Genomic Scan of Male Fertility Restoration Genes in a ‘Gülzow’ Type Hybrid Breeding System of Rye (Secale cereale L.)
Abstract
:1. Introduction
2. Results
2.1. Analysis of Genotyping Data
2.2. Genome-Wide Association Study—Case Control
2.3. Biparental Population
2.4. Genomic Scan and Expression of Genes Residing within Restoration of Male-Fertility-Associated Regions of G-Type Hybrids
3. Discussion
3.1. Indications of a Major Restoration of Male-Fertility-Like Pentatricopeptide Repeat Gene on 1RS
3.2. Modifying G-Type Restoration of Male Fertility Genes
3.3. Decisive Role of 3R in the G-Type CMS Breeding System
3.4. Novel Major Restoration of Male Fertility Gene Unique to the G-Type CMS Breeding System
3.5. Non-Pentatricopeptide Repeat Restoration of Male Fertility Gene on 3RL
3.6. CMS Systems in Hybrid Rye Breeding
4. Methods
4.1. Plant Material
4.2. Biparental Mapping Population
4.3. Molecular Markers
4.4. Data Analysis
4.5. Genome-Wide Association Study
4.6. RNA-Seq Data Expression Analysis of PPR and mTERF Genes Residing in Rf-Associated Region in G-Type Hybrids of Rye
4.7. Graphical Editing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miedaner, T.; Hübner, M. Quality demands for different uses of hybrid rye. Tag. Ver. Pflanz. Saatgutkaufleute Osterr. 2011, 61, 45–49. [Google Scholar]
- Laidig, F.; Piepho, H.P.; Rentel, D.; Drobek, T.; Meyer, U.; Huesken, A. Breeding progress, variation, and correlation of grain and quality traits in winter rye hybrid and population varieties and national on-farm progress in Germany over 26 years. Theor. Appl. Genet. 2017, 130, 981–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiger, H.H.; Miedaner, T. Hybrid rye and heterosis. In Genetics and Exploitation of Heterosis in Crops; American Society of Agronomy-Crop Science Society of America: Madison, WI, USA, 1999; pp. 439–450. [Google Scholar]
- Chen, L.; Liu, Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Zhang, D. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci. 2018, 23, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Lapinski, M.; Stojalowski, S. Occurence and genetic identity of male sterility-inducing cytoplasm in rye. Plant Breed. Seed Sci. 2003, 48, 7–23. [Google Scholar]
- Miedaner, T.; Glass, C.; Dreyer, F.; Wilde, P.; Wortmann, H.; Geiger, H.H. Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 2000, 101, 1226–1233. [Google Scholar] [CrossRef]
- Hackauf, B.; Bauer, E.; Korzun, V.; Miedaner, T. Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). Theor. Appl. Genet. 2017, 130, 1179–1189. [Google Scholar] [CrossRef]
- Stracke, S.; Schilling, A.G.; Forster, J.; Weiss, C.; Glass, C.; Miedaner, T.; Geiger, H.H. Development of PCR-based markers linked to dominant genes for male-fertility restoration in Pampa CMS of rye (Secale cereale L.). Theor. Appl. Genet. 2003, 106, 1184–1190. [Google Scholar] [CrossRef]
- Niedziela, A.; Brukwinski, W.; Bednarek, P.T. Genetic mapping of pollen fertility restoration QTLs in rye (Secale cereale L.) with CMS Pampa. J. Appl. Genet. 2021, 62, 1–14. [Google Scholar] [CrossRef]
- Adolf, K. A new source of spontaneous sterility in winter rye-preliminary results. Proc. EUCARPIA Meet. Cereal Sect. Rye 1986, 1985, 11–13. [Google Scholar]
- Kobylianskii, V.D. Production of sterile analogues of winter rye varieties, sterile mantainers and fertile restorers. Trudy Po Prikladnoi Botanike Genetike Selektsii 1971, 76–85. [Google Scholar]
