Farrerol Induces Cancer Cell Death via ERK Activation in SKOV3 Cells and Attenuates TNF-α-Mediated Lipolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Antibodies
2.2. Cell Culture and Treatment
2.3. Crystal Violet Staining Assay
2.4. Cell Viability (MTT) Assay
2.5. Cell Cycle Analysis by Flow Chemistry
2.6. Annexin V-FITC/PI Staining Assay
2.7. TUNEL Assay
2.8. Western Blot Analysis
2.9. Colorimetric Caspase-3 Activity Assay
2.10. Adipocyte Differentiation and Treatments
2.11. Oil Red O Staining
2.12. Triglyceride Assay
2.13. Real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR)
2.14. Statistical Analysis
3. Results
3.1. Inhibitory Effects of FA on Cell Proliferation via G2/M Cell Cycle Arrest in SKOV3 Cells
3.2. Effects of FA on the Expression of Cell Cycle Regulatory Proteins in SKOV3 Cells
3.3. FA Induces Apoptosis in SKOV3 Cells
3.4. Apoptosis by FA Treatment Mediates ERK MAPK Signaling in SKOV3 Cells
3.5. FA Reverses Lipid Wasting by TNF-α in 3T3-L1 Cells
3.6. FA Increases Lipid Accumulation and Adipogenic Differentiation in 3T3-L1 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guppy, A.E.; Nathan, P.D.; Rustin, G.J.S. Epithelial Ovarian Cancer: A Review of Current Management. Clin. Oncol. 2005, 17, 399–411. [Google Scholar] [CrossRef]
- Lukanova, A.; Kaaks, R. Endogenous Hormones and Ovarian Cancer: Epidemiology and Current Hypotheses. Cancer Epidemiol. Prev. Biomark. 2005, 14, 98. [Google Scholar] [CrossRef] [Green Version]
- Permuth-Wey, J.; Sellers, T.A. Epidemiology of ovarian cancer. Cancer Epidemiol. 2009, 413–437. [Google Scholar] [CrossRef] [Green Version]
- Torres, K.; Horwitz, S.B. Mechanisms of Taxol-induced Cell Death Are Concentration Dependent. Cancer Res. 1998, 58, 3620. [Google Scholar]
- Shangguan, W.-J.; Li, H.; Zhang, Y.-H. Induction of G2/M phase cell cycle arrest and apoptosis by ginsenoside Rf in human osteosarcoma MG-63 cells through the mitochondrial pathway. Oncol Rep 2014, 31, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Ribeiro, D.A.; Cardoso, C.M.; Yujra, V.Q.; De Barros Viana, M.; Aguiar, O.; Pisani, L.P.; Oshima, C.T.F. Fluoride Induces Apoptosis in Mammalian Cells: In Vitro and In Vivo Studies. Anticancer Res. 2017, 37, 4767. [Google Scholar] [CrossRef]
- Jin, Z.; El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. Ther. 2005, 4, 147–171. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; Li, J.; Shi, S.; Wang, X.; Liang, T.; Wu, B.; Li, Q. Sustained ERK activation-mediated proliferation inhibition of farrerol on human gastric carcinoma cell line by G0/G1-phase cell-cycle arrest. Eur. J. Cancer Prev. 2016, 25, 490–499. [Google Scholar] [CrossRef]
- Liu, E.; Liang, T.; Wang, X.; Ban, S.; Han, L.; Li, Q. Apoptosis induced by farrerol in human gastric cancer SGC-7901 cells through the mitochondrial-mediated pathway. Eur. J. Cancer Prev. 2015, 24, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
- Leppä, S.; Bohmann, D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene 1999, 18, 6158–6162. [Google Scholar] [CrossRef] [Green Version]
- Porporato, P.E. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 2016, 5, e200. [Google Scholar] [CrossRef] [Green Version]
- Aust, S.; Knogler, T.; Pils, D.; Obermayr, E.; Reinthaller, A.; Zahn, L.; Radlgruber, I.; Mayerhoefer, M.E.; Grimm, C.; Polterauer, S. Skeletal Muscle Depletion and Markers for Cancer Cachexia Are Strong Prognostic Factors in Epithelial Ovarian Cancer. PLoS ONE 2015, 10, e0140403. [Google Scholar] [CrossRef]
