Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients
Abstract
:1. Introduction
2. Cannabidiol
3. Alkyl-Carbamates: Cenobamate and Felbamate
3.1. Cenobamate
3.2. Felbamate
4. Clobazam
5. Dibenzazepines: Carbamazepine, Eslicarbazepine Acetate and Oxcarbazepine
5.1. Carbamazepine
5.2. Eslicarbazepine
5.3. Oxcarbazepine
6. Ethosuximide
7. GABA Analogues
8. Lacosamide
9. Lamotrigine
10. Perampanel
11. Phenobarbital
12. Phenytoin and Phosphenytoin
13. Piracetam and Its Newer Derivatives
14. Primidone
15. Rufinamide
16. Stiripentol
17. Sulthiame
18. Topiramate
19. Valproic Acid
20. Zonisamide
21. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, E.L. Seizures and Epilepsy. Med. Clin. N. Am. 2019, 103, 309–324. [Google Scholar] [CrossRef]
- Perucca, P.; Scheffer, I.E.; Kiley, M. The Management of Epilepsy in Children and Adults. Med. J. Aust. 2018, 208, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Stephen, L.J.; Harden, C.; Tomson, T.; Brodie, M.J. Management of Epilepsy in Women. Lancet Neurol. 2019, 18, 481–491. [Google Scholar] [CrossRef]
- Stephen, L.J.; Brodie, M.J. Antiepileptic Drug Monotherapy versus Polytherapy: Pursuing Seizure Freedom and Tolerability in Adults. Curr. Opin. Neurol. 2012, 25, 164–172. [Google Scholar] [CrossRef]
- Leong, C.; Mamdani, M.M.; Gomes, T.; Juurlink, D.N.; Macdonald, E.M.; Yogendran, M. Antiepileptic Use for Epilepsy and Nonepilepsy Disorders: A Population-Based Study (1998–2013). Neurology 2016, 86, 939–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verrotti, A.; Coppola, G.; Parisi, P.; Mohn, A.; Chiarelli, F. Bone and Calcium Metabolism and Antiepileptic Drugs. Clin. Neurol. Neurosurg. 2010, 112, 1–10. [Google Scholar] [CrossRef]
- Silvestro, S.; Mammana, S.; Cavalli, E.; Bramanti, P.; Mazzon, E. Use of Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in Clinical Trials. Molecules 2019, 24, 1459. [Google Scholar] [CrossRef] [Green Version]
- Fırat, O.; Yalçın, N.; Demirkan, K. COVID-19 & Antiepileptic Drugs: Should We Pay Attention? Seizure 2020, 80, 240–241. [Google Scholar] [CrossRef]
- Kow, C.S.; Hasan, S.S. Potential Interactions between COVID-19 Vaccines and Antiepileptic Drugs. Seizure 2021, 86, 80–81. [Google Scholar] [CrossRef] [PubMed]
- Gezmen-Karadağ, M.; Çelik, E.; Kadayifçi, F.Z.; Yeşildemir, Ö.; Öztürk, Y.E.; Ağagündüz, D. Role of Food-Drug Interactions in Neurological and Psychological Diseases. Acta Neurobiol. Exp. 2018, 78, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Johannessen Landmark, C.; Johannessen, S.I.; Patsalos, P.N. Therapeutic Drug Monitoring of Antiepileptic Drugs: Current Status and Future Prospects. Expert Opin. Drug Metab. Toxicol. 2020, 16, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Burstein, S. Cannabidiol (CBD) and Its Analogs: A Review of Their Effects on Inflammation. Bioorg. Med. Chem. 2015, 23, 1377–1385. [Google Scholar] [CrossRef]
- Ibeas Bih, C.; Chen, T.; Nunn, A.V.W.; Bazelot, M.; Dallas, M.; Whalley, B.J. Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics 2015, 12, 699–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Ruiz, J.; Sagredo, O.; Pazos, M.R.; García, C.; Pertwee, R.; Mechoulam, R.; Martínez-Orgado, J. Cannabidiol for Neurodegenerative Disorders: Important New Clinical Applications for This Phytocannabinoid?: Cannabidiol and Neurodegenerative Disorders. Br. J. Clin. Pharmacol. 2013, 75, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Cassano, T.; Villani, R.; Pace, L.; Carbone, A.; Bukke, V.N.; Orkisz, S.; Avolio, C.; Serviddio, G. From Cannabis Sativa to Cannabidiol: Promising Therapeutic Candidate for the Treatment of Neurodegenerative Diseases. Front. Pharmacol. 2020, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Elms, L.; Shannon, S.; Hughes, S.; Lewis, N. Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series. J. Altern. Complement. Med. 2019, 25, 392–397. [Google Scholar] [CrossRef]
- Hussain, S.A.; Zhou, R.; Jacobson, C.; Weng, J.; Cheng, E.; Lay, J.; Hung, P.; Lerner, J.T.; Sankar, R. Perceived Efficacy of Cannabidiol-Enriched Cannabis Extracts for Treatment of Pediatric Epilepsy: A Potential Role for Infantile Spasms and Lennox–Gastaut Syndrome. Epilepsy Behav. 2015, 47, 138–141. [Google Scholar] [CrossRef]
- Millar, S.A.; Stone, N.L.; Yates, A.S.; O’Sullivan, S.E. A Systematic Review on the Pharmacokinetics of Cannabidiol in Humans. Front. Pharmacol. 2018, 9, 1365. [Google Scholar] [CrossRef]
- Patsalos, P.N.; Spencer, E.P.; Berry, D.J. Therapeutic Drug Monitoring of Antiepileptic Drugs in Epilepsy: A 2018 Update. Ther. Drug Monit. 2018, 40, 526–548. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, B.J.; Staack, A.M. Levetiracetam and Brivaracetam: A Review of Evidence from Clinical Trials and Clinical Experience. Ther. Adv. Neurol. Disord. 2019, 12, 175628641987351. [Google Scholar] [CrossRef] [Green Version]
- Klein, P.; Diaz, A.; Gasalla, T.; Whitesides, J. A Review of the Pharmacology and Clinical Efficacy of Brivaracetam. Clin. Pharmacol. Adv. Appl. 2018, 10, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Drugbank. Available online: https://go.drugbank.com (accessed on 23 August 2021).
