The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isothermal Titration Calorimetry (ITC)
2.2. ESI-MS/MS Analysis
2.3. Circular Dichroism (CD) Spectroscopy
2.4. Molecular Docking
2.5. Cytotoxicity
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Process of MIA–DM-β-CD Aggregates Formation
3.2.2. Isothermal Titration Calorimetry (ITC)
3.2.3. ESI-MS/MS Analysis
3.2.4. Circular Dichroism (CD) Spectroscopy
3.2.5. Computational Studies
Ligands and Macromolecule Preparation for Molecular Docking
- -
- entry A and B from Figure 5 (three molecules of β-CD I-II-III): a grid box size of 20 Å × 20 Å × 20 Å centered on the C47 atom (x = −5.017, y = 1.413, z = 0.074);
- -
- entry A and C from Figure 6 (two molecules of β-CD I-II): a grid box size of 20 Å × 20 Å × 20 Å centered on the C45 atom (x = 5.849, y = 3.007, z = −5.646);
- -
- entry B and D from Figure 6 (two molecules of β-CD II-III): a grid box size of 20 Å × 20 Å × 20 Å centered on the C23 atom (x = 4.807, y = 1.076, z = 7.878);
- -
- entry A and D from Figure 7 (one molecule of β-CD I): a grid box size of 20 Å × 20 Å × 20 Å centered on the C45 atom (x = 5.849, y = 3.007, z = −5.646);
- -
- entry B and E from Figure 7 (one molecule of β-CD II): a grid box size of 20 Å × 20 Å × 20 Å centered on the C43 atom (x = 5.243, y = 0.841, z = 1.262);
- -
- entry C and F from Figure 7 (one molecule of β-CD III): a grid box size of 20 Å × 20 Å × 20 Å centered on the C43 atom (x = 4.602, y = −1.221, z = 8.714);
- -
- entry A and B from Figure 8 (two molecules of TMβ-CD I-II): a grid box size of 20 Å × 20 Å × 20 Å centered on the C11 atom (x = 3.352, y = 6.710, z = 2.402);
- -
- entry A and C from Figure 9 (two molecules of TMβ-CD I): a grid box size of 20 Å × 20 Å × 20 Å centered on the C11 atom (x = 3.352, y = 6.710, z = 2.402);
- -
- entry B and D from Figure 9 (one molecule of TMβ-CD II): a grid box size of 20 Å × 20 Å × 20 Å centered on the C10 atom (x = 6.775, y = 12.684, z = 10.278);
- -
- entry A and C from Figure 10 (one molecules of DMβ-CD) a grid box size of 20 Å × 20 Å × 20 Å centered on the C39 atom (x = 17.161, y = 5.028, z = 4.351);
- -
- entry B and D from Figure 10 (one molecule of RMβ-CD): a grid box size of 20 Å × 20 Å × 20 Å centered on the C45 atom (x = 2.967, y = 2.155, z = −4.366).
3.2.6. Cell Culture and Chemical Treatment of Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koski, A.; Vuori, E.; Ojanperä, I. Newer antidepressants: Evaluation of fatal toxicity index and interaction with alcohol based on Finnish postmortem data. Int. J. Legal Med. 2005, 119, 344–348. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Xie, Y.; Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021, 594, 259–264. [Google Scholar] [CrossRef]
- Pietrzak, B. Influence of mianserin on some central effects of ethanol. Pharmacol. Res. 2002, 46, 47–54. [Google Scholar] [CrossRef]
- Sagdinc, S.G.; Sahinturk, A.E. Density functional theory and vibrational studies of mianserin and its hydrochloride and hydrobromide salts. J. Mol. Struct. 2012, 1021, 53–62. [Google Scholar] [CrossRef]
- Li, Q.; Hosaka, T.; Harada, N.; Nakaya, Y.; Funaki, M. Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes. Mol. Cell. Endocrinol. 2013, 365, 25–35. [Google Scholar] [CrossRef]
- Dinesh, N.; Kaur, P.K.; Swamy, K.K.; Singh, S. Mianserin, an antidepressant kills Leishmania donovani by depleting ergosterol levels. Exp. Parasitol. 2014, 144, 84–90. [Google Scholar] [CrossRef]
