Supercritical Antisolvent Fractionation of Antioxidant Compounds from Salvia officinalis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields
2.2. Supercritical Antisolvent Fractionation (SAF) Processes
2.3. SAF Yields Statistical Analysis
2.4. Enrichment Ratios Statistical Analysis
2.5. COSMO-RS as Screening Model for Antioxidants
3. Material and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Supercritical CO2 Extraction (SFE)
3.4. Maceration and Supercritical Antisolvent Fractionation (SAF) Processes
3.5. HPLC Analysis
3.6. Experimental Design and Statistical Analysis
3.7. QSAR Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, D.N. Essential Oils Extracted from Medicinal Plants and Their Applications; Akhtar, M.S., Swamy, M.K., Sinniah, U.R., Eds.; Springer: Singapore, 2019; pp. 237–283. ISBN 9789811371547. [Google Scholar]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.R.K.; Mahomoodally, M.F. Chemistry, Bioactivities, Mode of Action and Industrial Applications of Essential Oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Carpena, M.; Nunez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Supercritical Fluid Extraction and Fractionation of Natural Matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Nagavekar, N.; Dubey, K.; Sharma, A.; Singhal, R.S. 2.41—Supercritical Extraction of Valued Components from Animals Parts. In Innovative Food Processing Technologies; Elsevier: Oxford, UK, 2021; pp. 597–619. ISBN 978-0-12-815782-4. [Google Scholar]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of Bioactive Compounds and Essential Oils from Mediterranean Herbs by Conventional and Green Innovative Techniques: A Review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and Supercritical Fluid Extraction of Functional Ingredients from Different Natural Sources: Plants, Food-by-Products, Algae and Microalgae A Review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Casas, L.; Mantell, C.; Rodríguez, M.; Torres, A.; Macías, F.A.; Martínez de la Ossa, E. Extraction of Natural Compounds with Biological Activity from Sunflower Leaves Using Supercritical Carbon Dioxide. Chem. Eng. J. 2009, 152, 301–306. [Google Scholar] [CrossRef]
- Coelho, J.P.; Cristino, A.F.; Matos, P.G.; Rauter, A.P.; Nobre, B.P.; Mendes, R.L.; Barroso, J.G.; Mainar, A.; Urieta, J.S.; Fareleira, J.M.N.A.; et al. Extraction of Volatile Oil from Aromatic Plants with Supercritical Carbon Dioxide: Experiments and Modeling. Molecules 2012, 17, 10550–10573. [Google Scholar] [CrossRef]
- Rebolleda, S.; Rubio, N.; Beltrán, S.; Sanz, M.T.; González-Sanjosé, M.L. Supercritical Fluid Extraction of Corn Germ Oil: Study of the Influence of Process Parameters on the Extraction Yield and Oil Quality. J. Supercrit. Fluids 2012, 72, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Langa, E.; Cacho, J.; Palavra, A.M.F.; Burillo, J.; Mainar, A.M.; Urieta, J.S. The Evolution of Hyssop Oil Composition in the Supercritical Extraction Curve. J. Supercrit. Fluids 2009, 49, 37–44. [Google Scholar] [CrossRef]
- Langa, E.; Porta, G.D.; Palavra, A.M.F.; Urieta, J.S.; Mainar, A.M. Supercritical Fluid Extraction of Spanish Sage Essential Oil: Optimization of the Process Parameters and Modelling. J. Supercrit. Fluids 2009, 49, 174–181. [Google Scholar] [CrossRef]
- Martín, L.; Mainar, A.M.; González-Coloma, A.; Burillo, J.; Urieta, J.S. Supercritical Fluid Extraction of Wormwood (Artemisia absinthium L.). J. Supercrit. Fluids 2011, 56, 64–71. [Google Scholar] [CrossRef]
- Martín, L.; González-Coloma, A.; Díaz, C.E.; Mainar, A.M.; Urieta, J.S. Supercritical CO2 Extraction of Persea indica: Effect of Extraction Parameters, Modelling and Bioactivity of Its Extracts. J. Supercrit. Fluids 2011, 57, 120–128. [Google Scholar] [CrossRef]
