvani, A.A.; Poorsaadat, L.; Aghabozorgi, R.; Kasravi, M. Comparison of the effects of omega 3 and vitamin E on palcitaxel-induced peripheral neuropathy. Open Access Maced. J. Med. Sci. 2018, 6, 1857–1861. [Google Scholar] [CrossRef] [Green Version]
- Hershman, D.L.; Lacchetti, C.; Loprinzi, C.L. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline summary. J. Oncol. Pract. 2014, 10, e421–e424. [Google Scholar] [CrossRef]
- Yehia, R.; Saleh, S.; El Abhar, H.; Saad, A.S.; Schaalan, M. L-Carnosine protects against Oxaliplatin-induced peripheral neuropathy in colorectal cancer patients: A perspective on targeting Nrf-2 and NF-κB pathways. Toxicol. Appl. Pharmacol. 2019, 365, 41–50. [Google Scholar] [CrossRef]
- Hanai, A. Effects of cryotherapy on chemotherapy-induced peripheral neuropathy: Self-controlled clinical trial. Nihon Yakurigaku Zasshi 2019, 154, 245–248. [Google Scholar] [CrossRef]
- Chambers, S.M.; Qi, Y.; Mica, Y.; Lee, G.; Zhang, X.-J.; Niu, L.; Bilsland, J.; Cao, L.; Stevens, E.; Whiting, P.; et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 2012, 30, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Avior, Y.; Sagi, I.; Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 2016, 17, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-L.; Wang, R.-H.; Chou, F.-H.; Feng, I.-J.; Fang, C.-J.; Wang, H.-H. The effects of exercise on chemotherapy-induced peripheral neuropathy symptoms in cancer patients: A systematic review and meta-analysis. Support. Care Cancer 2021, 29, 5303–5311. [Google Scholar] [CrossRef]
- Derksen, T.M.E.; Bours, M.J.L.; Mols, F.; Weijenberg, M.P. Lifestyle-related factors in the self-management of chemotherapy-induced peripheral neuropathy in colorectal cancer: A systematic review. Evid.-Based Complement. Altern. Med. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tanay, M.A.L.; Armes, J.; Moss-Morris, R.; Rafferty, A.M.; Robert, G. A systematic review of behavioural and exercise interventions for the prevention and management of chemotherapy-induced peripheral neuropathy symptoms. J. Cancer Surviv. Res. Pract. 2021, 1–24. [Google Scholar] [CrossRef]
- Duregon, F.; Vendramin, B.; Bullo, V.; Gobbo, S.; Cugusi, L.; di Blasio, A.; Neunhaeuserer, D.; Zaccaria, M.; Bergamin, M.; Ermolao, A. Effects of exercise on cancer patients suffering chemotherapy-induced peripheral neuropathy undergoing treatment: A systematic review. Crit. Rev. Oncol. 2018, 121, 90–100. [Google Scholar] [CrossRef]
- Liu, Y.; May, B.H.; Zhang, A.L.; Guo, X.; Lu, C.; Xue, C.C.; Zhang, H. Integrative herbal medicine for chemotherapy-induced peripheral neuropathy and hand-foot syndrome in colorectal cancer: A systematic review and meta-analysis. Integr. Cancer Ther. 2018, 18, 1534735418817833. [Google Scholar] [CrossRef] [Green Version]
- Tawata, M.; Kurihara, A.; Nitta, K.; Iwase, E.; Gan, N.; Onaya, T. The effects of goshajinkigan, a herbal medicine, on subjective symptoms and vibratory threshold in patients with diabetic neuropathy. Diabetes Res. Clin. Pract. 1994, 26, 121–128. [Google Scholar] [CrossRef]
- Watanabe, K.; Shimada, A.; Miyaki, K.; Hirakata, A.; Matsuoka, K.; Omae, K.; Takei, I. Long-term effects of goshajinkigan in prevention of diabetic complications: A randomized open-labeled clinical trial. Evid.-Based Complement. Altern. Med. 2014, 2014, 128726. [Google Scholar] [CrossRef]