- Gaston, T.E.; Bebin, E.M.; Cutter, G.R.; Liu, Y.; Szaflarski, J.P. UAB CBD Program Interactions between Cannabidiol and Commonly Used Antiepileptic Drugs. Epilepsia 2017, 58, 1586–1592. [Google Scholar] [CrossRef] [Green Version]
- Bialer, M.; Perucca, E. Does Cannabidiol Have Antiseizure Activity Independent of Its Interactions with Clobazam? An Appraisal of the Evidence from Randomized Controlled Trials. Epilepsia 2020, 61, 1082–1089. [Google Scholar] [CrossRef]
- Gilmartin, C.G.S.; Dowd, Z.; Parker, A.P.J.; Harijan, P. Interaction of Cannabidiol with Other Antiseizure Medications: A Narrative Review. Seizure 2021, 86, 189–196. [Google Scholar] [CrossRef]
- Xu, C.; Chang, T.; Du, Y.; Yu, C.; Tan, X.; Li, X. Pharmacokinetics of Oral and Intravenous Cannabidiol and Its Antidepressant-like Effects in Chronic Mild Stress Mouse Model. Environ. Toxicol. Pharmacol. 2019, 70, 103202. [Google Scholar] [CrossRef] [PubMed]
- Landmark, C.J.; Brandl, U. Pharmacology and Drug Interactions of Cannabinoids. Epileptic Disord. 2020, 22, S16–S22. [Google Scholar] [CrossRef]
- Devinsky, O.; Cilio, M.R.; Cross, H.; Fernandez-Ruiz, J.; French, J.; Hill, C.; Katz, R.; Di Marzo, V.; Jutras-Aswad, D.; Notcutt, W.G.; et al. Cannabidiol: Pharmacology and Potential Therapeutic Role in Epilepsy and Other Neuropsychiatric Disorders. Epilepsia 2014, 55, 791–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvanova, M. Pharmacokinetic Characteristics of Antiepileptic Drugs (AEDs). Ment. Health Clin. 2016, 6, 8–20. [Google Scholar] [CrossRef]
- Tolou-Ghamari, Z.; Zare, M.; Habibabadi, J.M.; Najafi, M.R. A Quick Review of Carbamazepine Pharmacokinetics in Epilepsy from 1953 to 2012. J. Res. Med. Sci. 2013, 18, S81–S85. [Google Scholar] [PubMed]
- XCOPRI. Full Prescribing Information. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212839Orig1s000Approv.pdf (accessed on 23 August 2021).
- Vernillet, L.; Greene, S.A.; Kamin, M. Pharmacokinetics of Cenobamate: Results From Single and Multiple Oral Ascending-Dose Studies in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2020, 9, 428–443. [Google Scholar] [CrossRef]
- Latimer, D.R.; Edinoff, A.N.; Ruff, R.D.; Rooney, K.C.; Penny, K.M.; Patel, S.B.; Sabbenahalli, S.; Kaye, A.M.; Cornett, E.M.; Viswanath, O.; et al. Cenobamate, a Sodium Channel Inhibitor and Positive Allosteric Modulator of GABAA Ion Channels, for Partial Onset Seizures in Adults: A Comprehensive Review and Clinical Implications. Neurol. Int. 2021, 13, 252–265. [Google Scholar] [CrossRef]
- Roberti, R.; De Caro, C.; Iannone, L.F.; Zaccara, G.; Lattanzi, S.; Russo, E. Pharmacology of Cenobamate: Mechanism of Action, Pharmacokinetics, Drug-Drug Interactions and Tolerability. CNS Drugs 2021, 35, 609–618. [Google Scholar] [CrossRef]
- Tolbert, D.; Larsen, F. A Comprehensive Overview of the Clinical Pharmacokinetics of Clobazam. J. Clin. Pharmacol. 2019, 59, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Bialer, M.; Soares-da-Silva, P. Pharmacokinetics and Drug Interactions of Eslicarbazepine Acetate. Epilepsia 2012, 53, 935–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sills, G.J.; Rogawski, M.A. Mechanisms of Action of Currently Used Antiseizure Drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef]
- Hanrahan, B.; Carson, R.P. Ethosuximide. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Ethosuximide Aristo 250 Mg Soft Capsules—Summary of Product Characteristics (SmPC)—(Emc). Available online: https://www.medicines.org.uk/emc/product/12123/smpc#PHARMACOKINETIC_PROPS (accessed on 28 July 2021).
- Chapter 14: Ethosuximide in: Clinical Pharmacokinetics. Available online: https://publications.ashp.org/view/book/9781585285372/ch014.xml?rskey=wx5d1j&result=464 (accessed on 23 August 2021).