- Lapinski, M. Cytoplasmic-genic type of male sterility in Secale montanum Guss. Wheat Inf. Serv. 1972, 35, 25–28. [Google Scholar]
- Madej, L. Research on male sterility in rye. Hodowla Rosl Aklim Nasienn 1975, 10, 590–593. [Google Scholar]
- Melz, G.; Adolf, K. Genetic analysis of rye (Secale cereale L.) genetics of male sterility of the G-type. Theor. Appl. Genet. 1991, 82, 761–764. [Google Scholar] [CrossRef]
- Milczarski, P.; Hanek, M.; Tyrka, M.; Stojalowski, S. The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm. J. Appl. Genet. 2016, 57, 439–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojalowski, S.; Apińaski, M.; Masojć, P. RAPD markers linked with restorer genes for the C-sources of cytoplasmic male sterility in rye (Secale cereale L.). Plant Breed. 2004, 123, 428–433. [Google Scholar] [CrossRef]
- Stojalowski, S.; Jaciubek, M.; Masojć, P. Rye SCAR markers for male fertility restoration in the P cytoplasm are also applicable to marker-assisted selection in C cytoplasn. J. Appl. Genet. 2005, 46, 371–373. [Google Scholar] [PubMed]
- Yuan, Y. Umweltstabilität der Cytoplasmitsch-Genisch Vererbten Männlichen Sterilität (CMS) bei Roggen (Secale cereale L.); Verlag UE Grauer: Stuttgart, Germany, 1995. [Google Scholar]
- Geiger, H.H.; Yuan, Y.; Miedaner, T.; Wilde, P. Environmental sensitivity of cytoplasmic genic male sterility (CMS) in Secale cereale L. Fortschr. Pflanz. 1995, 18, 7–18. [Google Scholar]
- Kodisch, A.; Wilde, P.; Schmiedchen, B.; Fromme, F.-J.; Rodemann, B.; Tratwal, A.; Oberforster, M.; Wieser, F.; Schiemann, A.; Jørgensen, L.N.; et al. Ergot infection in winter rye hybrids shows differential contribution of male and female genotypes and environment. Euphytica 2020, 216, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Klotz, J.L. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins 2015, 7, 2801–2821. [Google Scholar] [CrossRef] [PubMed]
- Blaney, B.J.; Molloy, J.B.; Brock, I.J. Alkaloids in Australian rye ergot (Claviceps purpurea) sclerotia: Implication for food and stockfeed regulations. Anim. Prod. Sci. 2009, 49, 975–982. [Google Scholar] [CrossRef]
- Miedaner, T.; Mirdita, V.; Rodemann, B.; Drobeck, T.; Rentel, D. Genetic variation of winter rye cultivars for their ergot (Claviceps purpurea) reaction tested in a field design with minimized interplot interference. Plant Breed. 2010, 129, 58–62. [Google Scholar] [CrossRef]
- Geiger, H.H.; Miedaner, T. Genetic basis and phenotypic stability of male-fertility restoration in rye. Vorträge Pflanz. 1996, 27–38. [Google Scholar]
- Miedaner, T.; Wilde, P.; Wortmann, H. Combining ability of non-adapted sources for male-fertility restoration in Pampa CMS of hybrid rye. Plant Breed. 2004, 124, 39–43. [Google Scholar] [CrossRef]
- Falke, K.C.; Wilde, P.; Miedaner, T. Rye introgression lines as source of alleles for pollen-fertility restoration in pampa cms. Plant Breed. 2009, 128, 528–531. [Google Scholar] [CrossRef]
- Miedaner, T.; Herter, C.P.; Goßlau, H.; Wilde, P.; Hackauf, B.; Pillen, K. Correlated effects of exotic pollen-fertility restorer genes on agronomic and quality traits of hybrid rye. Plant Breed. 2017, 136, 224–229. [Google Scholar] [CrossRef]
- KWS. PollenPlus. Available online: https://www.kws.com/gb/en/products/cereals/hybrid-rye/pollenplus-kws-files-for-ergot-patent-in-hybrid-rye/ (accessed on 30 June 2021).