- Hosokawa, A.; Ogawa, K.; Ando, T.; Suzuki, N.; Ueda, A.; Kajiura, S.; Kobayashi, Y.; Tsukioka, Y.; Horikawa, N.; Yabushita, K.; et al. Preventive effect of traditional Japanese medicine on neurotoxicity of FOLFOX for metastatic colorectal cancer: A multicenter retrospective study. Anticancer. Res. 2012, 32, 2545–2550. [Google Scholar]
- Kono, T.; Mishima, H.; Shimada, M.; Morita, S.; Sakamoto, J. Preventive effect of goshajinkigan on peripheral neurotoxicity of FOLFOX therapy: A placebo-controlled double-blind randomized phase II study (the GONE Study). Jpn. J. Clin. Oncol. 2009, 39, 847–849. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, M.; Shimada, M.; Kurita, N.; Iwata, T.; Morimoto, S.; Yoshikawa, K.; Higashijima, J.; Miyatani, T.; Kono, T. The Kampo medicine, Goshajinkigan, prevents neuropathy in patients treated by FOLFOX regimen. Int. J. Clin. Oncol. 2011, 16, 322–327. [Google Scholar] [CrossRef]
- Kono, T.; Mamiya, N.; Chisato, N.; Ebisawa, Y.; Yamazaki, H.; Watari, J.; Yamamoto, Y.; Suzuki, S.; Asama, T.; Kamiya, K. Efficacy of goshajinkigan for peripheral neurotoxicity of oxaliplatin in patients with advanced or recurrent colorectal cancer. Evid.-Based Complement. Altern. Med. 2011, 2011, 418481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaku, H.; Kumagai, S.; Onoue, H.; Takada, A.; Shoji, T.; Miura, F.; Yoshizaki, A.; Sato, S.; Kigawa, J.; Arai, T.; et al. Objective evaluation of the alleviating effects of Goshajinkigan on peripheral neuropathy induced by paclitaxel/carboplatin therapy: A multicenter collaborative study. Exp. Ther. Med. 2011, 3, 60–65. [Google Scholar] [CrossRef]
- Hoshino, N.; Ganeko, R.; Hida, K.; Sakai, Y. Goshajinkigan for reducing chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Int. J. Clin. Oncol. 2018, 23, 434–442. [Google Scholar] [CrossRef]
- Kuriyama, A.; Endo, K. Goshajinkigan for prevention of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Support. Care Cancer 2018, 26, 1051–1059. [Google Scholar] [CrossRef]
- Oki, E.; Emi, Y.; Kojima, H.; Higashijima, J.; Kato, T.; Miyake, Y.; Kon, M.; Ogata, Y.; Takahashi, K.; Ishida, H.; et al. Preventive effect of Goshajinkigan on peripheral neurotoxicity of FOLFOX therapy (GENIUS trial): A placebo-controlled, double-blind, randomized phase III study. Int. J. Clin. Oncol. 2015, 20, 767–775. [Google Scholar] [CrossRef]
- Fujii, K.; Okamoto, S.; Saitoh, K.; Sasaki, N.; Takano, M.; Tanaka, S.; Kudoh, K.; Kita, T.; Tode, T.; Kikuchi, Y. The efficacy of Shakuyaku-Kanzo-to for peripheral nerve dysfunction in paclitaxel combination chemotherapy for epithelial ovarian carcinoma. Gan Kagaku Ryoho Cancer Chemother. 2004, 31, 1537–1540. [Google Scholar]
- Zhang, Y.; Gong, G.; Zhang, X.; Zhou, L.; Xie, H.; Tian, Y.; Xie, C. Huangqi Guizhi Wuwu decoction for diabetic peripheral neuropathy: Protocol for a systematic review. Medicine 2019, 98, e16696. [Google Scholar] [CrossRef]
- Hou, H.; Tong, Y. Effects of Huangqi Guizhi Wuwu Tang on diabetic peripheral neuropathy. J. Altern. Complement. Med. 2006, 12, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Huo, J.; Wang, D.; Cai, X.; Sun, X.; Lu, W.; Yang, Y.; Hu, C.; Wang, X.; Cao, P. Herbal medicine AC591 prevents oxaliplatin-induced peripheral neuropathy in animal model and cancer patients. Front. Pharmacol. 2017, 8, 344. [Google Scholar] [CrossRef] [PubMed]
- Profile, A.R.D. EGb 761: Ginkgo biloba extract, Ginkor. Drugs R D 2003, 4, 188–193. [Google Scholar] [CrossRef]