- Bockbrader, H.N.; Wesche, D.; Miller, R.; Chapel, S.; Janiczek, N.; Burger, P. A Comparison of the Pharmacokinetics and Pharmacodynamics of Pregabalin and Gabapentin. Clin. Pharmacokinet. 2010, 49, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.J.; Beran, R.G.; Plunkeft, M.J.; Clarke, L.A.; Hung, W.T. The Absorption of Gabapentin Following High Dose Escalation. Seizure 2003, 12, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Scott, L.J. Lacosamide: A Review in Focal Seizures in Patients with Epilepsy. Drugs 2015, 75, 2143–2154. [Google Scholar] [CrossRef]
- Cawello, W.; Fuhr, U.; Hering, U.; Maatouk, H.; Halabi, A. Impact of Impaired Renal Function on the Pharmacokinetics of the Antiepileptic Drug Lacosamide. Clin. Pharmacokinet. 2013, 52, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Milosheska, D.; Lorber, B.; Vovk, T.; Kastelic, M.; Dolžan, V.; Grabnar, I. Pharmacokinetics of Lamotrigine and Its Metabolite N-2-Glucuronide: Influence of Polymorphism of UDP-Glucuronosyltransferases and Drug Transporters: Pharmacokinetics of Lamotrigine and Its Metabolite N-2-Glucuronide. Br. J. Clin. Pharmacol. 2016, 82, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Kozłowski, P.; Czępińska-Ćwik, W.; Kozłowska, M.; Kozłowska, K. Levetiracetam—Epilepsy Treatment, Pharmacokinetics, Mechanism of Action, Interaction And Toxicity. J. Educ. Health Sport 2015, 5, 143–150. [Google Scholar] [CrossRef]
- May, T.W.; Korn-Merker, E.; Rambeck, B. Clinical Pharmacokinetics of Oxcarbazepine. Clin. Pharmacokinet. 2003, 42, 1023–1042. [Google Scholar] [CrossRef]
- Patsalos, P.N. The Clinical Pharmacology Profile of the New Antiepileptic Drug Perampanel: A Novel Noncompetitive AMPA Receptor Antagonist. Epilepsia 2015, 56, 12–27. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Shiratani, Y.; Asai, S.; Usui, N.; Nishida, T.; Imai, K.; Kagawa, Y.; Takahashi, Y. Pharmacokinetics, Tolerability, and Clinical Effectiveness of Perampanel in Japanese Patients with Epilepsy. Seizure 2020, 83, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Oztekin, O.; Kalay, S.; Tezel, G.; Akcakus, M.; Oygur, N. Can We Safely Administer the Recommended Dose of Phenobarbital in Very Low Birth Weight Infants? Childs Nerv. Syst. 2013, 29, 1353–1357. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M. Clinical Pharmacology of Phenobarbital in Neonates: Effects, Metabolism and Pharmacokinetics. Curr. Pediatr. Rev. 2016, 12, 48–54. [Google Scholar] [CrossRef]
- Pokorná, P.; Šíma, M.; Vobruba, V.; Tibboel, D.; Slanař, O. Phenobarbital Pharmacokinetics in Neonates and Infants during Extracorporeal Membrane Oxygenation. Perfusion 2018, 33, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, H.; Echizen, H.; Ogawa, R.; Orii, T.; Kato, T. Reduced Clearance of Phenobarbital in Advanced Cancer Patients near the End of Life. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 77–82. [Google Scholar] [CrossRef]
- Kang, J.; Park, Y.-S.; Kim, S.-H.; Kim, S.-H.; Jun, M.-Y. Modern Methods for Analysis of Antiepileptic Drugs in the Biological Fluids for Pharmacokinetics, Bioequivalence and Therapeutic Drug Monitoring. Korean J. Physiol. Pharmacol. 2011, 15, 67–81. [Google Scholar] [CrossRef]
- Ahn, J.E.; Cloyd, J.C.; Brundage, R.C.; Marino, S.E.; Conway, J.M.; Ramsay, R.E.; White, J.R.; Musib, L.C.; Rarick, J.O.; Birnbaum, A.K.; et al. Phenytoin Half-Life and Clearance during Maintenance Therapy in Adults and Elderly Patients with Epilepsy. Neurology 2008, 71, 38–43. [Google Scholar] [CrossRef]
- Fischer, J.H.; Patel, T.V.; Fischer, P.A. Fosphenytoin. Clin. Pharmacokinet. 2003, 42, 33–58. [Google Scholar] [CrossRef]
- Winblad, B. Piracetam: A Review of Pharmacological Properties and Clinical Uses. CNS Drug Rev. 2006, 11, 169–182. [Google Scholar] [CrossRef]
- Vossler, D.G.; Weingarten, M.; Gidal, B.E. Summary of Antiepileptic Drugs Available in the United States of America. Epilepsy Curr. 2018, 18, 1–26. [Google Scholar] [CrossRef] [Green Version]
- What Is the Role of Primidone in the Treatment of Epilepsy? Available online: https://www.medscape.com/answers/1187334-187110/what-is-the-role-of-primidone-in-the-treatment-of-epilepsy (accessed on 28 July 2021).
- Perucca, E.; Cloyd, J.; Critchley, D.; Fuseau, E. Rufinamide: Clinical Pharmacokinetics and Concentrationresponse Relationships in Patients with Epilepsy. Epilepsia 2008, 49, 1123–1141. [Google Scholar] [CrossRef] [PubMed]
- Wheless, J.W.; Vazquez, B. Rufinamide: A Novel Broad-Spectrum Antiepileptic Drug. Epilepsy Curr. 2010, 10, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peigné, S.; Rey, E.; Le Guern, M.-E.; Dulac, O.; Chiron, C.; Pons, G.; Jullien, V. Reassessment of Stiripentol Pharmacokinetics in Healthy Adult Volunteers. Epilepsy Res. 2014, 108, 909–916. [Google Scholar] [CrossRef]
- Eschbach, K.; Knupp, K.G. Stiripentol for the Treatment of Seizures in Dravet Syndrome. Expert Rev. Clin. Pharmacol. 2019, 12, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Patsalos, P.N. Stiripentol. In Antiepileptic Drug Interactions: A Clinical Guide; Patsalos, P.N., Ed.; Springer: London, UK, 2013; pp. 145–150. ISBN 978-1-4471-2434-4. [Google Scholar]
- Dao, K.; Thoueille, P.; Decosterd, L.A.; Mercier, T.; Guidi, M.; Bardinet, C.; Lebon, S.; Choong, E.; Castang, A.; Guittet, C.; et al. Sultiame Pharmacokinetic Profile in Plasma and Erythrocytes after Single Oral Doses: A Pilot Study in Healthy Volunteers. Pharmacol. Res. Perspect. 2020, 8, e00558. [Google Scholar] [CrossRef] [Green Version]
- Patsalos, P.N. Sulthiame. In Antiepileptic Drug Interactions: A Clinical Guide; Patsalos, P.N., Ed.; Springer: London, UK, 2013; pp. 151–156. ISBN 978-1-4471-2434-4. [Google Scholar]
- Bauer, J. Tiagabine: Efficacy and Safety in Partial Seizures – Current Status. Neuropsychiatr. Dis. Treat. 2008, 4, 731. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ratnaraj, N.; Patsalos, P.N. The Pharmacokinetic Inter-Relationship of Tiagabine in Blood, Cerebrospinal Fluid and Brain Extracellular Fluid (Frontal Cortex and Hippocampus). Seizure 2004, 13, 574–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choosing Antiepileptic Drugs. Available online: https://practicalneurology.com/articles/2018-oct/choosing-antiepileptic-drugs (accessed on 28 July 2021).