- Zlatković, J.; Todorović, N.; Tomanović, N.; Bošković, M.; Djordjević, S.; Lazarević-Pašti, T.; Bernardi, R.E.; Djurdjević, A.; Filipović, D. Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: A histopathological study. Eur. J. Pharm. Sci. 2014, 59, 20–30. [Google Scholar] [CrossRef]
- Masubuchi, Y.; Konishi, M.; Horie, T. Imipramine- and mianserin-induced acute cell injury in primary cultured rat hepatocytes: Implication of different cytochrome P450 enzymes. Arch. Toxicol. 1999, 73, 147–151. [Google Scholar] [CrossRef]
- Isabelle, L.B.-L.; Clarot, F.; Vaz, E.; Jean Pierre, G.; Proust, B. Disopyramide and Mianserin Intoxication: A Unique Fatal Case—Review of the Literature. J. Forensic. Sci. 2014, 59, 850–853. [Google Scholar] [CrossRef]
- Belica-Pacha, S.; Miłowska, K.; Ionov, M.; Bryszewska, M.; Buczkowski, A.; Budryn, G.; Oracz, J.; Zaczyńska, D.; Wróblewska, A.; Urbaniak, P.; et al. The impact of β-cyclodextrin on biological and chemical properties of mianserin hydrochloride in aqueous solution. J. Mol. Liq. 2020, 314, 113589. [Google Scholar] [CrossRef]
- de Melo, P.N.; Barbosa, E.G.; Garnero, C.; de Caland, L.B.; Fernandes-Pedrosa, M.F.; Longhi, M.R.; da Silva-Júnior, A.A. Interaction pathways of specific co-solvents with hydroxypropyl-β-cyclodextrin inclusion complexes with benznidazole in liquid and solid phase. J. Mol. Liq. 2016, 223, 350–359. [Google Scholar] [CrossRef]
- Stepniak, A.; Buczkowski, A.; Zavodnik, L.; Belica-Pacha, S.; Palecz, B. Study of the interaction of β-cyclodextrin with albendazole in aqueous solutions. J. Mol. Liq. 2017, 248, 19–23. [Google Scholar] [CrossRef]
- Bender, M.L.; Komiyama, M. Reactivity and Structure: Concepts in Organic Chemistry. In Cyclodextrin Chemistry; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9783642668425. [Google Scholar]
- Ignaczak, A.; Pałecz, B.; Belica-Pacha, S. Quantum chemical study and isothermal titration calorimetry of β-cyclodextrin complexes with mianserin in aqueous solution. Org. Biomol. Chem. 2017, 15, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Mianserin. Drugs 1978, 16, 273–301. [Google Scholar] [CrossRef]
- Onnainty, R.; Schenfeld, E.M.; Quevedo, M.A.; Fernández, M.A.; Longhi, M.R.; Granero, G.E. Characterization of the Hydrochlorothiazide: β-Cyclodextrin Inclusion Complex. Experimental and Theoretical Methods. J. Phys. Chem. B 2013, 117, 206–217. [Google Scholar] [CrossRef]
- Bouchemal, K.; Mazzaferro, S. How to conduct and interpret ITC experiments accurately for cyclodextrin-guest interactions. Drug Discov. Today 2012, 17, 623–629. [Google Scholar] [CrossRef]
- Saboury, A.A. A review on the ligand binding studies by isothermal titration calorimetry. J. Iran. Chem. Soc. 2006, 3, 1–21. [Google Scholar] [CrossRef]
- Narczyk, M.; Mioduszewski, Ł.; Oksiejuk, A.; Winiewska-Szajewska, M.; Wielgus-Kutrowska, B.; Gojdź, A.; Cieśla, J.; Bzowska, A. Single tryptophan Y160W mutant of homooligomeric E. coli purine nucleoside phosphorylase implies that dimers forming the hexamer are functionally not equivalent. Sci. Rep. 2021, 11, 11144. [Google Scholar] [CrossRef]
- Freire, E.; Schön, A.; Velazquez-Campoy, A. Chapter 5, Isothermal Titration Calorimetry: General Formalism Using Binding Polynomials. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2009; pp. 127–155. ISBN 9780123745965. [Google Scholar]
- Mazzaferro, S.; Bouchemal, K.; Gallard, J.-F.; Iorga, B.I.; Cheron, M.; Gueutin, C.; Steinmesse, C.; Ponchel, G. Bivalent sequential binding of docetaxel to methyl-β-cyclodextrin. Int. J. Pharm. 2011, 416, 171–180. [Google Scholar] [CrossRef]