- Marshall, J.; Zakari, A.; Hwang, J.J.; Papadopoulos, V.; Rosenberg, A.; Silver, C. Ginkgo Biloba (GB) extract as a neuroprotective agent in oxaliplatin (Ox)-induced neuropathy. J. Clin. Oncol. 2004, 22, 3670. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Kwak, M.A.; Seo, J.C.; Park, S.H.; Bong, J.G.; Shin, I.H.; Park, S.H. Acupuncture for the treatment of taxane-induced peripheral neuropathy in breast cancer patients: A pilot trial. Evid.-Based Complement. Altern. Med. 2018, 2018, 5367014. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, E.G.; Nagy, D.R.N.; de Brito, C.M.M.; Almeida, E.P.M.; Battistella, L.R.; Cecatto, R.B. Acupuncture for chemotherapy-induced peripheral neuropathy: A randomised controlled pilot study. BMJ Support. Palliat. Care 2019. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Seidman, A.D.; Piulson, L.; Vertosick, E.; Chen, X.; Vickers, A.J.; Blinder, V.S.; Zhi, I.; Li, Q.; Vahdat, L.T.; et al. A phase IIA trial of acupuncture to reduce chemotherapy-induced peripheral neuropathy severity during neoadjuvant or adjuvant weekly paclitaxel chemotherapy in breast cancer patients. Eur. J. Cancer 2018, 101, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, S.; Meyer-Hamme, G.; Epplee, S. Acupuncture for chemotherapy-induced peripheral neuropathy (CIPN): A pilot study using neurography. Acupunct. Med. 2012, 30, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Ben-Horin, I.; Kahan, P.; Ryvo, L.; Inbar, M.; Lev-Ari, S.; Geva, R. Acupuncture and reflexology for chemotherapy-induced peripheral neuropathy in breast cancer. Integr. Cancer Ther. 2017, 16, 258–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, R.; Sagar, S. Acupuncture treatment for chemotherapy-induced peripheral neuropathy—A case series. Acupunct. Med. 2006, 24, 87–91. [Google Scholar] [CrossRef]
- Han, X.; Wang, L.; Shi, H.; Zheng, G.; He, J.; Wu, W.; Shi, J.; Wei, G.; Zheng, W.; Sun, J.; et al. Acupuncture combined with methylcobalamin for the treatment of chemotherapy-induced peripheral neuropathy in patients with multiple myeloma. BMC Cancer 2017, 17, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.K.; Cohen, L.; Guo, Y.; Zhou, Y.; You, B.; Chiang, J.; Orlowski, R.Z.; Weber, D.; Shah, J.; Alexanian, R.; et al. Electroacupuncture for thalidomide/bortezomib-induced peripheral neuropathy in multiple myeloma: A feasibility study. J. Hematol. Oncol. 2014, 7, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Giobbie-Hurder, A.; Freedman, R.A.; Shin, I.H.; Lin, N.U.; Partridge, A.H.; Rosenthal, D.S.; Ligibel, J.A. Acupuncture for chemotherapy-induced peripheral neuropathy in breast cancer survivors: A randomized controlled pilot trial. Oncology 2019, 25, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Greenlee, H.; Crew, K.D.; Capodice, J.; Awad, D.; Buono, D.; Shi, Z.; Jeffres, A.; Wyse, S.; Whitman, W.; Trivedi, M.S.; et al. Randomized sham-controlled pilot trial of weekly electro-acupuncture for the prevention of taxane-induced peripheral neuropathy in women with early stage breast cancer. Breast Cancer Res. Treat. 2016, 156, 453–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gewandter, J.S.; Chaudari, J.; Ibegbu, C.; Kitt, R.; Serventi, J.; Burke, J.; Culakova, E.; Kolb, N.; Sluka, K.A.; Tejani, M.A.; et al. Wireless transcutaneous electrical nerve stimulation device for chemotherapy-induced peripheral neuropathy: An open-label feasibility study. Support. Care Cancer 2018, 27, 1765–1774. [Google Scholar] [CrossRef]