- Garnett, W.R. Clinical Pharmacology of Topiramate: A Review. Epilepsia 2000, 41, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Bialer, M.; Doose, D.R.; Murthy, B.; Curtin, C.; Wang, S.-S.; Twyman, R.E.; Schwabe, S. Pharmacokinetic Interactions of Topiramate. Clin. Pharmacokinet. 2004, 43, 763–780. [Google Scholar] [CrossRef]
- Ghodke-Puranik, Y.; Thorn, C.F.; Lamba, J.K.; Leeder, J.S.; Song, W.; Birnbaum, A.K.; Altman, R.B.; Klein, T.E. Valproic Acid Pathway: Pharmacokinetics and Pharmacodynamics. Pharm. Genom. 2013, 23, 236–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolman, J.A.; Faulkner, M.A. Vigabatrin: A Comprehensive Review of Drug Properties Including Clinical Updates Following Recent FDA Approval. Expert Opin. Pharmacother. 2009, 10, 3077–3089. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Winterstein, A. Potential Adverse Drug Events and Drug–Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use. J. Clin. Med. 2019, 8, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadi-Pooya, A.A.; Attar, A.; Moghadami, M.; Karimzadeh, I. Management of COVID-19 in People with Epilepsy: Drug Considerations. Neurol. Sci. 2020, 41, 2005–2011. [Google Scholar] [CrossRef]
- Russo, E.; Iannone, L. Clinically Relevant Drug-Drug Interaction between AEDs and Medications Used in the Treatment of COVID-19 Patients. Available online: https://www.ilae.org/files/dmfile/Antiepileptic-drugs-interactions_in_COVID-19.pdf (accessed on 23 August 2021).
- Clinical Pharmacology and Biopharmaceutics Review(s). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/204417Orig1s000ClinPharmR.pdf (accessed on 23 August 2021).
- WHO Discontinues Hydroxychloroquine and Lopinavir/Ritonavir Treatment Arms for COVID-19. Available online: https://www.who.int/news/item/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19 (accessed on 28 July 2021).
- Löscher, W.; Sills, G.J.; White, H.S. The Ups and Downs of Alkyl-Carbamates in Epilepsy Therapy: How Does Cenobamate Differ? Epilepsia 2021, 62, 596–614. [Google Scholar] [CrossRef]
- Milosheska, D.; Grabnar, I.; Vovk, T. Dried Blood Spots for Monitoring and Individualization of Antiepileptic Drug Treatment. Eur. J. Pharm. Sci. 2015, 75, 25–39. [Google Scholar] [CrossRef]
- Russell, G.R.; Phelps, S.J.; Shelton, C.M.; Wheless, J.W. Impact of Drug Interactions on Clobazam and N-Desmethylclobazam Concentrations in Pediatric Patients With Epilepsy. Ther. Drug Monit. 2018, 40, 452–462. [Google Scholar] [CrossRef]
- French, J.; Smith, M.; Faught, E.; Brown, L. Practice Advisory: The Use of Felbamate in the Treatment of Patients with Intractable Epilepsy: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 1999, 52, 1540–1545. [Google Scholar] [CrossRef] [Green Version]
- Harty, T.P.; Rogawski, M.A. Felbamate Block of Recombinant N-Methyl-D-Aspartate Receptors: Selectivity for the NR2B Subunit. Epilepsy Res. 2000, 39, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Krasowski, M.D. Therapeutic Drug Monitoring of the Newer Anti-Epilepsy Medications. Pharmaceuticals 2010, 3, 1909–1935. [Google Scholar] [CrossRef]
- Clobazam|Epilepsy Foundation. Available online: https://www.epilepsy.com/medications/clobazam (accessed on 28 July 2021).
- Reimers, A.; Berg, J.A.; Burns, M.L.; Brodtkorb, E.; Johannessen, S.I.; Johannessen Landmark, C. Reference Ranges for Antiepileptic Drugs Revisited: A Practical Approach to Establish National Guidelines. Drug Des. Dev. Ther. 2018, 12, 271–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patsalos, P.N.; Berry, D.J.; Bourgeois, B.F.D.; Cloyd, J.C.; Glauser, T.A.; Johannessen, S.I.; Leppik, I.E.; Tomson, T.; Perucca, E. Antiepileptic Drugs--Best Practice Guidelines for Therapeutic Drug Monitoring: A Position Paper by the Subcommission on Therapeutic Drug Monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 2008, 49, 1239–1276. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Takahashi, Y.; Imai, K.; Mogami, Y.; Matsuda, K.; Nakai, M.; Kagawa, Y.; Inoue, Y. Interaction between Sulthiame and Clobazam: Sulthiame Inhibits the Metabolism of Clobazam, Possibly via an Action on CYP2C19. Epilepsy Behav. 2014, 34, 124–126. [Google Scholar] [CrossRef]
- Beydoun, A.; DuPont, S.; Zhou, D.; Matta, M.; Nagire, V.; Lagae, L. Current Role of Carbamazepine and Oxcarbazepine in the Management of Epilepsy. Seizure 2020, 83, 251–263. [Google Scholar] [CrossRef]
- Mannheimer, B.; Andersson, M.L.; Järnbert-pettersson, H.; Lindh, J.D. The Effect of Carbamazepine on Warfarin Anticoagulation: A Register-Based Nationwide Cohort Study Involving the Swedish Population. J. Thromb. Haemost. 2016, 14, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, L.; Lancellotti, S.; De Cristofaro, R.; De Candia, E. Carbamazepine Interaction with Direct Oral Anticoagulants: Help from the Laboratory for the Personalized Management of Oral Anticoagulant Therapy. J. Thromb. Thrombolysis 2019, 48, 528–531. [Google Scholar] [CrossRef]
