Fibrin Network Formation and Lysis in Septic Shock Patients
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Clot–Lysis Assay
2.3. Clot–Lysis Profile and Coagulation Parameters
2.4. Clot–Lysis Profile and Circulating Fibrinolysis Markers
2.5. Clot–Lysis Profile and Organ Dysfunction
3. Discussion
4. Materials and Methods
4.1. Design and Study Population
4.2. Blood Sampling and Laboratory Analysis
4.3. Fibrin Clot Formation and Lysis Assay
4.4. Circulating Fibrinolysis Markers
4.5. Thrombin Generation
4.6. Routine Coagulation Parameters, Inflammation Markers and Organ Dysfunction Markers
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhainaut, J.-F.; Yan, S.B.; Joyce, D.E.; Pettila, V.; Basson, B.; Brandt, J.T.; Sundin, D.P.; Levi, M. Treatment effects of drotrecogin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. J. Thromb. Haemost. 2004, 2, 1924–1933. [Google Scholar] [CrossRef]
- Gando, S.; Saitoh, D.; Ogura, H.; Fujishima, S.; Mayumi, T.; Araki, T.; Ikeda, H.; Kotani, J.; Kushimoto, S.; Miki, Y.; et al. A multicenter, prospective validation study of the Japanese Association for Acute Medicine disseminated intravascular coagulation scoring system in patients with severe sepsis. Crit. Care 2013, 17, R111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gando, S. Role of Fibrinolysis in Sepsis. Semin. Thromb. Hemost. 2013, 39, 392–399. [Google Scholar] [CrossRef]
- Asakura, H. Classifying types of disseminated intravascular coagulation: Clinical and animal models. J. Intensive Care 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.B.; Hvas, A.-M. Fibrinolytic Alterations in Sepsis: Biomarkers and Future Treatment Targets. Semin. Thromb. Hemost. 2021, 47, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.R.; Pillai, S.; Lawrence, M.; Mills, G.M.; Aubrey, R.; D’Silva, L.; Battle, C.; Williams, R.; Brown, R.; Thomas, D.; et al. The effect of sepsis and its inflammatory response on mechanical clot characteristics: A prospective observational study. Intensiv. Care Med. 2016, 42, 1990–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panigada, M.; Zacchetti, L.; L’Acqua, C.; Cressoni, M.; Anzoletti, M.B.; Bader, R.; Protti, A.; Consonni, D.; D’Angelo, A.; Gattinoni, L. Assessment of Fibrinolysis in Sepsis Patients with Urokinase Modified Thromboelastography. PLoS ONE 2015, 10, e0136463. [Google Scholar] [CrossRef] [Green Version]
- Boscolo, A.; Spiezia, L.; Campello, E.; Bertini, D.; Lucchetta, V.; Piasentini, E.; De Cassai, A.; Simioni, P. Whole-blood hypocoagulable profile correlates with a greater risk of death within 28 days in patients with severe sepsis. Korean J. Anesthesiol. 2020, 73, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Dhainaut, J.-F.; Shorr, A.F.; Macias, W.L.; Kollef, M.J.; Levi, M.; Reinhart, K.; Nelson, D.R. Dynamic evolution of coagulopathy in the first day of severe sepsis: Relationship with mortality and organ failure. Crit. Care Med. 2005, 33, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Ilich, A.; Bokarev, I.; Key, N.S. Global assays of fibrinolysis. Int. J. Lab. Hematol. 2017, 39, 441–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, J.B.; Hvas, A.-M. Fibrin Clot Formation and Lysis in Plasma. Methods Protoc. 2020, 3, 67. [Google Scholar] [CrossRef]