- Tonezzer, T.; Caffaro, L.A.M.; Menon, K.R.S.; da Silva, F.C.B.; de Brito, C.M.M.; Sarri, A.J.; Casarotto, R.A. Effects of transcutaneous electrical nerve stimulation on chemotherapy-induced peripheral neuropathy symptoms (CIPN): A preliminary case-control study. J. Phys. Ther. Sci. 2017, 29, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Wong, R.; Major, P.; Sagar, S. Phase 2 study of acupuncture-like transcutaneous nerve stimulation for chemotherapy-induced peripheral neuropathy. Integr. Cancer Ther. 2016, 15, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Coyne, P.J.; Wan, W.; Dodson, P.; Swainey, C.; Smith, T.J. A trial of Scrambler therapy in the treatment of cancer pain syndromes and chronic chemotherapy-induced peripheral neuropathy. J. Pain Palliat. Care Pharmacother. 2013, 27, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, C.; Pinto, R.M.; Mennini, C.; Conicella, E.; Stoppa, F.; Raucci, U. Scrambler therapy efficacy and safety for neuropathic pain correlated with chemotherapy-induced peripheral neuropathy in adolescents: A preliminary study. Pediatr. Blood Cancer 2018, 65, e27064. [Google Scholar] [CrossRef]
- Pachman, D.R.; Weisbrod, B.L.; Seisler, D.K.; Barton, D.L.; Fee-Schroeder, K.C.; Smith, T.; Lachance, D.H.; Liu, H.; Shelerud, R.A.; Cheville, A.L.; et al. Pilot evaluation of Scrambler therapy for the treatment of chemotherapy-induced peripheral neuropathy. Support. Care Cancer 2015, 23, 943–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loprinzi, C.; Le-Rademacher, J.G.; Majithia, N.; McMurray, R.P.; O’Neill, C.R.; Bendel, M.A.; Beutler, A.; Lachance, D.H.; Cheville, A.; Strick, D.M.; et al. Scrambler therapy for chemotherapy neuropathy: A randomized phase II pilot trial. Support. Care Cancer 2020, 28, 1183–1197. [Google Scholar] [CrossRef]
- Smith, T.J.; Razzak, A.R.; Blackford, A.L.; Ensminger, J.; Saiki, C.; Longo-Schoberlein, D.; Loprinzi, C.L. A pilot randomized sham-controlled trial of MC5-A scrambler therapy in the treatment of chronic chemotherapy-induced peripheral neuropathy (CIPN). J. Palliat. Care 2020, 35, 53–58. [Google Scholar] [CrossRef]
- Kwon, Y.B.; Yoon, S.Y.; Kim, H.W.; Roh, D.H.; Kang, S.Y.; Ryu, Y.H.; Choi, S.M.; Han, H.J.; Lee, H.J.; Kim, K.W.; et al. Substantial role of locus coeruleus-noradrenergic activation and capsaicin-insensitive primary afferent fibers in bee venom’s anti-inflammatory effect. Neurosci. Res. 2006, 55, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Tender, T.; Rahangdale, R.R.; Balireddy, S.; Nampoothiri, M.; Sharma, K.K.; Chandrashekar, H.R. Melittin, a honeybee venom derived peptide for the treatment of chemotherapy-induced peripheral neuropathy. Med. Oncol. 2021, 38, 1–9. [Google Scholar] [CrossRef]
- Choi, S.; Chae, H.K.; Heo, H.; Hahm, D.-H.; Kim, W.; Kim, S.K. Analgesic effect of melittin on oxaliplatin-induced peripheral neuropathy in rats. Toxins 2019, 11, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.W.; Jeon, J.H.; Yoon, J.; Jung, T.Y.; Kwon, K.R.; Cho, C.K.; Lee, Y.W.; Sagar, S.; Wong, R.; Yoo, H.S. Effects of sweet bee venom pharmacopuncture treatment for chemotherapy-induced peripheral neuropathy: A case series. Integr. Cancer Ther. 2012, 11, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Jeon, J.-H.; Lee, Y.-W.; Cho, C.-K.; Kwon, K.-R.; Shin, J.-E.; Sagar, S.; Wong, R.; Yoo, H.-S. Sweet bee venom pharmacopuncture for chemotherapy-induced peripheral neuropathy. J. Acupunct. Meridian Stud. 2012, 5, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Jones, S. Descending Noradrenergic Influences on Pain. Prog. Brain Res. 1991, 88, 381–394. [Google Scholar] [CrossRef] [PubMed]