- Melz, G.; Melz, G.; Hartman, F. Genetics of a male-sterile rye of ‘G-type’ with results of the first F1-hybrids. Plant Breed. Seed Sci. 2003, 47, 47–55. [Google Scholar]
- Gaborieau, L.; Brown, G.G.; Mireau, H. The propensity of pentatricopeptide repeat genes to evolve into restorers of cytoplasmic male sterility. Front. Plant Sci. 2016, 7, 1816. [Google Scholar] [CrossRef] [Green Version]
- Gully, B.S.; Cowieson, N.; Stanley, W.A.; Shearston, K.; Small, I.D.; Barkan, A.; Bond, C.S. The solution structure of the pentatricopeptide repeat protein PPR10 upon binding atpH RNA. Nucleic Acids Res. 2015, 43, 1918–1926. [Google Scholar] [CrossRef] [Green Version]
- Schmitz-Linneweber, C.; Small, I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 2008, 13, 663–670. [Google Scholar] [CrossRef]
- Ban, T.; Ke, J.; Chen, R.; Gu, X.; Tan, M.H.; Zhou, X.E.; Kang, Y.; Melcher, K.; Zhu, J.K.; Xu, H.E. Structure of a PLS-class pentatricopeptide repeat protein provides insights into mechanism of RNA recognition. J. Biol. Chem. 2013, 288, 31540–31548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzolatti, C.; Bury, P.; Tatara, E.; Pin, P.A.; Rodde, N.; Bergès, H.; Budar, F.; Mireau, H.; Gielen, J.J.L. Map-based cloning of the fertility restoration locus Rfm1 in cultivated barley (Hordeum vulgare). Euphytica 2017, 213. [Google Scholar] [CrossRef] [Green Version]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Báez, M.; Houben, A.; Mayer, K.F.X.; Guo, L.; et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Yang, Y.; Feng, X.; Zhang, M.; Song, R. Mitochondrial function and maize kernel development requires Dek2, a pentatricopeptide repeat protein involved in nad1 mRNA splicing. Genetics 2017, 205, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.J.; Liu, X.; Chen, H.; Zheng, P.; Wang, W.; Wang, L.; Zhang, J.; Tu, J. A plastid-localized pentatricopeptide repeat protein is required for both pollen development and plant growth in rice. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Melonek, J.; Duarte, J.; Martin, J.; Beuf, L.; Murigneux, A.; Varenne, P.; Comadran, J.; Specel, S.; Levadoux, S.; Bernath-Levin, K.; et al. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat. Commun. 2021, 12, 1036. [Google Scholar] [CrossRef]
- Klein, R.R.; Klein, P.E.; Mullet, J.E.; Minx, P.; Rooney, W.L.; Schertz, K.F. Fertility restorer locus Rf1 [corrected] of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor. Appl. Genet. 2005, 111, 994–1012. [Google Scholar] [CrossRef]
- Beick, S.; Schmitz-Linneweber, C.; Williams-Carrier, R.; Jensen, B.; Barkan, A. The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol. Cell. Biol. 2008, 28, 5337–5547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazama, T.; Toriyama, K. A fertility restorer gene, Rf4, widely used for hybrid rice breeding encodes a pentatricopeptide repeat protein. Rice 2014, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, K.; Huang, W.; Liu, G.; Gao, Y.; Wang, J.; Huang, Q.; Ji, Y.; Qin, X.; Wan, L.; et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 2012, 24, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Yu, C.; Hu, J.; Wang, L.; Dan, Z.; Zhou, W.; He, C.; Zeng, Y.; Yao, G.; Qi, J.; et al. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc. Natl. Acad. Sci. USA 2015, 112, 14984–14989. [Google Scholar] [CrossRef] [Green Version]
- Barkan, A.; Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 2014, 65, 415–442. [Google Scholar] [CrossRef]
- Robles, P.; Quesada, V. Research progress in the molecular functions of plant mTERF proteins. Cells 2021, 10, 205. [Google Scholar] [CrossRef]