- Karmakar, S.; Biswas, S.; Bera, R.; Mondal, S.; Kundu, A.; Ali, M.A.; Sen, T. Beverage-Induced Enhanced Bioavailability of Carbamazepine and Its Consequent Effect on Antiepileptic Activity and Toxicity. J. Food Drug Anal. 2015, 23, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Misaka, S.; Nakamura, R.; Uchida, S.; Takeuchi, K.; Takahashi, N.; Inui, N.; Kosuge, K.; Yamada, S.; Watanabe, H. Effect of 2 Weeks’ Consumption of Pomegranate Juice on the Pharmacokinetics of a Single Dose of Midazolam: An Open-Label, Randomized, Single-Center, 2-Period Crossover Study in Healthy Japanese Volunteers. Clin. Ther. 2011, 33, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Heo, G.; Kim, S.H.; Chang, M.J. Effect of Ketogenic Diet and Other Dietary Therapies on Anti-Epileptic Drug Concentrations in Patients with Epilepsy. J. Clin. Pharm. Ther. 2017, 42, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Welzel, T.; Ziesenitz, V.C.; Weber, P.; Datta, A.N.; van den Anker, J.N.; Gotta, V. Drug–Drug and Drug–Food Interactions in an Infant with Early-Onset SCN2A Epilepsy Treated with Carbamazepine, Phenytoin and a Ketogenic Diet. Br. J. Clin. Pharmacol. 2021, 87, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Málaga, I.; Sánchez-Carpintero, R.; Roldán, S.; Ramos-Lizana, J.; García-Peñas, J.J. New anti-epileptic drugs in Paediatrics. An. Pediatr. 2019, 91, 415.e1–415.e10. [Google Scholar] [CrossRef]
- Lattanzi, S.; Brigo, F.; Cagnetti, C.; Verrotti, A.; Zaccara, G.; Silvestrini, M. Eslicarbazepine Acetate in the Treatment of Adults with Partial-Onset Epilepsy: An Evidence-Based Review of Efficacy, Safety and Place in Therapy. Core Evid. 2018, 13, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.; Nair, A.B. An Updated Overview on Therapeutic Drug Monitoring of Recent Antiepileptic Drugs. Drugs R D 2016, 16, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Galiana, G.L.; Gauthier, A.C.; Mattson, R.H. Eslicarbazepine Acetate: A New Improvement on a Classic Drug Family for the Treatment of Partial-Onset Seizures. Drugs R D 2017, 17, 329–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj Panday, D.; Panday, K.R.; Basnet, M.; Kafle, S.; Shah, B.; Rauniar, G. Therapeutic Drug Monitoring of Carbamazepine. Int. J. Neurorehabilit. Eng. 2017, 4, 1–5. [Google Scholar] [CrossRef]
- Rosati, A.; De Masi, S.; Guerrini, R. Antiepileptic Drug Treatment in Children with Epilepsy. CNS Drugs 2015, 29, 847–863. [Google Scholar] [CrossRef] [Green Version]
- Gierbolini, J.; Giarratano, M.; Benbadis, S.R. Carbamazepine-Related Antiepileptic Drugs for the Treatment of Epilepsy—A Comparative Review. Expert Opin. Pharmacother. 2016, 17, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Serralheiro, A.; Alves, G.; Fortuna, A.; Rocha, M.; Falcão, A. First HPLC-UV Method for Rapid and Simultaneous Quantification of Phenobarbital, Primidone, Phenytoin, Carbamazepine, Carbamazepine-10,11-Epoxide, 10,11-Trans-Dihydroxy-10,11-Dihydrocarbamazepine, Lamotrigine, Oxcarbazepine and Licarbazepine in Human Plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 925, 1–9. [Google Scholar] [CrossRef]
- Gören, M.Z.; Onat, F. Ethosuximide: From Bench to Bedside. CNS Drug Rev. 2007, 13, 224–239. [Google Scholar] [CrossRef]
- Gajcy, K.; Lochynski, S.; Librowski, T. A Role of GABA Analogues in the Treatment of Neurological Diseases. Curr. Med. Chem. 2010, 17, 2338–2347. [Google Scholar] [CrossRef]
- Luszczki, J.J.; Czuczwar, S.J. Gabapentin Synergistically Interacts with Topiramate in the Mouse Maximal Electroshock Seizure Model: An Isobolographic Analysis. Pharmacol. Rep. 2006, 58, 944–954. [Google Scholar] [PubMed]
- Luszczki, J.J.; Panasiuk, A.; Zagaja, M.; Karwan, S.; Bojar, H.; Plewa, Z.; Florek-Łuszczki, M. Polygonogram and Isobolographic Analysis of Interactions between Various Novel Antiepileptic Drugs in the 6-Hz Corneal Stimulation-Induced Seizure Model in Mice. PLoS ONE 2020, 15, e0234070. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Romero, A.; Durán-Quintana, J.A.; García-Delgado, R.; Margarito-Rangel, C.; Poveda-Andrés, J.L. Possible gabapentin phenytoin interaction. Rev. Neurol. 2002, 34, 952–953. [Google Scholar]
- Eckhardt, K.; Ammon, S.; Hofmann, U.; Riebe, A.; Gugeler, N.; Mikus, G. Gabapentin Enhances the Analgesic Effect of Morphine in Healthy Volunteers. Anesth. Analg. 2000, 91, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Quintero, G.C. Review about Gabapentin Misuse, Interactions, Contraindications and Side Effects. J. Exp. Pharmacol. 2017, 9, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, R.W.; Chatterjea, D.; Rose Feng, M.; Taylor, C.P.; Hammond, D.L. Gabapentin and Pregabalin Can Interact Synergistically with Naproxen to Produce Antihyperalgesia. Anesthesiology 2002, 97, 1263–1273. [Google Scholar] [CrossRef]