Type | Drug | Mechanism of CIPN | Cumulative and Dose | Incidence of CIPN | Acute Neuropathy | Chronic Neuropathy | Additional Features |
---|---|---|---|---|---|---|---|
Platinum-Based | Cisplatin Carboplatin Oxaliplatin | Nuclear and mitochondrial DNA damage | Cisplatin >300 mg/m2, Oxalipatin >800 mg/m2 may be needed after the first dose | Cisplatin 49–100%, Carboplatin 13–42%, Oxaliplatin 85–95% | Cold-induced dysesthesias (hand/face), Muscle cramps | Sensory neuropathy/ neuronopathy, ataxia | “Coasting”, cranial nerve involvement: hearing loss, tinnitus, ageusia, Lhermitte’s phenomenon |
Taxanes | Docetaxel Paclitaxel Nab-paclitaxel Cabazitaxel Ixabepilone | Stabilization of microtubule polymers | Docetaxel ~400 mg/m2 Paclitaxel ~1000 mg/m2; doses of ≥250 mg/m2 may be needed after the first dose | 48.2% | Taste impairment | Sensorimotor neuropathy | Occasionally cranial nerves, mononeuropathies, autonomic features, “coasting” |
Vinca alkaloids | Vincristine Vinblastine Vinorelbine Vindesine | Destabilization of microtubule polymers | Vincristine >4 mg/m2 may be needed after the first dose | 20%; Vincristine 30–40% | Taste impairment | Sensorimotor neuropathy | Occasionally cranial nerves, mononeuropathies, autonomic features, possible ‘coasting’ |
Brentuximab vedotin | Brentuximab vedotin | Destabilization of microtubule polymers | 36–53% | Demyelinating, sensorimotor neuropathy | Autonomic myokymia | Conjugated antibody | |
Epothilones | Eribulin | Destabilization of microtubule polymers | 25% | NS | Sensorimotor neuropathy | Conjugated antibody | |
Ado-trastuzumab Emtansine | Ado-trastuzumab Emtansine | Destabilization of microtubule polymers | 13% after the first dose | NS | Sensorimotor neuropathy | Conjugated antibody | |
Proteasome inhibitor | Bortezomib Carfilzomib Ixazomib | Proteasome inhibitor | NS | Small fiber neuropathy, Severe polyradiculoneuropathy | Fewer CIPNs with subcutaneous delivery of bortezomib |
Study Title | Identifier | Sponsor | Phase | Chemo-Therapeutics | Cancer Type | Intervention |
---|---|---|---|---|---|---|
Drug repurposing for the prevention of chemotherapy-induced peripheral neuropathy (CIPN) | NCT04780854 | Cairo University | Phase 2 | Paclitaxel | NS | Metformin vs. placebo |
The preliminary effects of henna on CIPN | NCT04201587 | Selcuk University | NA | NS | NS | Henna application vs. control |
Effect of tro19622 in the treatment of patients with chemotherapy-induced peripheral neuropathy (CIPN) | NCT00876538 | Hoffmann-La Roche | Phase 2 | Taxanes | NS | Olesoxime (TRO19622) vs. placebo |
Niagen and persistent chemotherapy-induced peripheral neuropathy | NCT04112641 | University of Iowa | Phase 2 | Taxanes or Platinum | NS | Nicotinamide riboside vs. placebo capsules |
Suncist: a study of calmangafodipir in healthy Japanese and Caucasian subjects | NCT03430999 | Pledpharma AB | Phase 1 | NA | NA | Calmangafodipir vs. placebo |
Pregabalin in CIPN | NCT02394951 | Washington University School of Medicine | NA | Oxaliplatin, Paclitaxel, Docetaxel, or their combinations | NS | Pregabalin vs. placebo |
Preventive treatment of oxaliplatin-induced peripheral neuropathy in metastatic colorectal cancer (polar-m) | NCT03654729 | Pledpharma AB | Phase 3 | mFOLFOX6 | Metastatic colorectal cancer | Calmangafodipir (2 dosages) vs. placebo |