- Straughn, A.R.; Kakar, S.S. Withaferin A ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. J. Ovarian Res. 2019, 12, 115. [Google Scholar] [CrossRef]
- Gercel-Taylor, C.; Doering, D.L.; Kraemer, F.B.; Taylor, D.D. Aberrations in Normal Systemic Lipid Metabolism in Ovarian Cancer Patients. Gynecol. Oncol. 1996, 60, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Szalkowski, D.; White-Carrington, S.; Berger, J.; Zhang, B. Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-alpha on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995, 136, 1474–1481. [Google Scholar] [CrossRef]
- Hernandez, R.; Teruel, T.; de Alvaro, C.; Lorenzo, M. Rosiglitazone ameliorates insulin resistance in brown adipocytes of Wistar rats by impairing TNF-α induction of p38 and p42/p44 mitogen-activated protein kinases. Diabetologia 2004, 47, 1615–1624. [Google Scholar] [CrossRef]
- Perrey, S.; Ishibashi, S.; Yahagi, N.; Osuga, J.I.; Tozawa, R.; Yagyu, H.; Ohashi, K.; Gotoda, T.; Harada, K.; Chen, Z.; et al. Thiazolidinedione-and tumor necrosis factor alpha–induced downregulation of peroxisome proliferator–activated receptor gamma mRNA in differentiated 3T3-L1 adipocytes. Metab. Clin. Exp. 2001, 50, 36–40. [Google Scholar] [CrossRef]
- Iwata, M.; Haruta, T.; Usui, I.; Takata, Y.; Takano, A.; Uno, T.; Kawahara, J.; Ueno, E.; Sasaoka, T.; Ishibashi, O.; et al. Pioglitazone Ameliorates Tumor Necrosis Factor-α–Induced Insulin Resistance by a Mechanism Independent of Adipogenic Activity of Peroxisome Proliferator–Activated Receptor-γ. Diabetes 2001, 50, 1083. [Google Scholar] [CrossRef] [Green Version]
- Ohsumi, J.; Sakakibara, S.; Yamaguchi, J.; Miyadai, K.; Yoshioka, S.; Fujiwara, T.; Horikoshi, H.; Serizawa, N. Troglitazone prevents the inhibitory effects of inflammatory cytokines on insulin-induced adipocyte differentiation in 3T3-L1 cells. Endocrinology 1994, 135, 2279–2282. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Lee, S.H.; Lee, I.-S.; Lee, K.Y. Regulatory effects of 4-methoxychalcone on adipocyte differentiation through PPARγ activation and reverse effect on TNF-α in 3T3-L1 cells. Food Chem. Toxicol. 2017, 106, 17–24. [Google Scholar] [CrossRef]
- Cao, Y.; Chu, Q.; Ye, J. Chromatographic and electrophoretic methods for pharmaceutically active compounds in Rhododendron dauricum. J. Chromatogr. B 2004, 812, 231–240. [Google Scholar] [CrossRef]
- Ci, X.; Chu, X.; Wei, M.; Yang, X.; Cai, Q.; Deng, X. Different Effects of Farrerol on an OVA-Induced Allergic Asthma and LPS-induced Acute Lung Injury. PLoS ONE 2012, 7, e34634. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.; Gao, L.; Zhao, Y.; Wang, C.; Xie, S. Farrerol inhibited angiogenesis through Akt/mTOR, Erk and Jak2/Stat3 signal pathway. Phytomedicine 2016, 23, 686–693. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Zhu, Y.-h.; Zhang, M.; Wang, Y.-p.; Wang, M.-w. Involvement of estrogen receptor-β in farrerol inhibition of rat thoracic aorta vascular smooth muscle cell proliferation. Acta Pharmacol. Sin. 2011, 32, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Xiang, H.; Hu, C.; Wang, Q.; Dong, J.; Li, H.; Luo, M.; Wang, J.; Deng, X. Subinhibitory concentrations of farrerol reduce α-toxin expression in Staphylococcus aureus. FEMS Microbiol. Lett. 2011, 315, 129–133. [Google Scholar] [CrossRef]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef] [Green Version]