- García-Abarrio, S.M.; Martin, L.; Burillo, J.; Porta, G.D.; Mainar, A.M. Supercritical Fluid Extraction of Volatile Oil from Lippia alba (Mill.) Cultivated in Aragón (Spain). J. Supercrit. Fluids 2014, 94, 206–211. [Google Scholar] [CrossRef]
- Trabelsi, D.; Aydi, A.; Zibetti, A.W.; Della Porta, G.; Scognamiglio, M.; Cricchio, V.; Langa, E.; Abderrabba, M.; Mainar, A.M. Supercritical Extraction from Citrus aurantium amara Peels Using CO2 with Ethanol as Co-Solvent. J. Supercrit. Fluids 2016, 117, 33–39. [Google Scholar] [CrossRef]
- Micic, V.; Lepojević, Ž.; Jotanoviaæ, M.; Tadić, G.; Pejovic, B. Supercritical Extraction of Salvia officinalis L. J. Appl. Sci. 2011, 11, 3630–3634. [Google Scholar] [CrossRef]
- Arranz, E.; Jaime, L.; Lopez de la Hazas, M.C.; Vicente, G.; Reglero, G.; Santoyo, S. Supercritical Sage Extracts as Anti-Inflammatory Food Ingredients. Ind. Crop. Prod. 2014, 54, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Micic, V.; Suzana, Y.; Damjanovic, V.; Chan, Y. Kinetic Modeling of Supercritical Carbon Dioxide Extraction of Sage (Salvia officinalis L.) Leaves and Jatropha (Jatropha curcas L.) Seeds. J. Supercrit. Fluids 2015, 100, 18. [Google Scholar] [CrossRef]
- Jokic, S.; Molnar, M.; Jakovljevic, M.; Aladic, K.; Jerkovic, I. Optimization of Supercritical CO2 Extraction of Salvia officinalis L. Leaves Targeted on Oxygenated Monoterpenes, Alpha-Humulene, Viridiflorol and Manool. J. Supercrit. Fluids 2018, 133, 253–262. [Google Scholar] [CrossRef]
- Pavic, V.; Jakovljevic, M.; Molnar, M.; Jokic, S. Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Leaves by Supercritical Fluid Extraction and Their Antioxidant and Antibacterial Activity. Plants 2019, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Temerdashev, Z.A.; Milevskaya, V.V.; Ryabokon, L.P.; Latin, N.N.; Kiseleva, N.V.; Nagalevskii, M.V. Identification and Determination of the Components of Garden Sage (Salvia officinalis L.) Essential Oil, Isolated by Different Extraction Methods. J. Anal. Chem. 2020, 75, 1451–1460. [Google Scholar] [CrossRef]
- Gimenez-Rota, C.; Langa, E.; Urieta, J.S.; Hernaiz, M.J.; Mainar, A.M. Supercritical Antisolvent Fractionation of Antioxidant Compounds from Lavandula luisieri (Rozeira) Riv.-Mart. J. Supercrit. Fluids 2020, 161, 104821. [Google Scholar] [CrossRef]
- Martin, L.; Gonzalez-Coloma, A.; Adami, R.; Scognamiglio, M.; Reverchon, E.; Della Porta, G.; Urieta, J.S.; Mainar, A.M. Supercritical Antisolvent Fractionation of Ryanodol from Persea indica. J. Supercrit. Fluids 2011, 60, 16–20. [Google Scholar] [CrossRef]
- Marques, J.L.; Della Porta, G.; Reverchon, E.; Renuncio, J.A.R.; Mainar, A.M. Supercritical Antisolvent Extraction of Antioxidants from Grape Seeds after Vinification. J. Supercrit. Fluids 2013, 82, 238–243. [Google Scholar] [CrossRef]
- Langa, E.; Pardo, J.I.; Gimenez-Rota, C.; Gonzalez-Coloma, A.; Hernaiz, M.J.; Mainar, A.M. Supercritical Anti-Solvent Fractionation of Artemisia absinthium L. Conventional Extracts: Tracking Artemetin and Casticin. J. Supercrit. Fluids 2019, 151, 15–23. [Google Scholar] [CrossRef]
- Ganan, N.; Brignole, E.A. Supercritical Carbon Dioxide Fractionation of T. Minuta and S. Officinalis Essential Oils: Experiments and Process Analysis. J. Supercrit. Fluids 2013, 78, 12–20. [Google Scholar] [CrossRef]
- Sovova, H. Mathematical Model for Supercritical Fluid Extraction of Natural Products and Extraction Curve Evaluation. J. Supercrit. Fluids 2005, 33, 35–52. [Google Scholar] [CrossRef]
- Werling, J.O.; Debenedetti, P.G. Numerical Modeling of Mass Transfer in the Supercritical Antisolvent Process: Miscible Conditions. J. Supercrit. Fluids 2000, 18, 11–24. [Google Scholar] [CrossRef]
- Cardoso, M.A.T.; Cabral, J.M.S.; Palavra, A.M.F.; Geraldes, V. CFD Analysis of Supercritical Antisolvent (SAS) Micronization of Minocycline Hydrochloride. J. Supercrit. Fluids 2008, 47, 247–258. [Google Scholar] [CrossRef]