A study to assess the efficacy and safety of oxycodone/naloxone in Korean patients with chemotherapy-induced peripheral neuropathy (CIPN) | NCT01675531 | Mundipharma Korea Ltd. | Phase 4 | NS | NS | Targin (oxycodone/naloxone) |
Effect of hemp-CBD on patients with CIPN | NCT04398446 | Main Line Health | Phase 2 | NS | Non-metastatic breast, uterine, ovarian, or colorectal cancers | Hemp-based cannabidiol vs. placebo |
Preventive treatment of oxaliplatin-induced peripheral neuropathy in adjuvant colorectal cancer | NCT04034355 | Pledpharma AB | Phase 3 | mFOLFOX6 | Colorectal cancer | Calmangafodipir vs. placebo |
Ozone therapy in chemotherapy-induced peripheral neuropathy: RCT (O3NPIQ) | NCT04299893 | Bernardino Clavo | Phase 2, Phase 3 | NS | NS | Ozone vs. oxygen |
Duloxetine and neurofeedback training for the treatment of chemotherapy induced peripheral neuropathy | NCT04560673 | M.D. Anderson Cancer Center | Phase 2 | NS | Hematopoietic, lymphoid cell, or solid malignant neoplasms | Duloxetine vs. neurofeedback training vs. their combination |
Study of nicotine for pain associated with chemotherapy-induced peripheral neuropathy | NCT04468230 | Virginia Commonwealth University | Phase 2 | NS | NS | Nicotine transdermal patch |
Menthol in neuropathy trial (MINT) | NCT04276727 | University of Edinburgh | Phase 2 | NS | NS | Menthol vs. placebo |
Minocycline hydrochloride in reducing chemotherapy-induced peripheral neuropathy and acute pain in patients with breast cancer undergoing treatment with paclitaxel | NCT02297412 | Academic and Community Cancer Research United | Phase 2 | Paclitaxel | Breast cancer | Minocycline hydrochloride vs. placebo |
High dose inorganic selenium for preventing chemotherapy-induced peripheral neuropathy | NCT04201561 | Seoul National University Hospital | Phase 3 | Paclitaxel | Response evaluation criteria in solid tumors (RECIST), or gynecologic, epithelial ovarian, fallopian, or primary peritoneal cancers | Sodium selenite pentahydrate vs. vehicle vs. standard care |
Chemotherapy-induced peripheral neuropathy-essential oil intervention | NCT03449303 | Augusta University | NA | NS | Breast cancer | Eoi (10% dilution of Curcuma longa, Piper nigrum, Pelargonium asperum, Zingiber officinale, Mentha X piperita, and Rosmarinus officinalis Ct. Cineole in (Simmondsia chinensis) vs. placebo (Simmondsia chinensis) |
The role of transient receptor potential channels in chemotherapy-induced peripheral neuropathic pain | NCT04415892 | Universitaire Ziekenhuizen Leuven | NA | Paclitaxel or Oxaliplatin | NS | Cinnamaldehyde and capsaicin |
Cannabinoids for taxane-induced peripheral neuropathy | NCT03782402 | New York State Psychiatric Institute | Phase 2 | Paclitaxel or Docetaxel | Breast cancer | Cannabinoids of various strengths |
N-acetyl cysteine effect in peripheral neuropathy in cancer patients | NCT03492047 | Ain Shams University | Phase 1, Phase 2 | Paclitaxel | Breast cancer | N-acetylcysteine (low vs. high dose) vs. standard care |
Lidocaine versus duloxetine for the prevention of taxane-induced peripheral neuropathy in breast cancer patients | NCT04732455 | Gamal Mohamed Taha Abouelmagd | NA | Taxanes | Breast cancer | Lidocaine vs. vehicle vs. duloxetine |
The potential protective role of venlafaxine versus memantine in paclitaxel-induced peripheral neuropathy | NCT04737967 | Mendel AI | Phase 2, Phase 3 | Paclitaxel | NS | Venlafaxine vs. memantine |