- Swaroop, J.J.; Rajarajeswari, D.; Naidu, J.N. Association of TNF-α with insulin resistance in type 2 diabetes mellitus. Indian J. Med. Res. 2012, 135, 127–130. [Google Scholar] [CrossRef]
- Chang, D.C.; Xu, N.; Luo, K.Q. Degradation of Cyclin B Is Required for the Onset of Anaphase in Mammalian Cells*. J. Biol. Chem. 2003, 278, 37865–37873. [Google Scholar] [CrossRef] [Green Version]
- Hunt, R.T.; Nasmyth, K.A.; Diffley, J.; Hershko, A. Mechanisms and regulation of the degradation of cyclin B. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999, 354, 1571–1576. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Ren, H.; Xiao, W.; Chu, Z.; Lee, J.J.; Mao, L.J.I.j.o.o. Antitumor activity of AZ64 via G2/M arrest in non-small cell lung cancer. Int. J. Oncol. 2012, 41, 1798–1808. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.J.; Patel, B.M. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci. 2017, 170, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Im, M.; Ma, J.Y. A novel herbal formula, SGE, induces endoplasmic reticulum stress-mediated cancer cell death and alleviates cachexia symptoms induced by colon-26 adenocarcinoma. Oncotarget 2018, 9, 16284–16296. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Accession No. | Sequence | |
PPARγ | AB644275.1 | Forward | 5′–GGA AGA CCA CTC GCA TTC CTT–3′ |
Reverse | 5′–GTA ATC AGC AAC CAT TGG GTC A–3′ | ||
C/EBPα | BC058161 | Forward | 5′–CAA GAA CAG CAA CGA GTA CCG–3′ |
Reverse | 5′–GTC ACT GGT CAA CTC CAG CAC–3′ | ||
Adiponectin | NM_009605.4 | Forward | 5′–GAT GGC ACT CCT GGA GAG AA–3′ |
Reverse | 5′–TCT CCA GGC TCT CCT TTC CT–3′ | ||
HSL | NM_001039507 | Forward | 5′–CAG AAG GCA CTA GGC GTG ATG–3′ |
Reverse | 5′–GGG CTT GCG TCC ACT TAG TTC–3′ | ||
LPL | NM_008509 | Forward | 5′–ATC GGA GAA CTG CTC ATG ATG A–3′ |
Reverse | 5′–CGG ATC CTC TCG ATG ACG AA–3′ | ||
β-actin | NM_007393.4 | Forward | 5′–CGT GCG TGA CAT CAA AGA GAA–3′ |
Reverse | 5′–GCT CGT TGC CAA TAG TGA TGA–3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, J.; Kim, J.S.; Choi, s.t.; Lee, S.G.; Ojulari, O.V.; Kang, Y.J.; Kwon, T.K.; Nam, J.-O. Farrerol Induces Cancer Cell Death via ERK Activation in SKOV3 Cells and Attenuates TNF-α-Mediated Lipolysis. Int. J. Mol. Sci. 2021, 22, 9400. https://doi.org/10.3390/ijms22179400
Chae J, Kim JS, Choi st, Lee SG, Ojulari OV, Kang YJ, Kwon TK, Nam J-O. Farrerol Induces Cancer Cell Death via ERK Activation in SKOV3 Cells and Attenuates TNF-α-Mediated Lipolysis. International Journal of Molecular Sciences. 2021; 22(17):9400. https://doi.org/10.3390/ijms22179400
Chicago/Turabian StyleChae, Jongbeom, Jin Soo Kim, seok tae Choi, Seul Gi Lee, Oyindamola Vivian Ojulari, Young Jin Kang, Taeg Kyu Kwon, and Ju-Ock Nam. 2021. "Farrerol Induces Cancer Cell Death via ERK Activation in SKOV3 Cells and Attenuates TNF-α-Mediated Lipolysis" International Journal of Molecular Sciences 22, no. 17: 9400. https://doi.org/10.3390/ijms22179400
APA StyleChae, J., Kim, J. S., Choi, s. t., Lee, S. G., Ojulari, O. V., Kang, Y. J., Kwon, T. K., & Nam, J.-O. (2021). Farrerol Induces Cancer Cell Death via ERK Activation in SKOV3 Cells and Attenuates TNF-α-Mediated Lipolysis. International Journal of Molecular Sciences, 22(17), 9400. https://doi.org/10.3390/ijms22179400