- Teresa Fernandez-Ponce, M.; Masmoudi, Y.; Djerafi, R.; Casas, L.; Mantell, C.; Martinez de la Ossa, E.; Badens, E. Particle Design Applied to Quercetin Using Supercritical Anti-Solvent Techniques. J. Supercrit. Fluids 2015, 105, 119–127. [Google Scholar] [CrossRef]
- Prosapio, V.; Reverchon, E.; De Marco, I. Coprecipitation of Polyvinylpyrrolidone/Beta-Carotene by Supercritical Antisolvent Processing. Ind. Eng. Chem. Res. 2015, 54, 11568–11575. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Mezzomo, N.; Gomes, C.; Ferreira, S.R.S. Encapsulation of Passion Fruit Seed Oil by Means of Supercritical Antisolvent Process. J. Supercrit. Fluids 2017, 129, 96–105. [Google Scholar] [CrossRef]
- Ozkan, G.; Franco, P.; Capanoglu, E.; De Marco, I. PVP/Flavonoid Coprecipitation by Supercritical Antisolvent Process. Chem. Eng. Process. 2019, 146, 107689. [Google Scholar] [CrossRef]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) Is Not Monophyletic: Implications for the Systematics, Radiation, and Ecological Specializations of Salvia and Tribe Mentheae. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef]
- European Medicines Agency. European Union Herbal Monograph on Salvia officinalis L., Folium. Off. J. Eur. Union 2016, 44, 8. [Google Scholar]
- El Euch, S.K.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis Essential Oil: Chemical Analysis and Evaluation of Anti-Enzymatic and Antioxidant Bioactivities. S. Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Khiya, Z.; Hayani, M.; Gamar, A.; Kharchouf, S.; Amine, S.; Berrekhis, F.; Bouzoubae, A.; Zair, T.; El Hilali, F. Valorization of the Salvia officinalis L. of the Morocco Bioactive Extracts: Phytochemistry, Antioxidant Activity and Corrosion Inhibition. J. King Saud Univ. Sci. 2019, 31, 322–335. [Google Scholar] [CrossRef]
- Moreira, M.R.; Souza, A.B.; Moreira, M.A.; Bianchi, T.C.; Carneiro, L.J.; Estrela, F.T.; dos Santos, R.A.; Januario, A.H.; Martins, C.H.G.; Ambrosio, S.R.; et al. RP-HPLC Analysis of Manool-Rich Salvia officinalis Extract and Its Antimicrobial Activity against Bacteria Associated with Dental Caries. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 2013, 23, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.-F.; Zhao, R.-N.; Dong, L.-J.; Zhao, X.-Y.; Su, J.-X.; Zhao, M.; Li, L.; Bian, Y.-J.; Zhang, L.-J. Dual-Cooled Solvent-Free Microwave Extraction of Salvia officinalis L. Essential Oil and Evaluation of Its Antimicrobial Activity. Ind. Crop. Prod. 2018, 120, 71–76. [Google Scholar] [CrossRef]
- Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Rosselli, S.; Bruno, M. Chemical Composition and Anticancer Activity of Essential Oils of Mediterranean Sage (Salvia officinalis L.) Grown in Different Environmental Conditions. Food Chem. Toxicol. 2013, 55, 42–47. [Google Scholar] [CrossRef]
- Pedro, D.F.N.; Ramos, A.A.; Lima, C.F.; Baltazar, F.; Pereira-Wilson, C. Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation. Phytother. Res. 2016, 30, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Abad, A.N.A.; Nouri, M.H.K.; Tavakkoli, F. Effect of Salvia officinalis Hydroalcoholic Extract on Vincristine-Induced Neuropathy in Mice. Chin. J. Nat. Med. 2011, 9, 354–358. [Google Scholar] [CrossRef]
- Miroddi, M.; Navarra, M.; Quattropani, M.C.; Calapai, F.; Gangemi, S.; Calapai, G. Systematic Review of Clinical Trials Assessing Pharmacological Properties of Salvia Species on Memory, Cognitive Impairment and Alzheimer’s Disease. CNS Neurosci. Ther. 2014, 20, 485–495. [Google Scholar] [CrossRef]
- European Chemical Agency. Sage, Salvia Officinalis, ext.—Substance Information—ECHA. Available online: https://echa.europa.eu/es/substance-information/-/substanceinfo/100.074.545 (accessed on 7 December 2020).
- European Comission. CosIng, Salvia Officinalis Extract. Available online: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.details_v2&id=80200 (accessed on 7 December 2020).