NR in chemo-induced peripheral neuropathy | NCT03642990 | Donna Hammond | Phase 2 | Paclitaxel | Metastatic breast cancer | Nicotinamide riboside |
NR in chemo-induced peripheral neuropathy | NCT03642990 | Donna Hammond | Phase 2 | Platinum | Platinum-resistant recurrent ovarian, peritoneal, endometrial, fallopian tube, or head and neck cancers | Nicotinamide riboside |
Duloxetine in treating peripheral neuropathy caused by chemotherapy in patients with cancer | NCT00489411 | Alliance for Clinical Trials in Oncology | Phase 3 | Taxanes or Platinum | NS | Duloxetine hydrochloride vs. placebo |
Vitamin e in preventing peripheral neuropathy caused by chemotherapy in patients receiving chemotherapy for cancer | NCT00363129 | Alliance for Clinical Trials in Oncology | Phase 3 | Taxanes or Platinum | NS | Vitamin E vs. placebo |
Lamotrigine in treating peripheral neuropathy caused by chemotherapy in patients with cancer | NCT00068445 | Alliance for Clinical Trials in Oncology | Phase 3 | Taxanes, Platinum, Vinca Alkaloids | NS | Lamotrigine vs. placebo |
Clinical study on acetyl-l-carnitine | NCT01526564 | Lee's Pharmaceutical Limited | Phase 3 | Taxoids, Satraplatin and Vincristine | NS | Acetylcarnitine vs. placebo |
Gabapentin in treating peripheral neuropathy in cancer patients undergoing chemotherapy | NCT00027963 | Alliance for Clinical Trials in Oncology | Phase 3 | Taxanes, Platinum, or Vinca alkaloids | NS | Gabapentin vs. placebo |
Baclofen-amitriptyline hydrochloride-ketamine gel in treating peripheral neuropathy caused by chemotherapy in patients with cancer | NCT00516503 | Alliance for Clinical Trials in Oncology | Phase 3 | NS | Chronic myeloproliferative disorders, leukemia lymphoma, lymphoproliferative disorder, multiple myeloma and plasma cell neoplasm, myelodysplastic syndromes, myelodysplastic/myeloproliferative neoplasms | Baclofen/amitriptyline/ketamine gel vs. placebo |
Fingolimod in treating patients with chemotherapy-induced neuropathy | NCT03943498 | Mayo Clinic | Early Phase 1 | NS | NS | Fingolimod vs. Fingolimod hydrochloride |
Study Title | Identifier | Sponsor | Phase | Chemotherapeutics | Cancer Type | Intervention |
---|---|---|---|---|---|---|
Oral Cryotherapy Plus Acupressure and Acupuncture Versus Oral Cryotherapy for Decreasing Chemotherapy-Induced Peripheral Neuropathy From Oxaliplatin-Based Chemotherapy in Patients With Gastrointestinal Cancer | NCT04505553 | University of Washington | Phase 2 Pilot Study | Oxaliplatin-Based Chemotherapy | Gastrointestinal Cancer | Oral cryotherapy vs. oral cryotherapy plus acupuncture/acupressure |
Acupuncture in Reducing Chemotherapy-Induced Peripheral Neuropathy in Participants With Stage I-III Breast Cancer | NCT03505671 | Wake Forest University Health Sciences | NA | NS | Breast Cancer | Acupuncture vs. standard care |
Acupuncture for Peripheral Neuropathy Induced by Paclitaxel in Early Stage Breast Cancer | NCT04461977 | Instituto Brasileiro de Controle do Cancer | NA | NS | Breast cancer (stages I, II, III) | Acupuncture vs. sham acupuncture |
Acupuncture for CIPN in Breast Cancer Patients | NCT02615678 | Southern California University of Health Sciences | NA | NS | Breast Cancer | Before and after acupuncture |
Integrative Medicine for Chemotherapy-Induced Peripheral Neuropathy | NCT03290976 | The Chaim Sheba Medical Center | NA | Taxanes | 1. Female patients with breast or gynecological cancers | Single vs. multi-modality acupuncture vs. standard care |