- Bernhard, T.; Koch, M.; Snowdon, R.J.; Friedt, W.; Wittkop, B. Undesired fertility restoration in msm1 barley associates with two mTERF genes. Theor. Appl. Genet. 2019, 132, 1335–1350. [Google Scholar] [CrossRef]
- Shahinnia, F.; Geyer, M.; Block, A.; Mohler, V.; Hartl, L. Identification of Rf9, a gene contributing to the genetic complexity of fertility restoration in hybrid wheat. Front. Plant Sci. 2020, 11, 1720. [Google Scholar] [CrossRef] [PubMed]
- Wilde, P.; Korzun, V.; Menzel, J.; Ruonan, Z.; Stein, N.; Hackauf, B. Restorer Plants. KWS SAAT SE. U.S. Patent App. 16/064304, 9 May 2019. [Google Scholar]
- Hackauf, B.; Korzun, V.; Wortmann, H.; Wilde, P.; Wehling, P. Development of conserved ortholog set markers linked to the restorer gene Rfp1 in rye. Mol. Breed. 2012, 30, 1507–1518. [Google Scholar] [CrossRef]
- Börner, A.; Korzun, V.; Polley, A.; Malyshev, S.; Melz, G. Genetics and molecular mapping of a male fertility restoration locus (Rfg1) in rye (Secale cereale L.). Theor. Appl. Genet. 1998, 97, 99–102. [Google Scholar] [CrossRef]
- Vendelbo, N.M.; Sarup, P.; Orabi, J.; Kristensen, P.S.; Jahoor, A. Genetic structure of a germplasm for hybrid breeding in rye (Secale cereale L.). PLoS ONE 2020, 15, e0239541. [Google Scholar] [CrossRef]
- Vilhjalmsson, B.J.; Nordborg, M. The nature of confounding in genome-wide association studies. Nat. Rev. Genet. 2013, 14, 1–2. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M.; et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, M.; Albrecht, T.; Hartl, L.; Mohler, V. Exploring the genetics of fertility restoration controlled by Rf1 in common wheat (Triticum aestivum L.) using high-density linkage maps. Mol. Genet. Genom. 2018, 293, 451–462. [Google Scholar] [CrossRef]
- Wurschum, T.; Leiser, W.L.; Weissmann, S.; Maurer, H.P. Genetic architecture of male fertility restoration of Triticum timopheevii cytoplasm and fine-mapping of the major restorer locus Rf3 on chromosome 1B. Theor. Appl. Genet. 2017, 130, 1253–1266. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojalowski, S.A.; Milczarski, P.; Hanek, M.; Bolibok-Bragoszewska, H.; Myskow, B.; Kilian, A.; Rakoczy-Trojanowska, M. DArT markers tightly linked with the Rfc1 gene controlling restoration of male fertility in the CMS-C system in cultivated rye (Secale cereale L.). J. Appl. Genet. 2011, 52, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Maan, S.S.; Luchen, K.A.; Bravo, J.M. Genetic analyses of male-fertility restoration in wheat. I. Chromosomal location of Rf genes 1. Crop. Sci. 1984, 24, 17–20. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Zhao, Y.H.; Sorrells, M.E. Inheritance and chromosomal locations of male fertility restoring gene transferred from Aegilops umbellulata Zhuk. to Triticum aestivum L. Mol. Gen. Genet. MGG 1995, 247, 351–357. [Google Scholar] [CrossRef]
- Du, H.; Maan, S.S.; Hammond, J.J. Genetic analysis of male-fertility restoration in wheat: III. Effects of aneuploidy. Crop. Sci. 1991, 31, 319–322. [Google Scholar] [CrossRef]
- Ui, H.; Sameri, M.; Pourkheirandish, M.; Chang, M.C.; Shimada, H.; Stein, N.; Komatsuda, T.; Handa, H. High-resolution genetic mapping and physical map construction for the fertility restorer Rfm1 locus in barley. Theor. Appl. Genet. 2015, 128, 283–290. [Google Scholar] [CrossRef]
- Martis, M.M.; Zhou, R.; Haseneyer, G.; Schmutzer, T.; Vrana, J.; Kubalakova, M.; Konig, S.; Kugler, K.G.; Scholz, U.; Hackauf, B.; et al. Reticulate evolution of the rye genome. Plant Cell 2013, 25, 3685–3698. [Google Scholar] [CrossRef] [Green Version]
- Itabashi, E.; Iwata, N.; Fujii, S.; Kazama, T.; Toriyama, K. The fertility restorer gene, Rf2, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J. 2011, 65, 359–367. [Google Scholar] [CrossRef]