- Vosoughi, N.; Gomarian, M.; Pirbalouti, A.G.; Khaghani, S.; Malekpoor, F. Essential Oil Composition and Total Phenolic, Flavonoid Contents, and Antioxidant Activity of Sage (Salvia officinalis L.) Extract under Chitosan Application and Irrigation Frequencies. Ind. Crop. Prod. 2018, 117, 366–374. [Google Scholar] [CrossRef]
- Ivanovic, J.; Dilas, S.; Jadranin, M.; Vajs, V.; Babovic, N.; Petrovic, S.; Zizovic, I. Supercritical Carbon Dioxide Extraction of Antioxidants from Rosemary (Rosmarinus officinalis L.) and Sage (Salvia officinalis L.). J. Serb. Chem. Soc. 2009, 74, 717–732. [Google Scholar] [CrossRef]
- Glisic, S.; Ivanovic, J.; Ristic, M.; Skala, D. Extraction of Sage (Salvia officinalis L.) by Supercritical CO2: Kinetic Data, Chemical Composition and Selectivity of Diterpenes. J. Supercrit. Fluids 2010, 52, 62–70. [Google Scholar] [CrossRef]
- Menaker, A.; Kravets, M.; Koel, M.; Orav, A. Identification and Characterization of Supercritical Fluid Extracts from Herbs. Comptes Rendus Chim. 2004, 7, 629–633. [Google Scholar] [CrossRef]
- Babovic, N.; Djilas, S.; Jadranin, M.; Vajs, V.; Ivanovic, J.; Petrovic, S.; Zizovic, I. Supercritical Carbon Dioxide Extraction of Antioxidant Fractions from Selected Lamiaceae Herbs and Their Antioxidant Capacity. Innov. Food Sci. Emerg. Technol. 2010, 11, 98–107. [Google Scholar] [CrossRef]
- Baldyga, J. Mixing and Fluid Dynamics Effects in Particle Precipitation Processes. KONA Powder Part. J. 2016, 127–149. [Google Scholar] [CrossRef] [Green Version]
- Al-matar, A.; Sweis, F.K. Thermodynamics of Supercritical Fluid Extraction of Some Dyes and Pharmaceutical Compounds Using the Weighting Matrix Approach. Chem. Prod. Process. Model. 2010, 5, 1422. [Google Scholar] [CrossRef]
- Davarnejad, R.; Kassim, K.M.; Zainal, A.; Sata, S.A. Thermodynamic Model Used to Predict Supercritical Carbon Dioxide Separation of an Ethanol-Octane Mixture: Feasibility Studies. Int. J. Thermodyn. 2009, 12, 51–59. [Google Scholar] [CrossRef]
- Wang, M.F.; Li, J.G.; Rangarajan, M.; Shao, Y.; LaVoie, E.J.; Huang, T.C.; Ho, C.T. Antioxidative Phenolic Compounds from Sage (Salvia officinalis). J. Agric. Food Chem. 1998, 46, 4869–4873. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Rosmarinic Acid Derivatives from Salvia Officinalis. Phytochemistry 1999, 51, 91–94. [Google Scholar] [CrossRef]
- Nicolai, M.; Pereira, P.; Vitor, R.F.; Reis, C.P.; Roberto, A.; Rijo, P. Antioxidant Activity and Rosmarinic Acid Content of Ultrasound-Assisted Ethanolic Extracts of Medicinal Plants. Measurement 2016, 89, 328–332. [Google Scholar] [CrossRef]
- Sulniute, V.; Pukalskas, A.; Venskutonis, P.R. Phytochemical Composition of Fractions Isolated from Ten Salvia Species by Supercritical Carbon Dioxide and Pressurized Liquid Extraction Methods. Food Chem. 2017, 224, 37–47. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, K.I. Evaluation of Antioxidant Activity, Total Phenols and Phenolic Compounds in Thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and Marjoram (Origanum majorana L.) Extracts. Ind. Crop. Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Urbaniak, A.; Kujawski, J.; Czaja, K.; Szelag, M. Antioxidant Properties of Several Caffeic Acid Derivatives: A Theoretical Study. Comptes Rendus Chim. 2017, 20, 1072–1082. [Google Scholar] [CrossRef]