- Perucca, E. Clinically Relevant Drug Interactions with Antiepileptic Drugs. Br. J. Clin. Pharmacol. 2006, 61, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Socała, K.; Wyska, E.; Szafarz, M.; Nieoczym, D.; Wlaź, P. Acute Effect of Cannabidiol on the Activity of Various Novel Antiepileptic Drugs in the Maximal Electroshock- and 6 Hz-Induced Seizures in Mice: Pharmacodynamic and Pharmacokinetic Studies. Neuropharmacology 2019, 158, 107733. [Google Scholar] [CrossRef] [PubMed]
- Nøhr, M.K.; Frølund, S.; Holm, R.; Nielsen, C.U. Pharmacokinetic Aspects of the Anti-Epileptic Drug Substance Vigabatrin: Focus on Transporter Interactions. Ther. Deliv. 2014, 5, 927–942. [Google Scholar] [CrossRef]
- Cuadrado, A.; Armijo, J.A. Beneficial Interaction between Vigabatrin and Valproate against Seizures Induced by Pentylenetetrazole in Mice. Pharmacol. Res. 2005, 51, 489–496. [Google Scholar] [CrossRef]
- Luszczki, J.J.; Czuczwar, S.J. Isobolographic Characterization of Interactions between Vigabatrin and Tiagabine in Two Experimental Models of Epilepsy. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2007, 31, 529–538. [Google Scholar] [CrossRef]
- Reidenberg, P.; Glue, P.; Banfield, C.; Colucci, R.; Meehan, J.; Rey, E.; Radwanski, E.; Nomeir, A.; Lim, J.; Lin, C.; et al. Pharmacokinetic Interaction Studies between Felbamate and Vigabatrin. Br. J. Clin. Pharmacol. 1995, 40, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Frisk-Holmberg, M.; Kerth, P.; Meyer, P. Effect of Food on the Absorption of Vigabatrin. Br. J. Clin. Pharmacol. 1989, 27, 23S–25S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nøhr, M.K.; Thale, Z.I.; Brodin, B.; Hansen, S.H.; Holm, R.; Nielsen, C.U. Intestinal Absorption of the Antiepileptic Drug Substance Vigabatrin Is Altered by Infant Formula in Vitro and in Vivo. Pharmacol. Res. Perspect. 2014, 2, e00036. [Google Scholar] [CrossRef]
- Shandra, A.; Shandra, P.; Kaschenko, O.; Matagne, A.; Stöhr, T. Synergism of Lacosamide with Established Antiepileptic Drugs in the 6-Hz Seizure Model in Mice. Epilepsia 2013, 54, 1167–1175. [Google Scholar] [CrossRef]
- Kondrat-Wróbel, M.W.; Łuszczki, J.J. Interaction of three-drug combination of lacosamide, carbamazepine and phenobarbital in the mouse maximal electroshock-induced seizure model—An isobolographic analysis. Health Probl. Civiliz. 2016, 1, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Załuska-Ogryzek, K.; Marzęda, P.; Wróblewska-Łuczka, P.; Florek-Łuszczki, M.; Plewa, Z.; Bojar, H.; Zolkowska, D.; Łuszczki, J.J. Interactions among Lacosamide and Second-Generation Antiepileptic Drugs in the Tonic-Clonic Seizure Model in Mice. Int. J. Mol. Sci. 2021, 22, 5537. [Google Scholar] [CrossRef]
- Cawello, W. Clinical Pharmacokinetic and Pharmacodynamic Profile of Lacosamide. Clin. Pharmacokinet. 2015, 54, 901–914. [Google Scholar] [CrossRef] [PubMed]
- Yasam, V.R.; Jakki, S.L.; Senthil, V.; Eswaramoorthy, M.; Shanmuganathan, S.; Arjunan, K.; Nanjan, M. A Pharmacological Overview of Lamotrigine for the Treatment of Epilepsy. Expert Rev. Clin. Pharmacol. 2016, 9, 1533–1546. [Google Scholar] [CrossRef]
- Koristkova, B.; Grundmann, M.; Brozmanova, H.; Kacirova, I. Lamotrigine Drug Interactions in Combination Therapy and the Influence of Therapeutic Drug Monitoring on Clinical Outcomes in Paediatric Patients. Basic Clin. Pharmacol. Toxicol. 2019, 125, 26–33. [Google Scholar] [CrossRef]
- Leary, E.; Sheth, R.D.; Gidal, B.E. Time Course of Reversal of Valproate-Mediated Inhibition of Lamotrigine. Seizure 2018, 57, 76–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, M.; Maldonado, C.; Guevara, N.; Rey, A.; Fagiolino, P.; Carozzi, A.; Azambuja, C. Lamotrigine-Valproic Acid Interaction Leading to Stevens–Johnson Syndrome. Case Rep. Med. 2018, 2018, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wimpelmann, J.; Høvik, H.; Riedel, B.; Slørdal, L. The Interaction between Rifampicin and Lamotrigine: A Case Report. Br. J. Clin. Pharmacol. 2019, 85, 1859–1860. [Google Scholar] [CrossRef] [Green Version]
- Rauchenzauner, M.; Deichmann, S.; Pittschieler, S.; Bergmann, M.; Prieschl, M.; Unterberger, I.; Rösing, B.; Seger, C.; Moser, C.; Wildt, L.; et al. Bidirectional Interaction between Oral Contraception and Lamotrigine in Women with Epilepsy—Role of Progestins. Seizure 2020, 74, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Vanderlee, M.; Dawood, L.; Terhofstede, H.; Degraaffteulen, M.; Vanewijkbenekenkolmer, E.; Caliskanyassen, N.; Koopmans, P.; Burger, D. Lopinavir/Ritonavir Reduces Lamotrigine Plasma Concentrations in Healthy Subjects. Clin. Pharmacol. Ther. 2006, 80, 159–168. [Google Scholar] [CrossRef]