- Fujii, S.; Toriyama, K. Suppressed expression of retrogrede-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc. Natl. Acad. Sci. USA 2009, 106, 9513–9518. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Schnable, P.S. Functional specialization of maize mitochondrial aldehyde dehydrogenases. Plant Physiol. 2002, 130, 1657–1674. [Google Scholar] [CrossRef] [Green Version]
- Jaqueth, J.S.; Hou, Z.; Zheng, P.; Ren, R.; Nagel, B.A.; Cutter, G.; Niu, X.; Vollbrecht, E.; Greene, T.W.; Kumpatla, S.P. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J. 2020, 101, 101–111. [Google Scholar] [CrossRef]
- Kitazaki, K.; Arakawa, T.; Matsunaga, M.; Yui-Kurino, R.; Matsuhira, H.; Mikami, T.; Kubo, T. Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet (Beta vulgaris). Plant J. 2015, 83, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luptovčiak, I.; Samakovli, D.; Komis, G.; Šamaj, J. KATANIN1 is essential for embryogenesis and seed formation in Arabidopsis. Front. Plant Sci. 2017, 8, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, D.N.; Bantin, J.; Dresselhaus, T. The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol. 2004, 134, 1069–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L. A MADS-box transcription factor related to fertility conversion in male sterile wheat lines. Acta Agron. Sin. 2008, 34, 598. [Google Scholar] [CrossRef]
- Linke, B.; Nothnagel, T.; Börner, T. Flower development in carrot CMS plants: Mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J. 2003, 34, 27–37. [Google Scholar] [CrossRef]
- Zou, M.; Guan, Y.; Ren, H.; Zhang, F.; Chen, F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol. 2008, 66, 675–683. [Google Scholar] [CrossRef]
- Pan, Z.; Ren, X.; Zhao, H.; Liu, L.; Tan, Z.; Qiu, F. A mitochondrial transcription termination factor, ZmSmk3, is required for nad1 intron4 and nad4 intron1 splicing and kernel development in maize. G3 Genes Genomes Genet. 2019, 9, 2677–2686. [Google Scholar] [CrossRef] [Green Version]
- Lapinski, M.; Stojalowski, S. The C-source of sterility-inducing cytoplasm in rye: Origin, identity and occurrence. Vorträge Pflanz. 1996, 35, 51–60. [Google Scholar]
- Warsecha, R.; Salak-Warzecha, K. Comparative studies on CMS sources in rye. Vorträge Pflanz. 1996, 35, 39–49. [Google Scholar]
- USDA. United States Department of Agriculture: Wheat and Barley DNA Extraction Protocol (96-Well Plate Format). Available online: https://www.ars.usda.gov/ARSUserFiles/60701500/SmallGrainsGenotypingLaboratory/Protocols/wheat%20and%20barleyDNA%20extraction_original.pdf (accessed on 7 July 2021).
- Pallotta, M.A.; Warner, P.; Fox, R.L.; Kuchel, H.; Jefferies, S.J.; Langridge, P. Marker assisted wheat breeding in the southern region of Australia. Proc. Tenth Int. Wheat Genet. Symp. 2003, 789–791. [Google Scholar]
- McHugh, M.L. The chi-square test of independence. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Haseneyer, G.; Schmutzer, T.; Seidel, M.; Zhou, R.; Mascher, M.; Schon, C.C.; Taudien, S.; Scholz, U.; Stein, N.; Mayer, K.F.; et al. From RNA-seq to large-scale genotyping-genomics resources for rye (Secale cereale L.). BMC Plant Biol. 2011, 11, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, E.; Schmutzer, T.; Barilar, I.; Mascher, M.; Gundlach, H.; Martis, M.M.; Twardziok, S.O.; Hackauf, B.; Gordillo, A.; Wilde, P.; et al. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J. 2017, 89, 853–869. [Google Scholar] [CrossRef] [Green Version]
- NCBI. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov (accessed on 13 June 2021).
- Clayton, D. snpStats: SnpMatrix and XSnpMatrix Classes and Methods. R Package Version 1.36.0. 2019. Available online: https://rdrr.io/bioc/snpStats/ (accessed on 7 July 2021).