- Agunloye, O.M.; Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Akindahunsi, A.A.; Oyagbemi, A.A.; Omobowale, T.O.; Ajibade, T.O.; Adedapo, A.A. Cardio-Protective and Antioxidant Properties of Caffeic Acid and Chlorogenic Acid: Mechanistic Role of Angiotensin Converting Enzyme, Cholinesterase and Arginase Activities in Cyclosporine Induced Hypertensive Rats. Biomed. Pharmacother. 2019, 109, 450–458. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-Like Screening Model for Real Solvents—A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A. COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics. In 28th European Symposium on Computer Aided Process Engineering; Friedl, A., Klemes, J.J., Radl, S., Varbanov, P.S., Wallek, T., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2018; Volume 43, pp. 9–10. ISBN 978-0-444-64235-6. [Google Scholar]
- Palomar, J.; Torrecilla, J.S.; Ferro, V.R.; Rodriguez, F. Development of an a Priori Ionic Liquid Design Tool. 2. Ionic Liquid Selection through the Prediction of COSMO-RS Molecular Descriptor by Inverse Neural Network. Ind. Eng. Chem. Res. 2009, 48, 2257–2265. [Google Scholar] [CrossRef]
- Lemaoui, T.; Hammoudi, N.E.H.; Alnashef, I.M.; Balsamo, M.; Erto, A.; Ernst, B.; Benguerba, Y. Quantitative Structure Properties Relationship for Deep Eutectic Solvents Using S Sigma-Profile as Molecular Descriptors. J. Mol. Liq. 2020, 309, 113165. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Zhang, X.; Zhang, S. A Quantitative Prediction of the Viscosity of Ionic Liquids Using S Sigma-Profile Molecular Descriptors. Phys. Chem. Chem. Phys. 2015, 17, 3761–3767. [Google Scholar] [CrossRef]
- Benguerba, Y.; Alnashef, I.M.; Erto, A.; Balsamo, M.; Ernst, B. A Quantitative Prediction of the Viscosity of Amine Based DESs Using S Sigma-Profile Molecular Descriptors. J. Mol. Struct. 2019, 1184, 357–363. [Google Scholar] [CrossRef]
- Lemaoui, T.; Darwish, A.S.; Hammoudi, N.E.H.; Abu Hatab, F.; Attoui, A.; Alnashef, I.M.; Benguerba, Y. Prediction of Electrical Conductivity of Deep Eutectic Solvents Using COSMO-RS Sigma Profiles as Molecular Descriptors: A Quantitative Structure-Property Relationship Study. Ind. Eng. Chem. Res. 2020, 59, 13343–13354. [Google Scholar] [CrossRef]
- Palomar, J.; Torrecilla, J.S.; Lemus, J.; Ferro, V.R.; Rodriguez, F. A COSMO-RS Based Guide to Analyze/Quantify the Polarity of Ionic Liquids and Their Mixtures with Organic Cosolvents. Phys. Chem. Chem. Phys. 2010, 12, 1991–2000. [Google Scholar] [CrossRef]
- Gonfa, G.; Bustam, M.A.; Shariff, A.M. Research Quantum-Chemical-Based Quantitative Structure-Activity Relationships for Estimation of CO2 Absorption/Desorption Capacities of Amine-Based Absorbents. Int. J. Greenh. Gas Control 2016, 49, 372–378. [Google Scholar] [CrossRef]
- Sellaoui, L.; Soetaredjo, F.E.; Ismadji, S.; Benguerba, Y.; Dotto, G.L.; Bonilla-Petriciolet, A.; Rodrigues, A.E.; Ben Lamine, A.; Erto, A. Equilibrium Study of Single and Binary Adsorption of Lead and Mercury on Bentonite-Alginate Composite: Experiments and Application of Two Theoretical Approaches. J. Mol. Liq. 2018, 253, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Torrecilla, J.S.; Palomar, J.; Lemus, J.; Rodriguez, F. A Quantum-Chemical-Based Guide to Analyze/Quantify the Cytotoxicity of Ionic Liquids. Green Chem. 2010, 12, 123–134. [Google Scholar] [CrossRef]
- Mai, N.L.; Koo, Y.-M. Quantitative Prediction of Lipase Reaction in Ionic Liquids by QSAR Using COSMO-RS Molecular Descriptors. Biochem. Eng. J. 2014, 87, 33–40. [Google Scholar] [CrossRef]