- Burger, D.; Huisman, A.; Van Ewijk, N.; Neisingh, H.; Van Uden, P.; Rongen, G.; Koopmans, P.; Bertz, R. The Effect of Atazanavir and Atazanavir/Ritonavir on UDP-Glucuronosyltransferase Using Lamotrigine as a Phenotypic Probe. Clin. Pharmacol. Ther. 2008, 84, 698–703. [Google Scholar] [CrossRef]
- De Leon, J.; Santoro, V.; D’Arrigo, C.; Spina, E. Interactions between Antiepileptics and Second-Generation Antipsychotics. Expert Opin. Drug Metab. Toxicol. 2012, 8, 311–334. [Google Scholar] [CrossRef]
- Borowicz-Reutt, K.K.; Czuczwar, S.J.; Rusek, M. Interactions of Antiepileptic Drugs with Drugs Approved for the Treatment of Indications Other than Epilepsy. Expert Rev. Clin. Pharmacol. 2020, 13, 1329–1345. [Google Scholar] [CrossRef]
- Sharma, C.; Dubey, R.; Kumar, H.; Saha, N. Food Reduces the Bioavailability of Lamotrigine. Indian J. Med. Res. 2005, 121, 659–664. [Google Scholar]
- Greenwood, J.; Valdes, J. Perampanel (Fycompa): A Review of Clinical Efficacy and Safety in Epilepsy. Pharm. Ther. 2016, 41, 683–698. [Google Scholar]
- De Liso, P.; Moavero, R.; Coppola, G.; Curatolo, P.; Cusmai, R.; De Sarro, G.; Franzoni, E.; Vigevano, F.; Verrotti, A. Current Role of Perampanel in Pediatric Epilepsy. Ital. J. Pediatr. 2017, 43, 51. [Google Scholar] [CrossRef] [Green Version]
- Gidal, B.E.; Ferry, J.; Laurenza, A.; Ueno, T. Potential Protein-Binding Displacement Interactions with Perampanel: An in Vitro Analysis. Epilepsy Res. 2019, 149, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Majid, O.; Laurenza, A.; Ferry, J.; Hussein, Z. Impact of Perampanel on Pharmacokinetics of Concomitant Antiepileptics in Patients with Partial-Onset Seizures: Pooled Analysis of Clinical Trials. Br. J. Clin. Pharmacol. 2016, 82, 422–430. [Google Scholar] [CrossRef]
- Ilangaratne, N.B.; Mannakkara, N.N.; Bell, G.S.; Sander, J.W. Phenobarbital: Missing in Action. Bull. World Health Organ. 2012, 90, 871A. [Google Scholar] [CrossRef]
- El-Dib, M.; Soul, J.S. The Use of Phenobarbital and Other Anti-Seizure Drugs in Newborns. Semin. Fetal Neonatal Med. 2017, 22, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Favié, L.M.A.; Groenendaal, F.; van den Broek, M.P.H.; Rademaker, C.M.A.; de Haan, T.R.; van Straaten, H.L.M.; Dijk, P.H.; van Heijst, A.; Simons, S.H.P.; Dijkman, K.P.; et al. Phenobarbital, Midazolam Pharmacokinetics, Effectiveness, and Drug-Drug Interaction in Asphyxiated Neonates Undergoing Therapeutic Hypothermia. Neonatology 2019, 116, 154–162. [Google Scholar] [CrossRef]
- Schoemaker, R.; Wade, J.R.; Stockis, A. Brivaracetam Population Pharmacokinetics and Exposure-Response Modeling in Adult Subjects With Partial-Onset Seizures. J. Clin. Pharmacol. 2016, 56, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Noval, M.; Seung, H.; Armahizer, M. Evaluation of Fosphenytoin Therapeutic Drug Monitoring in the Neurocritical Care Unit. Drugs R D 2020, 20, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Tobler, A.; Hösli, R.; Mühlebach, S.; Huber, A. Free Phenytoin Assessment in Patients: Measured versus Calculated Blood Serum Levels. Int. J. Clin. Pharm. 2016, 38, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Sweiss, K.; Quigley, J.G.; Oh, A.; Lee, J.; Ye, R.; Rondelli, D.; Patel, P. A Novel Drug Interaction between Busulfan and Blinatumomab. J. Oncol. Pharm. Pract. 2019, 25, 226–228. [Google Scholar] [CrossRef]
- Kuroda, N. Epilepsy and COVID-19: Updated Evidence and Narrative Review. Epilepsy Behav. 2021, 116, 107785. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.; Jones, M.W.; Gribble, M. Increased Serum Phenytoin Concentration Following Influenza Vaccination. Clin. Pharm. 1984, 3, 505–509. [Google Scholar] [CrossRef]
- Fedi, M.; Reutens, D.; Dubeau, F.; Andermann, E.; D’Agostino, D.; Andermann, F. Long-Term Efficacy and Safety of Piracetam in the Treatment of Progressive Myoclonus Epilepsy. Arch. Neurol. 2001, 58, 781. [Google Scholar] [CrossRef]
- Naftalin, R.J.; Cunningham, P.; Afzal-Ahmed, I. Piracetam and TRH Analogues Antagonise Inhibition by Barbiturates, Diazepam, Melatonin and Galanin of Human Erythrocyte D -Glucose Transport: Nootropic Action on Erythrocyte Glucose Transport. Br. J. Pharmacol. 2004, 142, 594–608. [Google Scholar] [CrossRef] [Green Version]
- Hacquard, M.; Richard, S.; Lacour, J.-C.; Lecompte, T.; Vespignani, H. Levetiracetam-Induced Platelet Dysfunction. Epilepsy Res. 2009, 86, 94–96. [Google Scholar] [CrossRef]
- Kaminski, R.M.; Matagne, A.; Patsalos, P.N.; Klitgaard, H. Benefit of Combination Therapy in Epilepsy: A Review of the Preclinical Evidence with Levetiracetam. Epilepsia 2009, 50, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Florek-Luszczki, M.; Wlaz, A.; Luszczki, J.J. Interactions of Levetiracetam with Carbamazepine, Phenytoin, Topiramate and Vigabatrin in the Mouse 6Hz Psychomotor Seizure Model—A Type II Isobolographic Analysis. Eur. J. Pharmacol. 2014, 723, 410–418. [Google Scholar] [CrossRef]