- Rstudio Team. Rstudio: Integrated development for R. RStudio, Inc., Boston. 2015. Available online: http://www.rstudio.com (accessed on 15 June 2021).
- R Core Team. R a Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 13 June 2021).
- Granato, I.S.C.; Galli, G.; de Oliveira Couto, E.G.; e Souza, M.B.; Mendonça, L.F.; Fritsche-Neto, R. snpReady: A tool to assist breeders in genomic analysis. Mol. Breed. 2018, 38, 102. [Google Scholar] [CrossRef]
- Mahmood, K.; Orabi, J.; Kristensen, P.S.; Sarup, P.; Jorgensen, L.N.; Jahoor, A. De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea). Sci. Rep. 2020, 10, 13475. [Google Scholar] [CrossRef] [PubMed]
Chromosome | Position (Mbp) | Gene Length (bp) | Annotation | Expression | |
---|---|---|---|---|---|
cv. Helltop | cv. Stannos | ||||
1R | 42.9 | 822 | PPR (P Type) | ||
46.2 | 2091 | RFL-PPR (P Type) | |||
46.2 | 2613 | RFL-PPR (P Type) | |||
46.3 | 2601 | RFL-PPR (P Type) | |||
46.9 | 2487 | RFL-PPR (P Type) | |||
47.1 | 2490 | RFL-PPR (P Type) | |||
47.1 | 1833 | RFL-PPR (P Type) | |||
51.9 | 1659 | PPR (P Type) | |||
61.1 | 417 | RFL-PPR (P Type) | |||
61.3 | 287 | PPR (P Type) | |||
61.3 | 213 | PPR (P Type) | |||
61.5 | 2499 | RFL-PPR (P Type) | |||
61.5 | 1866 | mTERF | |||
61.8 | 2472 | RFL-PPR (P Type) | |||
61.9 | 2448 | RFL-PPR (P Type) | |||
61.9 | 1460 | RFL-PPR (P Type) | |||
61.9 | 2451 | RFL-PPR (P Type) | |||
62.0 | 2499 | RFL-PPR (P Type) | |||
70.8 | 510 | mTERF-like | |||
70.8 | 540 | mTERF-like | |||
3R | 731.7 | 462 | mTERF | ||
733.4 | 1986 | PPR (PLS Type) | |||
738.4 | 1743 | PPR (PLS Type) | |||
743.7 | 1461 | PPR (PLS Type) | |||
751.6 | 1356 | PPR (PLS Type) | |||
752.1 | 1548 | PPR (PLS Type) | |||
759.7 | 825 | PPR (PLS Type) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vendelbo, N.M.; Mahmood, K.; Sarup, P.; Kristensen, P.S.; Orabi, J.; Jahoor, A. Genomic Scan of Male Fertility Restoration Genes in a ‘Gülzow’ Type Hybrid Breeding System of Rye (Secale cereale L.). Int. J. Mol. Sci. 2021, 22, 9277. https://doi.org/10.3390/ijms22179277
Vendelbo NM, Mahmood K, Sarup P, Kristensen PS, Orabi J, Jahoor A. Genomic Scan of Male Fertility Restoration Genes in a ‘Gülzow’ Type Hybrid Breeding System of Rye (Secale cereale L.). International Journal of Molecular Sciences. 2021; 22(17):9277. https://doi.org/10.3390/ijms22179277
Chicago/Turabian StyleVendelbo, Nikolaj Meisner, Khalid Mahmood, Pernille Sarup, Peter Skov Kristensen, Jihad Orabi, and Ahmed Jahoor. 2021. "Genomic Scan of Male Fertility Restoration Genes in a ‘Gülzow’ Type Hybrid Breeding System of Rye (Secale cereale L.)" International Journal of Molecular Sciences 22, no. 17: 9277. https://doi.org/10.3390/ijms22179277
APA StyleVendelbo, N. M., Mahmood, K., Sarup, P., Kristensen, P. S., Orabi, J., & Jahoor, A. (2021). Genomic Scan of Male Fertility Restoration Genes in a ‘Gülzow’ Type Hybrid Breeding System of Rye (Secale cereale L.). International Journal of Molecular Sciences, 22(17), 9277. https://doi.org/10.3390/ijms22179277