Integrative Medicine for Chemotherapy-Induced Peripheral Neuropathy | NCT03290976 | The Chaim Sheba Medical Center | NA | NS | 2. Patients of either gender with hematological malignancies | Single vs. multi-modality acupuncture vs. standard care |
Standard Care Alone or With Acupuncture for CIPN in Breast Cancer and Multiple Myeloma (ACUFOCIN) | NCT02275403 | The Christie NHS Foundation Trust | Phase 2 | NS | Breast cancer, multiple myeloma, gastrointestinal cancer, or gynecological cancer | Acupuncture vs. standard care |
The Use of Acupuncture for Treatment of Chemotherapy-induced Peripheral Neuropathy (CIPN) | NCT02309164 | University of Sao Paulo | NA | NS | NS | Acupuncture vs. standard care |
Evaluation of the Efficacy of Acupuncture in Chemotherapy-Induced Peripheral Neuropathy | NCT03626220 | China Medical University Hospital | NA | NS | Breast cancer | Acupuncture vs. sham acupuncture |
The Effectiveness and Cost-Effectiveness of Acupuncture in Managing Chemotherapy-induced Peripheral Neuropathy | NCT02553863 | The Hong Kong Polytechnic University | NA | NS | Lung, breast, gynecological, or head & neck cancers, or colorectal cancer (stage I, II, III). | Acupuncture vs. standard care |
Efficacy of Acupuncture on Chemotherapy-Induced Peripheral Neuropathy | NCT04739631 | Taipei Veterans General Hospital, Taiwan | NA | Taxanes (paclitaxel or docetaxel), platinum (cisplatin, oxaliplatin, carboplatin) | NS | Acupuncture vs. sham acupuncture |
Testing the Effects of Transcutaneous Electrical Nerve Stimulation (TENS) on Chemotherapy-Induced Peripheral Neuropathy (CIPN) | NCT04367480 | University of Rochester NCORP Research Base | NA | NS | NS | TENS |
Feasibility Study for Electroacupuncture for Chemotherapy- Induced Peripheral Neuropathy (CIPN) | NCT04092764 | H. Lee Moffitt Cancer Center and Research Institute | NA | Taxanes or Platinum-Based | NS | Electroacupuncture vs. NeuroMetrix vs. Rydel-Seiffer tuning fork |
Acupuncture for Chemotherapy-induced Peripheral Neuropathy | NCT03582423 | Hong Kong Baptist University | NA | Eight cycles of adjuvant oxaliplatin-based chemotherapy | Stage II–III colorectal cancer | Electroacupuncture vs. sham acupuncture |
Scrambler Therapy in the Treatment of Chronic Chemotherapy-Induced Peripheral Neuropathy | NCT02111174 | Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins | NA | NS | NS | Scrambler therapy vs. sham therapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-H.; Lin, Y.-H.; Li, Y.-S.; Ho, T.-L.; Hoai Thuong, L.H.; Liu, Y.-H. Integrated Medicine for Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2021, 22, 9257. https://doi.org/10.3390/ijms22179257
Tsai C-H, Lin Y-H, Li Y-S, Ho T-L, Hoai Thuong LH, Liu Y-H. Integrated Medicine for Chemotherapy-Induced Peripheral Neuropathy. International Journal of Molecular Sciences. 2021; 22(17):9257. https://doi.org/10.3390/ijms22179257
Chicago/Turabian StyleTsai, Chih-Hung, Yuan-Ho Lin, Yung-Sheng Li, Trung-Loc Ho, Le Huynh Hoai Thuong, and Yu-Huei Liu. 2021. "Integrated Medicine for Chemotherapy-Induced Peripheral Neuropathy" International Journal of Molecular Sciences 22, no. 17: 9257. https://doi.org/10.3390/ijms22179257
APA StyleTsai, C. -H., Lin, Y. -H., Li, Y. -S., Ho, T. -L., Hoai Thuong, L. H., & Liu, Y. -H. (2021). Integrated Medicine for Chemotherapy-Induced Peripheral Neuropathy. International Journal of Molecular Sciences, 22(17), 9257. https://doi.org/10.3390/ijms22179257