Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Zebrafish Husbandry
4.1.1. Melanophore Assay: Dish Protocol
4.1.2. Melanophore Assay: Restriction Array Protocol
4.2. Peptides and Reagents
4.3. Statistics and Data Analysis
4.4. Molecular Modeling of a Receptor-Peptide Ligand Complex
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Loram, L.C.; Culp, M.E.; Connolly-Strong, E.C.; Sturgill-Koszycki, S. Melanocortin Peptides: Potential Targets in Systemic Lupus Erythematosus. Inflammation 2015, 38, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNeil, D.J.; Howard, A.D.; Guan, X.; Fong, T.M.; Nargund, R.P.; Bednarek, M.A.; Goulet, M.T.; Weinberg, D.H.; Strack, A.M.; Marsh, D.J.; et al. “The role of melanocortins in body weight regulation: Opportunities for the treatment of obesity. ” Eur. J. Pharmacol. 2002, 450, 93–109. [Google Scholar] [CrossRef]
- Geracioti, T.; Strawn, J.; Ekhator, N.; Wortman, M.; Kasckow, J. Neuroregulatory Peptides of Central Nervous System Origin: From Laboratory to Clinic. Horm. Brain Behav. 2009, 2541–2599. [Google Scholar]
- Autelitano, D.J.; Lundblud, J.R.; Blum, M.; Roberts, J.L. Hormonal Regulation of POMC Gene Expression. Annu. Rev. Physiol. 1989, 51, 715–726. [Google Scholar] [CrossRef]
- Li, K.; Zhao, N.; Zhang, B.; Jia, L.; Liu, K.; Wang, Q.; He, X.; Bao, B. Identification and characterization of the melanocortin 1 receptor gene (MC1R) in hypermelanistic Chinese tongue sole (Cynoglossus semilaevis). Fish Physiol. Biochem. 2020, 46, 881–890. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zimmer, M.A.; Guardia, T.; Callahan, S.J.; Mondal, C.; Di Martino, J.; Takagi, T.; Fennell, M.; Garippa, R.; Campbell, N.; et al. Distant Insulin Signaling Regulates Vertebrate Pigmentation through the Sheddase Bace2. Dev. Cell 2018, 45, 580–594.e7. [Google Scholar] [CrossRef] [Green Version]
- Minakova, E.; Lang, J.; Medel-Matus, J.-S.; Gould, G.G.; Reynolds, A.; Shin, D.; Mazarati, A.; Sankar, R. Melanotan-II reverses autistic features in a maternal immune activation mouse model of autism. PLoS ONE 2019, 14, e0210389. [Google Scholar] [CrossRef] [Green Version]
- Buitelaar, J.K.; Van Engeland, H.; Van Ree, J.M.; De Wied, D. Behavioral effects of Org 2766, a synthetic analog of the adrenocorticotrophic hormone (4-9), in 14 outpatient autistic children. J. Autism Dev. Disord. 1990, 20, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Kanner, L. Autistic disturbances of affective contact. J. Nerv. Child 1943, 2, 217–250. [Google Scholar]
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism Spectrum Disorder: Classification, diagnosis and therapy. J. Pharmacol. Ther. 2018, 190, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, A.; Skelly, C.; Rohleder, P. Challenges faced by parents of children diagnosed with autism spectrum disorder. J. Health Psychol. 2011, 17, 702–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolognani, F.; del Valle Rubido, M.; Squassante, L.; Wandel, C.; Derks, M.; Murtagh, L.; Sevigny, J.; Khwaja, O.; Umbricht, D.; Fontoura, P. A phase 2 clinical trial of a vasopressin V1a receptor antagonist shows improved adaptive behaviors in men with autism spectrum disorder. Sci. Transl. Med. 2019, 11, eaat7838. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.J.; Oztan, O.; Libove, R.A.; Mohsin, N.; Karhson, D.S.; Sumiyoshi, R.D.; Summers, J.E.; Hinman, K.E.; Motonaga, K.S.; Phillips, J.M.; et al. A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism. Sci. Transl. Med. 2019, 11, eaau7356. [Google Scholar] [CrossRef]
- Sandman, C.A.; Walker, B.B.; Lawton, C.A. An analog of MSH/ACTH 4–9 enhances interpersonal and environmental awareness in mentally retarded adults. Peptides 1980, 1, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Modi, M.E.; Inoue, K.; E Barrett, C.; A Kittelberger, K.; Smith, D.G.; Landgraf, R.; Young, L.J. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole. Neuropsychopharmacology 2015, 40, 1856–1865. [Google Scholar] [CrossRef] [Green Version]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.O.; Brock, A.J.; Walton, R.T.; Brennan, C.H. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front. Neural Circuits 2013, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nat. Cell Biol. 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-R.; Khan, K.; Armfield-Uhas, K.; Srikanth, S.; Thompson, N.A.; Pardo, M.; Yu, L.; Norris, J.W.; Peng, Y.; Gripp, K.W.; et al. Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy. Nat. Commun. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Choi, J.-H.; Jeong, Y.-M.; Kim, S.; Lee, B.; Ariyasiri, K.; Kim, H.-T.; Jung, S.-H.; Hwang, K.-S.; Choi, T.-I.; O Park, C.; et al. Targeted knockout of a chemokine-like gene increases anxiety and fear responses. Proc. Natl. Acad. Sci. USA 2018, 115, E1041–E1050. [Google Scholar] [CrossRef] [Green Version]