- Belica, S.; Jeziorska, D.; Urbaniak, P.; Buko, V.U.; Zavodnik, I.B.; Pałecz, B. Calorimetric and spectroscopic characterization of complexes between β-cyclodextrin or heptakis (2,6-di-O-methyl)-β-cyclodextrin and sertraline hydrochloride in aqueous solution. J. Chem. Thermodyn. 2014, 70, 160–167. [Google Scholar] [CrossRef]
- Saboury, A.A.; Atri, M.S.; Sanati, M.H.; Sadeghi, M. Application of a simple calorimetric data analysis on the binding study of calcium ions by human growth hormone. J. Therm. Anal. Calorim. 2006, 83, 175–179. [Google Scholar] [CrossRef]
- Inoue, Y.; Liu, Y.; Tong, L.H.; Shen, B.J.; Jin, D. Sen Calorimetric Titration of Inclusion Complexation with Modified β-Cyclodextrins. Enthalpy-Entropy Compensation in Host-Guest Complexation: From Ionophore to Cyclodextrin and Cyclophane. J. Am. Chem. Soc. 1993, 115, 10637–10644. [Google Scholar] [CrossRef]
- Dotsikas, Y.; Loukas, Y.L. Efficient determination and evaluation of model cyclodextrin complex binding constants by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Li, H.-D.; Chen, B.-M.; Ma, N.; Yan, M.; Zhu, Y.-G. Determination of mianserin in human plasma by high performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI/MS): Application to a bioequivalence study in Chinese volunteers. J. Pharm. Biomed. Anal. 2008, 47, 994–999. [Google Scholar] [CrossRef]
- Otagiri, M.; Ikeda, K.; Uekama, K.; Ito, O.; Hatano, M. Induced circular dichroism of racemic methylcyclohexanones included in β-cyclodextrin. Chem. Lett. 1974, 3, 679–682. [Google Scholar] [CrossRef]
- Kodaka, M. A general rule for circular dichroism induced by a chiral macrocycle. J. Am. Chem. Soc. 1993, 115, 3702–3705. [Google Scholar] [CrossRef]
- Kodaka, M. Application of a General Rule to Induced Circular Dichroism of Naphthalene Derivatives Complexed with Cyclodextrins. J. Phys. Chem. A 1998, 102, 8101–8103. [Google Scholar] [CrossRef]
- Bakirci, H.; Zhang, X.; Nau, W.M. Induced Circular Dichroism and Structural Assignment of the Cyclodextrin Inclusion Complexes of Bicyclic Azoalkanes. J. Org. Chem. 2005, 70, 39–46. [Google Scholar] [CrossRef]
- Mendicuti, F.; González-Álvarez, M.J. Supramolecular Chemistry: Induced Circular Dichroism to Study Host−Guest Geometry. J. Chem. Educ. 2010, 87, 965–968. [Google Scholar] [CrossRef]
- Harata, K.; Uedaira, H. The Circular Dichroism Spectra of the β-Cyclodextrin Complex with Naphthalene Derivatives. Bull. Chem. Soc. Jpn. 1975, 48, 375–378. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and differentiation of data by simplified least square procedure. Anal. Chem. 1972, 44, 1906–1909. [Google Scholar] [CrossRef] [PubMed]
- Edwards, P.M. Origin 7.0: Scientific graphing and data analysis software. J. Chem. Inf. Comput. Sci. 2002, 42, 1270. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, T.; Hetényi, C.; Lv, Y.; van der Spoel, D. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations. J. Phys. Chem. C 2014, 118, 7163–7173. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Peng, S.; Bao, G.; Zhang, H.; Yin, C. β-cyclodextrin inclusion complexes with vitamin A and its esters: A comparative experimental and molecular modeling study. J. Mol. Struct. 2021, 1223, 129001. [Google Scholar] [CrossRef]
- Chatziefthimiou, S.D.; Yannakopoulou, K.; Mavridis, I.M. β-Cyclodextrin trimers enclosing an unusual organization of guest: The inclusion complex β-cyclodextrin/4-pyridinealdazine. CrystEngComm 2007, 9, 976–979. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Yamano, A.; Shiraki, T.; Sada, K.; Shinkai, S. Single-crystal structure of porphyrin bicapped with trimethyl-β- cyclodextrins: A novel dye-oriented material. Chem. Lett. 2011, 40, 99–101. [Google Scholar] [CrossRef]