- Pieters, M.; Philippou, H.; Undas, A.; De Lange, Z.; Rijken, D.C.; Mutch, N.J. An international study on the feasibility of a standardized combined plasma clot turbidity and lysis assay: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 1007–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, J.B.; Laursen, M.A.; Hvas, C.L.; Larsen, K.M.; Thiel, S.; Hvas, A.-M. Reduced Mannose-Binding Lectin-Associated Serine Protease (MASP)-1 is Associated with Disturbed Coagulation in Septic Shock. Thromb. Haemost. 2019, 119, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Neergaard-Petersen, S.; Mogensen, V.B.; Veirup, M.S.; Grove, E.L.; Kristensen, S.D.; Hvas, A.-M. Fibrin clot lysis assay: Establishment of a reference interval. Thromb. Res. 2018, 167, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, F.; Colucci, M.; Caironi, P.; Masson, S.; Ammollo, C.T.; Teli, R.; Semeraro, N.; Magnoli, M.; Salati, G.; Isetta, M.; et al. Platelet Drop and Fibrinolytic Shutdown in Patients with Sepsis. Crit. Care Med. 2018, 46, e221–e228. [Google Scholar] [CrossRef]
- Wada, H.; Thachil, J.; Di Nisio, M.; Mathew, P.; Kurosawa, S.; Gando, S.; Kim, H.K.; Nielsen, J.D.; Dempfle, C.E.; Levi, M.; et al. Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines. J. Thromb. Haemost. 2013, 11, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.; Levi, M. How we manage haemostasis during sepsis. Br. J. Haematol. 2019, 185, 209–218. [Google Scholar] [CrossRef]
- Hennan, J.K.; Morgan, G.A.; Swillo, R.E.; Antrilli, T.M.; Mugford, C.; Vlasuk, G.P.; Gardell, S.J.; Crandall, D.L. Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist in a rat model of thrombosis. J. Thromb. Haemost. 2008, 6, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, Y.; Wang, Y.; Proulle, V.; Andreasen, P.A.; Hong, W.; Chen, Z.; Huang, M.; Xu, P. Embelin ameliorated sepsis-induced disseminated intravascular coagulation intensities by simultaneously suppressing inflammation and thrombosis. Biomed. Pharmacother. 2020, 130, 110528. [Google Scholar] [CrossRef]
- Blasi, A.; Patel, V.; Adelmeijer, J.; Azarian, S.; Tejero, M.H.; Calvo, A.; Fernández, J.; Bernal, W.; Lisman, T. Mixed Fibrinolytic Phenotypes in Decompensated Cirrhosis and Acute-on-Chronic Liver Failure with Hypofibrinolysis in Those with Complications and Poor Survival. Hepatology 2019, 71, 1381–1390. [Google Scholar] [CrossRef] [Green Version]
- Lisman, T.; Arefaine, B.; Adelmeijer, J.; Zamalloa, A.; Corcoran, E.; Smith, J.G.; Bernal, W.; Patel, V.C. Global hemostatic status in patients with acute-on-chronic liver failure and septics without underlying liver disease. J. Thromb. Haemost. 2021, 19, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Bouck, E.G.; Denorme, F.; Holle, L.A.; Middelton, E.A.; Blair, A.; De Laat, B.; Schiffman, J.D.; Yost, C.C.; Rondina, M.T.; Wolberg, A.S.; et al. COVID-19 and Sepsis Are Associated with Different Abnormalities in Plasma Procoagulant and Fibrinolytic Activity. Arter. Thromb. Vasc. Biol. 2020, 41, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, F.C.F.; Manolov, V.; Morgenstern, J.; Fleming, T.; Heitmeier, S.; Uhle, F.; Al-Saeedi, M.; Hackert, T.; Bruckner, T.; Schöchl, H.; et al. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: Results of an observational pilot study. Ann. Intensiv. Care 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.J.A.J.M.; Kleinegris, M.-C.F.; Van Oerle, R.; Spronk, H.M.H.; Lancé, M.D.; Cate, H.T.; Henskens, Y.M.C. Validation of a modified thromboelastometry approach to detect changes in fibrinolytic activity. Thromb. J. 2016, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hvas, A.