- Ben Ghanem, O.; Mutalib, M.I.A.; El-Harbawi, M.; Gonfa, G.; Kait, C.F.; Alitheen, N.B.M.; Leveque, J.-M. Effect of Imidazolium-Based Ionic Liquids on Bacterial Growth Inhibition Investigated via Experimental and QSAR Modelling Studies. J. Hazard. Mater. 2015, 297, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Abarrio, S.M.; Haya, L.; Pardo, J.I.; Urieta, J.S.; Mainar, A.M. Isobaric VLE of the Mixture {(+/-)-Linalool plus Ethanol}: A Case Study for the Distillation of Absolute and Volatile Oils. J. Chem. Thermodyn. 2013, 64, 182–186. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.F.; Mainar, A.M.; Urieta, J.S.; Pardo, J.I. Thermophysical Properties of {R-Fenchone plus Ethanol} at Several Temperatures and Pressures. J. Chem. Thermodyn. 2014, 69, 48–55. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.F.; Pardo, J.I.; Urieta, J.S.; Mainar, A.M. Excess Molar Enthalpies of R-Fenchone + Propan-1-Ol or + Propan-2-Ol. Modeling with COSMO-RS and UNIFAC. J. Chem. Thermodyn. 2015, 89, 93–97. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.F.; Pardo, J.I.; Urieta, J.S.; Mainar, A.M. Excess Molar Enthalpies of R-Fenchone + Butan-1-Ol or + Pentan-1-Ol. Modeling with COSMO-RS and UNIFAC. J. Chem. Thermodyn. 2018, 120, 13–20. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.F.; Schneider, S.; Salavera, D.; Mainar, A.M.; Urieta, J.S.; Pardo, J.I. Molar Heat Capacities of the Mixture {1,8-Cineole + Ethanol} at Several Temperatures and Atmospheric Pressure. J. Chem. Thermodyn. 2016, 92, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, J.F.; Pardo, J.I.; Urieta, J.S.; Mainar, A.M. Isobaric Molar Heat Capacities of the Mixture (p-Cymene plus Ethanol) at Several Temperatures and Atmospheric Pressure. J. Chem. Thermodyn. 2017, 111, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, J.F.; Pardo, J.I.; Liu, S.; Mainar, A.M. Thermophysical and Volumetric Study of Mixtures {p-Cymene + Propan-1-Ol} at Several Temperatures and Atmospheric Pressure. Modeling with COSMO-RS. J. Chem. Thermodyn. 2018, 123, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, J.F.; Pardo, J.I.; Urieta, J.S.; Mainar, A.M. Thermophysical and Volumetric Properties of Mixtures {carvacrol plus Ethanol} at Several Temperatures and Atmospheric Pressure. J. Chem. Thermodyn. 2020, 143, 106042. [Google Scholar] [CrossRef]
- Aleksovski, S.A.; Sovova, H. Supercritical CO2 Extraction of Salvia officinalis L. J. Supercrit. Fluids 2007, 40, 239–245. [Google Scholar] [CrossRef]
- Dapkevicius, A.; Venskutonis, R.; van Beek, T.A.; Linssen, J.P.H. Antioxidant Activity of Extracts Obtained by Different Isolation Procedures from Some Aromatic Herbs Grown in Lithuania. J. Sci. Food Agric. 1998, 77, 140–146. [Google Scholar] [CrossRef]
- Zibetti, A.W.; Aydi, A.; Livia, M.A.; Bolzan, A.; Barth, D. Solvent Extraction and Purification of Rosmarinic Acid from Supercritical Fluid Extraction Fractionation Waste: Economic Evaluation and Scale-Up. J. Supercrit. Fluids 2013, 83, 133–145. [Google Scholar] [CrossRef]
- Quintana, S.E.; Villanueva-Bermejo, D.; Reglero, G.; Garcia-Risco, M.R.; Fornari, T. Supercritical Antisolvent Particle Precipitation and Fractionation of Rosemary (Rosmarinus Officinalis L.) Extracts. J. CO2 Util. 2019, 34, 479–489. [Google Scholar] [CrossRef]
- Murga, R.; Sanz, M.T.; Beltrán, S.; Cabezas, J.L. Solubility of Three Hydroxycinnamic Acids in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2003, 27, 239–245. [Google Scholar] [CrossRef]
- Bitencourt, R.G.; Palma, A.M.; Coutinho, J.A.P.; Cabral, F.A.; Meirelles, A.J.A. Solubility of Caffeic Acid in CO2 + Ethanol: Experimental and Predicted Data Using Cubic Plus Association Equation of State. J. Supercrit. Fluids 2018, 138, 238–246. [Google Scholar] [CrossRef]
- Marcus, Y. Solubility Parameter of Carbon Dioxide-An Enigma. ACS Omega 2018, 3, 524–528. [Google Scholar] [CrossRef]
- Wedekind, J.; Hyvarinen, A.-P.; Brus, D.; Reguera, D. Unraveling the “Pressure Effect” in Nucleation. Phys. Rev. Lett. 2008, 101, 125703. [Google Scholar] [CrossRef] [Green Version]