- Czugler, M.; Eckle, E.; Stezowski, J.J. Crystal and molecular structure of a 2,6-tetradeca-O-methyl-β-cyclodextrin–adamantanol 1:1 inclusion complex. J. Chem. Soc. Chem. Commun. 1981, 1, 1291–1292. [Google Scholar] [CrossRef]
- Rysanek, N.; Le Bas, G.; Villain, F.; Tsoucaris, G. Structure of the (1:1:1) complex 2a,2b,2c,2d,2e,2f,3a,3g,6a,6b,6c,6d,6e,6f,6-pentadeca-O-methyl-β-cyclodextrin-1,7-dioxaspiro[5.5]undecane-methanol. Acta Crystallogr. Sect. C 1992, 48, 1466–1471. [Google Scholar] [CrossRef]
- Vukic, M.D.; Vukovic, N.L.; Popovic, S.L.; Todorovic, D.V.; Djurdjevic, P.M.; Matic, S.D.; Mitrovic, M.M.; Popovic, A.M.; Kacaniova, M.M.; Baskic, D.D. Effect of β-cyclodextrin encapsulation on cytotoxic activity of acetylshikonin against HCT-116 and MDA-MB-231 cancer cell lines. Saudi. Pharm. J. 2020, 28, 136–146. [Google Scholar] [CrossRef]
- Song, S.; Gao, K.; Niu, R.; Wang, J.; Zhang, J.; Gao, C.; Yang, B.; Liao, X. Inclusion complexes between chrysin and amino-appended β-cyclodextrins (ACDs): Binding behavior, water solubility, in vitro antioxidant activity and cytotoxicity. Mater. Sci. Eng. C 2020, 106, 110161. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Yang, B.; Yang, X.; Zhao, Y.; Liao, X.; Gao, C.; Wang, F.; Jiang, R. Host–guest inclusion system of norathyriol with β-cyclodextrin and its derivatives: Preparation, characterization, and anticancer activity. J. Biosci. Bioeng. 2014, 117, 775–779. [Google Scholar] [CrossRef]
- Belica, S.; Sadowska, M.; Stȩpniak, A.; Graca, A.; Pałecz, B. Enthalpy of solution of α- And β-cyclodextrin in water and in some organic solvents. J. Chem. Thermodyn. 2014, 69, 112–117. [Google Scholar] [CrossRef]
- Passos, J.J.; De Sousa, F.B.; Lula, I.S.; Barreto, E.A.; Lopes, J.F.; De Almeida, W.B.; Sinisterra, R.D. Multi-equilibrium system based on sertraline and β-cyclodextrin supramolecular complex in aqueous solution. Int. J. Pharm. 2011, 421, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, J.P.; Aiassa, V.; Fernández, M.A.; Longhi, M.R.; Quevedo, M.A.; Zoppi, A. Structural, physicochemical and biological characterization of chloramphenicol multicomponent complexes. J. Mol. Liq. 2021, 331, 115761. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, R.; Chen, Y.; He, J.-Y. Effect of β-Cyclodextrin Charge Type on the Molecular Recognition Thermodynamics of Reactions with (Ferrocenylmethyl)dimethylaminium Derivatives. J. Phys. Chem. B 2008, 112, 1445–1450. [Google Scholar] [CrossRef]
- Dalpiaz, A.; Ferretti, V.; Gilli, P.; Bertolasi, V. Stereochemistry of serotonin receptor ligands from crystallographic data. Crystal structures of NAN-190.HBr, 1-phenylbiguanide, MDL 72222 and mianserin. HCl and selectivity criteria towards 5-HT 1, 5-HT 2 and 5-HT 3 receptor subtypes. Acta Crystallogr. Sect. B Struct. Sci. 1996, 52, 509–518. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, D.; Shen, Z.; Li, S.; Li, H. Multi-body interactions in molecular docking program devised with key water molecules in protein binding sites. Molecules 2018, 23, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar]
- Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 1989, 119, 203–210. [Google Scholar] [CrossRef]
- Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin Drug Carrier Systems. Chem. Rev. 1998, 98, 2045–2076. [Google Scholar] [CrossRef] [PubMed]