- Kim, O.-H.; Cho, H.-J.; Han, E.; Hong, T.I.; Ariyasiri, K.; Choi, J.-H.; Hwang, K.-S.; Jeong, Y.-M.; Yang, S.-Y.; Yu, K.; et al. Zebrafish knockout of Down syndrome gene, DYRK1A, shows social impairments relevant to autism. Mol. Autism 2017, 8, 50. [Google Scholar] [CrossRef]
- Oktar, B.K. The actıons of the a-melanocyte stimulating hormone (a-msh) in inflammatory conditions. Marmara Med. J. 2001, 14, 113–118. [Google Scholar]
- Bischel, L.L.; Mader, B.R.; Green, J.M.; Huttenlocher, A.; Beebe, D.J. Zebrafish Entrapment By Restriction Array (ZEBRA) device: A low-cost, agarose-free zebrafish mounting technique for automated imaging. Lab Chip 2013, 13, 1732–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyder, N.A.; Kleinau, G.; Speck, D.; Scmidt, A.; Paisdzior, S.; Szczepek, M.; Bauer, B.; Koch, A.; Gallandi, M.; Kwiatkowski, D.; et al. Structures of active melanocortin-4 receptor—Gs-protein complexes with NDP-α-MSH and setmelanotide. bioRxiv 2021. [Google Scholar] [CrossRef]
- Ma, S.; Chen, Y.; Chen, A.; Yin, W.; Guo, J.; Yang, D.; Zhou, F.; Jiang, Y.; Wang, M.W.; Xu, H.E. Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor. bioRxiv 2021. [Google Scholar] [CrossRef]
- Kleinau, G.; Heyder, N.A.; Tao, Y.-X.; Scheerer, P. Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int. J. Mol. Sci. 2020, 21, 5728. [Google Scholar] [CrossRef]
- Cal, L.; Suarez-Bregua, P.; Cerdá-Reverter, J.M.; Braasch, I.; Rotllant, J. Fish pigmentation and the melanocortin system. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2017, 211, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Malek, Z.; Scott, M.C.; Suzuki, I.; Tada, A.; Im, S.; Lamoreux, L.; Ito, S.; Barsh, G.; Hearing, V.J. The melanocortin-1 receptor is a key regulator of human cutaneous pigmentation. Pigment. Cell Res. 2000, 13, 156–162. [Google Scholar] [CrossRef]
- Sawyer, T.K.; Sanfilippo, P.J.; Hruby, V.J.; Engel, M.H.; Heward, C.B.; Burnett, J.B.; Hadley, M.E. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: A highly potent alpha-melanotropin with ultralong biological activity. Proc. Natl. Acad. Sci. USA 1980, 77, 5754–5758. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, N.; Caquineau, C.; Dayanithi, G.; Bull, P.; Douglas, A.J.; Guan, X.M.M.; Jiang, M.; Van Der Ploeg, L.; Leng, G. α-Melanocyte-Stimulating Hormone Stimulates Oxytocin Release from the Dendrites of Hypothalamic Neurons While Inhibiting Oxytocin Release from Their Terminals in the Neurohypophysis. J. Neurosci. 2003, 23, 10351–10358. [Google Scholar] [CrossRef] [Green Version]
- Churchland, P.S.; Winkielman, P. Modulating social behavior with oxytocin: How does it work? What does it mean? Horm. Behav. 2012, 61, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; López, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, T.I.; Hwang, K.-S.; Choi, T.-I.; Kleinau, G.; Scheerer, P.; Bang, J.K.; Jung, S.-H.; Kim, C.-H. Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity. Int. J. Mol. Sci. 2021, 22, 9313. https://doi.org/10.3390/ijms22179313
Hong TI, Hwang K-S, Choi T-I, Kleinau G, Scheerer P, Bang JK, Jung S-H, Kim C-H. Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity. International Journal of Molecular Sciences. 2021; 22(17):9313. https://doi.org/10.3390/ijms22179313
Chicago/Turabian StyleHong, Ted I., Kyu-Seok Hwang, Tae-Ik Choi, Gunnar Kleinau, Patrick Scheerer, Jeong Kyu Bang, Seung-Hyun Jung, and Cheol-Hee Kim. 2021. "Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity" International Journal of Molecular Sciences 22, no. 17: 9313. https://doi.org/10.3390/ijms22179313
APA StyleHong, T. I., Hwang, K. -S., Choi, T. -I., Kleinau, G., Scheerer, P., Bang, J. K., Jung, S. -H., & Kim, C. -H. (2021). Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity. International Journal of Molecular Sciences, 22(17), 9313. https://doi.org/10.3390/ijms22179313