- Ghanem, O.B.; Mutalib, M.I.A.; Leveque, J.-M.; El-Harbawi, M. Development of QSAR Model to Predict the Ecotoxicity of Vibrio Fischeri Using COSMO-RS Descriptors. Chemosphere 2017, 170, 242–250. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Hornig, M. COSMO-RS: A Novel View to Physiological Solvation and Partition Questions. J. Comput. Aided Mol. Des. 2001, 15, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Schaich, K.M. Re-Evaluation of the 2,2-Diphenyl-1-Picrylhydrazyl Free Radical (DPPH) Assay for Antioxidant Activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef]
- Haya, L.; Mainar, A.M.; Pardo, J.I.; Urieta, J.S. A New Generation of Cysteine Derivatives with Three Active Antioxidant Centers: Improving Reactivity and Stability. Phys. Chem. Chem. Phys. 2014, 16, 1409–1414. [Google Scholar] [CrossRef]
- Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inf. 2010, 29, 476–488. [Google Scholar] [CrossRef]
- Cao, H.; Cheng, W.X.; Li, C.; Pan, X.L.; Xie, X.G.; Li, T.H. DFT Study on the Antioxidant Activity of Rosmarinic Acid. Theochem-J. Mol. Struct. 2005, 719, 177–183. [Google Scholar] [CrossRef]
- Wilcox, R.A.; Deyoe, C.W.; Pfost, H.B. A Method for Determining and Expressing the Size of Feed Particles by Sieving. Poult. Sci. 1970, 49, 9–13. [Google Scholar] [CrossRef]
- Dassault Systemes. Reference Manual Biovia Cosmotherm 2020; Dassault Systemes: Vélizy-Villacoublay, France, 2019; p. 233. [Google Scholar]
Run | Exp. Run Order | XP (bar) | XQCO2 (g/min) | YPV (wt.%) | YDV (wt.%) | YSAF (wt.%) | ECHA/PV | ECAF/PV | ERA/PV | ECHA/DV | ECAF/DV | RECHA | RECAF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8 | 80 | 35 | 61.9 | 7.1 | 69.0 | 0.81 | 0.57 | 0.77 | 0.32 | 0.31 | 2.53 | 1.84 |
2 | 5 | 92 | 17 | 64.8 | 17.5 | 82.3 | 1.18 | 0.75 | 0.91 | 0.37 | 0.34 | 3.19 | 2.21 |
3 | 1 | 53 | 53.0 | 12.9 | 65.9 | 1.20 | 0.98 | 1.05 | 0.32 | 0.12 | 3.75 | 8.17 | |
4 | 4 | 120 | 10 | 56.0 | 27.8 | 82.4 | 1.33 | 0.75 | 1.15 | 0.33 | 0.66 | 4.03 | 1.14 |
5 | 2 | 35 | 62.8 | 15.4 | 78.3 | 1.19 | 0.94 | 1.06 | 0.33 | 0.25 | 3.61 | 3.76 | |
6 | 6 | 35 | 64.8 | 17.4 | 82.2 | 1.21 | 0.95 | 1.11 | 0.34 | 0.23 | 3.56 | 4.13 | |
7 | 11 | 35 | 62.6 | 22.5 | 85.1 | 1.19 | 1.11 | 1.14 | 0.32 | 0.21 | 3.72 | 5.29 | |
8 | 12 | 35 | 60.0 | 20.8 | 80.8 | 1.24 | 0.91 | 1.11 | 0.36 | 0.45 | 3.44 | 2.02 | |
9 | 13 | 35 | 61.7 | 19.9 | 81.6 | 1.47 | 1.17 | 1.29 | 0.33 | 0.26 | 4.45 | 4.50 | |
10 | 3 | 60 | 50.5 | 16.3 | 75.8 | 1.20 | 0.79 | 0.90 | 0.34 | 0.25 | 3.53 | 3.16 | |
11 | 10 | 148 | 17 | 55.8 | 28.5 | 84.3 | 1.61 | 1.04 | 1.51 | 0.31 | 0.47 | 5.19 | 2.21 |
12 | 7 | 53 | 57.2 | 17.8 | 75.0 | 1.19 | 1.09 | 1.32 | 0.34 | 0.25 | 3.50 | 4.36 | |
13 | 9 | 160 | 35 | 57.4 | 20.6 | 78.0 | 1.32 | 1.04 | 1.32 | 0.33 | 0.53 | 4.00 | 1.96 |
YDV/wt% | YSAF/wt% | ECHA/PV | ERA/PV | RECHA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Coefficient Value | p | Coefficient Value | p | Coefficient Value | p | Coefficient Value | p | Coefficient Value | p | |
β0 | −40.1 | 0.000 | 8.8 | 0.000 | −1.17 | 0.000 | −0.341 | 0.000 | −4.84 | 0.000 |
β1 | 0.982 | 0.001 | 1.239 | 0.019 | 0.0326 | 0.013 | 0.01305 | 0.000 | 0.1019 | 0.008 |
β2 | −0.242 | 0.002 | −0.2465 | 0.002 | 0.0141 | 0.136 | 0.0168 | 0.210 | 0.0964 | 0.122 |
β11 | −0.003 | 0.026 | −0.00472 | 0.008 | −0.000083 | 0.200 | - | - | −0.000191 | 0.315 |
β22 | 0.00549 | 0.082 | - | - | 0.000114 | 0.466 | - | - | 0.000353 | 0.455 |
β12 | 0.00303 | 0.217 | - | - | −0.000218 | 0.117 | −0.000164 | 0.150 | −0.001116 | 0.019 |
R2 | 90.95 | - | 80.58 | - | 73.85 | - | 79.61 | - | 79.84 | - |
s | 2.2 | - | 2.9 | - | 0.12 | - | 0.10 | - | 0.37 | - |