-M.; Sørensen, H.T.; Norengaard, L.; Christiansen, K.; Ingerslev, J.; Sørensen, B. Tranexamic acid combined with recombinant factor VIII increases clot resistance to accelerated fibrinolysis in severe hemophilia A. J. Thromb. Haemost. 2007, 5, 2408–2414. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Taylor, F.B.; Toh, C.H.; Hoots, W.K.; Wada, H.; Levi, M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb. Haemost. 2001, 86, 1327–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographic data | |
---|---|
Age, years; mean (SD) | 67.8 ± 14.6 |
Sex, m/f; n (%) | 25/9 (74%/26%) |
Comorbidities; n (%): | |
Cardiovascular disease | 17 (50) |
Diabetes mellitus | 8 (24) |
Hepatic dysfunction | 4 (12) |
Chronic renal insufficiency | 5 (15) |
Pathogen; n | |
Gram-positive | 8 |
Gram-negative | 7 |
Fungal | 4 |
Mixed | 4 |
Not identified | 11 |
Disease severity | |
30-day mortality; n (%) | 7 (21) |
ISTH DIC > 5 (day 1); n (%) | 11 (32) |
SAPS-III score; median (IQR) | 64 (58–74) |
SOFA score, day 1; median (IQR) | 11 (8–14) |
Laboratory results, day 1 (median (IQR) | |
Lactate (arterial), mmol/L (reference interval: 0.5–2.5) | 1.7 (1.2–3.3) |
C-reactive protein, mg/L (reference interval: <8) | 211 (109–308) |
Leukocyte count, ×109/L (reference interval: 3.5–10.0) | 11.6 (7.8–19.5) |
Flat (n = 10) | Normal (n = 13) | Lysis-Resistant (n = 11) | Reference Range a | |
---|---|---|---|---|
Peak absorbance, AU | - b | 0.87 (0.82–0.91) | 0.89 (0.83–1.01) | 0.26–0.78 |
Area under curve, AU × seconds | - b | 1422 (1111–1666) | - c | 248–1130 |
50% lysis time, seconds | - b | 1042 (867–1155) | - c | 314–1438 |
Patients above reference, n (%): | ||||
-Peak absorbance -Area under curve -50% lysis time | - b - b - b | 10 (77%) 9 (69%) 2 (15%) | 9 (82%) - c - c |
Day 1 (n = 34) | Day 2 (n = 29) | Day 3 (n = 23) | ||
---|---|---|---|---|
Clot–lysis pattern, n (%) | ||||
-Flat | 10 (30%) | 15 (52%) | 8 (35%) | |
-Normal | 13 (38%) | 7 (24%) | 10 (43%) | |
Lysis-resistant | 11 (32%) | 7 (24%) | 5 (22%) | |
Clot–lysis parameters | ||||
Reference | Sepsis patients | |||
Day 1 | Day 2 | Day 3 | ||
Peak absorbance, AU a | 0.26–0.78 | 0.89 (0.82–0.98) | 0.90 (0.51–0.96) | 0.72 (0.55–0.91) |
Area under curve, AU × seconds a | 248–1130 | 1422 (1112–1666) | 1510 (1045–1923) | 1044 (787–1562) |
50% lysis time, seconds b | 314–1438 | 1093 (565) | 885 (313) | 792 (246) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larsen, J.B.; Aggerbeck, M.A.; Larsen, K.M.; Hvas, C.L.; Hvas, A.-M. Fibrin Network Formation and Lysis in Septic Shock Patients. Int. J. Mol. Sci. 2021, 22, 9540. https://doi.org/10.3390/ijms22179540
Larsen JB, Aggerbeck MA, Larsen KM, Hvas CL, Hvas A-M. Fibrin Network Formation and Lysis in Septic Shock Patients. International Journal of Molecular Sciences. 2021; 22(17):9540. https://doi.org/10.3390/ijms22179540
Chicago/Turabian StyleLarsen, Julie Brogaard, Mathies Appel Aggerbeck, Kim Michael Larsen, Christine Lodberg Hvas, and Anne-Mette Hvas. 2021. "Fibrin Network Formation and Lysis in Septic Shock Patients" International Journal of Molecular Sciences 22, no. 17: 9540. https://doi.org/10.3390/ijms22179540
APA StyleLarsen, J. B., Aggerbeck, M. A., Larsen, K. M., Hvas, C. L., & Hvas, A. -M. (2021). Fibrin Network Formation and Lysis in Septic Shock Patients. International Journal of Molecular Sciences, 22(17), 9540. https://doi.org/10.3390/ijms22179540