- Rodal, S.K.; Skretting, G.; Garred, Ø.; Vilhardt, F.; van Deurs, B.; Sandvig, K. Extraction of Cholesterol with Methyl-β-Cyclodextrin Perturbs Formation of Clathrin-coated Endocytic Vesicles. Mol. Biol. Cell 1999, 10, 961–974. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Hu, X.; Jung, R.S.; Weston, T.A.; Sandoval, N.P.; Tontonoz, P.; Kilburn, M.R.; Fong, L.G.; Young, S.G.; Jiang, H. High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proc. Natl. Acad. Sci. USA 2017, 114, 2000–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n | K/M−1 | ΔH/kJ·mol−1 | TΔS/kJ·mol−1 | ΔG/kJ·mol−1 | |
---|---|---|---|---|---|
MIA | |||||
β-CD * | 2.15 | 1320 | −3.24 | 14.55 | −17.79 |
DM-β-CD ** | 1.64 ± 0.15 | 1690 ± 210 | −4.72 ± 0.09 | 13.70 ± 0.99 | −18.42 ± 0.28 |
SRT | |||||
β-CD # | 1.20 | 5820 | −20.44 | 1.06 | −21.53 |
DM-β-CD # | 1.60 | 7960 | −14.20 | 7.96 | −22.19 |
Representative Geometry | Crystal Structure Refcode from CSD and Amount of Receptor Molecules | S-(+)-MIA·HCl | R-(−)-MIA·HCl |
---|---|---|---|
Free Energies of Binding kcal∙mol−1 (kJ∙mol−1) | |||
A and B Figure 5 | 648855 (three molecules of β-CD I-II-III) | −7.5 (−31) | −8.5 (−35) |
A and C Figure 6 | 648855 (two molecules of β-CD I-II) | −7.1 (−30) | −8.2 (−34) |
B and D Figure 6 | 648855 (two molecules of β-CD II-III) | −6.6 (−28) | −7.6 (−32) |
A and D Figure 7 | 648855 (one molecule of β-CD I) | −6.1 (−26) | −6.2 (−26) |
B and E Figure 7 | 648855 (one molecule of β-CD II) | −5.9 (−25) | −6.1 (−26) |
C and F Figure 7 | 648855 (one molecule of β-CD III) | −6.2 (−26) | −6.2 (−26) |
A and B Figure 8 | ALIGAE (two molecules of TMβ-CD I-II) | −8.0 (−33) | −8.0 (−33) |
A and C Figure 9 | ALIGAE (one molecule of TMβ-CD I) | −6.5 (−27) | −6.4 (−27) |
B and D Figure 9 | ALIGAE (one molecule of TMβ-CD II) | −6.2 (−26) | −6.6 (−28) |
A and C Figure 10 | BEFJOL (one molecule of DMβ-CD) | −6.4 (−27) | −6.8 (−28) |
B and D Figure 10 | JOSWOD (one molecule of RMβ-CD) | −6.8 (−28) | −6.8 (−28) |
Name | Alternative or IUPAC Name | CAS Number | Source | Molecular Weight g∙mol−1 | Mass Fraction Purity as Stated by Supplier |
---|---|---|---|---|---|
mianserin hydrochloride | (1, 2, 3, 4, 10, 14b-hexahydro-2-methyldibenzo [c, f]pyrazino [1, 2-a]azepine hydrochloride | 21535-47-7 | Sigma-Aldrich | 300.83 | 0.98 |
heptakis(2,6-di-O-methyl)-β-cyclodextrin | 2,6-Di-O-methyl-β-cyclodextrin | 51166-71-3 | CycloLab | 1331.36 | 0.95 |
MTT | 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide | 298-93-1 | Sigma-Aldrich | 414.32 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belica-Pacha, S.; Małecka, M.; Daśko, M.; Miłowska, K.; Bryszewska, M.; Budryn, G.; Oracz, J.; Pałecz, B. The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity. Int. J. Mol. Sci. 2021, 22, 9419. https://doi.org/10.3390/ijms22179419
Belica-Pacha S, Małecka M, Daśko M, Miłowska K, Bryszewska M, Budryn G, Oracz J, Pałecz B. The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity. International Journal of Molecular Sciences. 2021; 22(17):9419. https://doi.org/10.3390/ijms22179419
Chicago/Turabian StyleBelica-Pacha, Sylwia, Magdalena Małecka, Mateusz Daśko, Katarzyna Miłowska, Maria Bryszewska, Grażyna Budryn, Joanna Oracz, and Bartłomiej Pałecz. 2021. "The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity" International Journal of Molecular Sciences 22, no. 17: 9419. https://doi.org/10.3390/ijms22179419
APA StyleBelica-Pacha, S., Małecka, M., Daśko, M., Miłowska, K., Bryszewska, M., Budryn, G., Oracz, J., & Pałecz, B. (2021). The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity. International Journal of Molecular Sciences, 22(17), 9419. https://doi.org/10.3390/ijms22179419