4 Areas Model | 10 Areas Model | Representation | ||
---|---|---|---|---|
Molecular Descriptor | Screening Charge Density Range (e/nm) | Molecular Descriptor | Screening Charge Density Range (e/nm) | |
S1 | −2.5 < σ < –1.25 | S1 | −2.5 < σ < –2.0 | HBD region |
S2 | 2.0 < σ < –1.5 | |||
S3 | −1.5 < σ < –1.0 | |||
S2 | −1.25 < σ < –0.0 | |||
S4 | −1.0 < σ < –0.5 | Non polar region with negative charges density | ||
S5 | −0.5 < σ < 0.0 | |||
S3 | 0.0 < σ < 1.25 | S6 | 0.5 < σ < 1.0 | Non polar region with positive charges density |
S7 | 0.0 < σ < 0.5 | |||
S8 | 1.0 < σ < 1.5 | HBA region | ||
S4 | 1.25 < σ < 2.5 | |||
S9 | 1.5 < σ < 2.0 | |||
S10 | 2.0 < σ < 2.5 |
Compound | EC50 (mol/mol) | −LogEC50 | EC50 (mol/mol) | −LogEC50 | Deviation |
---|---|---|---|---|---|
Experimental | Predicted | ||||
Training set | |||||
3-methylcatechol | 0.29 | 0.54 | 0.22 | 0.65 | 0.07 |
Catechol | 0.21 | 0.68 | 0.30 | 0.52 | −0.09 |
Chlorogenic acid | 0.39 | 0.41 | 0.55 | 0.26 | −0.16 |
Ferulic acid | 0.93 | 0.03 | 0.60 | 0.22 | 0.33 |
Hydroquinone | 0.52 | 0.29 | 0.63 | 0.20 | −0.11 |
L-ascorbic acid | 0.21 | 0.68 | 0.19 | 0.71 | 0.02 |
Propyl gallate | 0.08 | 1.08 | 0.08 | 1.09 | 0.00 |
Protocatechuic acid | 0.62 | 0.21 | 0.62 | 0.21 | 0.00 |
Pyrogallol | 0.17 | 0.78 | 0.25 | 0.60 | −0.08 |
Quercetin | 0.29 | 0.53 | 0.23 | 0.63 | 0.06 |
Rosmarinic acid | 0.18 | 0.74 | 0.18 | 0.75 | 0.00 |
Validation set | |||||
Epicatechin | 0.22 | 0.67 | 0.32 | 0.50 | −0.10 |
Gallic acid | 0.10 | 0.98 | 0.21 | 0.67 | −0.11 |
Compound | EC50 (mol/mol) | −LogEC50 | EC50 (mol/mol) | −LogEC50 | Deviation |
---|---|---|---|---|---|
Experimental | Predicted | ||||
Training set | |||||
3-methylcatechol | 0.29 | 0.54 | 0.24 | 0.62 | 0.05 |
Catechol | 0.21 | 0.68 | 0.25 | 0.61 | −0.04 |
Chlorogenic acid | 0.39 | 0.41 | 0.39 | 0.41 | 0.00 |
Ferulic acid | 0.93 | 0.03 | 0.93 | 0.03 | −0.01 |
Hydroquinone | 0.52 | 0.29 | 0.39 | 0.41 | 0.13 |
L-ascorbic acid | 0.21 | 0.68 | 0.24 | 0.62 | −0.03 |
Propyl gallate | 0.08 | 1.08 | 0.08 | 1.09 | 0.00 |
Protocatechuic acid | 0.62 | 0.21 | 0.51 | 0.29 | 0.10 |
Pyrogallol | 0.17 | 0.78 | 0.22 | 0.66 | −0.05 |
Quercetin | 0.29 | 0.53 | 0.30 | 0.52 | −0.01 |
Rosmarinic acid | 0.18 | 0.74 | 0.18 | 0.75 | 0.00 |
Validation set | |||||
Epicatechin | 0.22 | 0.67 | 0.10 | 1.01 | 0.12 |
Gallic acid | 0.10 | 0.98 | 0.20 | 0.7 | −0.10 |
Variable | Symbol | Factor Levels | ||||
---|---|---|---|---|---|---|
{−1.44 | −1 | 0 | 1 | 1.44} | ||
Pressure (bar) | XP | 80 | 92 | 120 | 148 | 160 |
CO2 flow rate (g/min) | XQCO2 | 10 | 17 | 35 | 53 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mur, R.; Pardo, J.I.; Pino-Otín, M.R.; Urieta, J.S.; Mainar, A.M. Supercritical Antisolvent Fractionation of Antioxidant Compounds from Salvia officinalis. Int. J. Mol. Sci. 2021, 22, 9351. https://doi.org/10.3390/ijms22179351
Mur R, Pardo JI, Pino-Otín MR, Urieta JS, Mainar AM. Supercritical Antisolvent Fractionation of Antioxidant Compounds from Salvia officinalis. International Journal of Molecular Sciences. 2021; 22(17):9351. https://doi.org/10.3390/ijms22179351
Chicago/Turabian StyleMur, Raquel, Juan I. Pardo, M. Rosa Pino-Otín, José S. Urieta, and Ana M. Mainar. 2021. "Supercritical Antisolvent Fractionation of Antioxidant Compounds from Salvia officinalis" International Journal of Molecular Sciences 22, no. 17: 9351. https://doi.org/10.3390/ijms22179351
APA StyleMur, R., Pardo, J. I., Pino-Otín, M. R., Urieta, J. S., & Mainar, A. M. (2021). Supercritical Antisolvent Fractionation of Antioxidant Compounds from Salvia officinalis. International Journal of Molecular Sciences, 22(17), 9351. https://doi.org/10.3390/ijms22179351