- Luszczki, J.J.; Andres-Mach, M.M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Levetiracetam and Felbamate Interact Both Pharmacodynamically and Pharmacokinetically: An Isobolographic Analysis in the Mouse Maximal Electroshock Model. Epilepsia 2007, 48, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Łukawski, K.; Raszewski, G.; Czuczwar, S.J. Interactions between Levetiracetam and Cardiovascular Drugs against Electroconvulsions in Mice. Pharmacol. Rep. 2014, 66, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, S.C.; Tripathi, M.; Kakkar, A.K.; Gupta, Y.K. Effect of Antiepileptic Therapy on Trace Elements Status in Indian Population in a Tertiary Care Hospital from Northern India: A Cross Sectional Study. Epilepsy Res. 2014, 108, 917–927. [Google Scholar] [CrossRef]
- Moseley, B.D.; Chanteux, H.; Nicolas, J.-M.; Laloyaux, C.; Gidal, B.; Stockis, A. A Review of the Drug−drug Interactions of the Antiepileptic Drug Brivaracetam. Epilepsy Res. 2020, 163, 106327. [Google Scholar] [CrossRef]
- Moseley, B.D.; Otoul, C.; Staelens, L.; Stockis, A. Pharmacokinetic Interaction of Brivaracetam on Other Antiepileptic Drugs in Adults with Focal Seizures: Pooled Analysis of Data from Randomized Clinical Trials. Epilepsy Res. 2019, 158, 106218. [Google Scholar] [CrossRef]
- Stockis, A.; Sargentini-Maier, M.L.; Brodie, M.J. Pharmacokinetic Interaction of Brivaracetam on Carbamazepine in Adult Patients with Epilepsy, with and without Valproate Co-Administration. Epilepsy Res. 2016, 128, 163–168. [Google Scholar] [CrossRef]
- Stockis, A.; Rolan, P. Effect of Brivaracetam (400 Mg/Day) on the Pharmacokinetics and Pharmacodynamics of a Combination Oral Contraceptive in Healthy Women. J. Clin. Pharmacol. 2013, 53, 1313–1321. [Google Scholar] [CrossRef]
- Klotz, K.A.; Hirsch, M.; Heers, M.; Schulze-Bonhage, A.; Jacobs, J. Effects of Cannabidiol on Brivaracetam Plasma Levels. Epilepsia 2019, 60, e74–e77. [Google Scholar] [CrossRef] [PubMed]
- Stockis, A.; Chanteux, H.; Rosa, M.; Rolan, P. Brivaracetam and Carbamazepine Interaction in Healthy Subjects and in Vitro. Epilepsy Res. 2015, 113, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Stockis, A.; Watanabe, S.; Scheen, A.J.; Tytgat, D.; Gerin, B.; Rosa, M.; Chanteux, H.; Nicolas, J.-M. Effect of Rifampin on the Disposition of Brivaracetam in Human Subjects: Further Insights into Brivaracetam Hydrolysis. Drug Metab. Dispos. 2016, 44, 792–799. [Google Scholar] [CrossRef] [Green Version]
- May, T.W.; Helmer, R.; Bien, C.G.; Brandt, C. Influence of Dose and Antiepileptic Comedication on Lacosamide Serum Concentrations in Patients With Epilepsy of Different Ages. Ther. Drug Monit. 2018, 40, 620–627. [Google Scholar] [CrossRef]
- Riebeling, T.; Jamal, K.; Wilson, R.; Kolbrink, B.; von Samson-Himmelstjerna, F.A.; Moerke, C.; Ramos Garcia, L.; Dahlke, E.; Michels, F.; Lühder, F.; et al. Primidone Blocks RIPK1-Driven Cell Death and Inflammation. Cell Death Differ. 2021, 28, 1610–1626. [Google Scholar] [CrossRef] [PubMed]
- Reimers, A.; Brodtkorb, E.; Sabers, A. Interactions between Hormonal Contraception and Antiepileptic Drugs: Clinical and Mechanistic Considerations. Seizure 2015, 28, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frampton, J.E. Stiripentol: A Review in Dravet Syndrome. Drugs 2019, 79, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Nickels, K.C.; Wirrell, E.C. Stiripentol in the Management of Epilepsy. CNS Drugs 2017, 31, 405–416. [Google Scholar] [CrossRef]
- Cazali, N.; Tran, A.; Treluyer, J.M.; Rey, E.; d’Athis, P.; Vincent, J.; Pons, G. Inhibitory Effect of Stiripentol on Carbamazepine and Saquinavir Metabolism in Human. Br. J. Clin. Pharmacol. 2003, 56, 526–536. [Google Scholar] [CrossRef] [PubMed]
- May, T.W.; Boor, R.; Mayer, T.; Jürgens, U.; Rambeck, B.; Holert, N.; Korn-Merker, E.; Brandt, C. Concentrations of Stiripentol in Children and Adults with Epilepsy: The Influence of Dose, Age, and Comedication. Ther. Drug Monit. 2012, 34, 390–397. [Google Scholar] [CrossRef]
- Fisher, J.L. Interactions between Modulators of the GABAA Receptor: Stiripentol and Benzodiazepines. Eur. J. Pharmacol. 2011, 654, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Luszczki, J.J.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Characterization of the Anticonvulsant, Behavioral and Pharmacokinetic Interaction Profiles of Stiripentol in Combination with Clonazepam, Ethosuximide, Phenobarbital, and Valproate Using Isobolographic Analysis. Epilepsia 2006, 47, 1841–1854. [Google Scholar] [CrossRef]
- Morrison, G.; Crockett, J.; Blakey, G.; Sommerville, K. A Phase 1, Open-Label, Pharmacokinetic Trial to Investigate Possible Drug-Drug Interactions Between Clobazam, Stiripentol, or Valproate and Cannabidiol in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2019, 8, 1009–1031. [Google Scholar] [CrossRef] [PubMed]
- Doose, H.; Baier, W.K.; Ernst, J.P.; Tuxhorn, I.; Völzke, E. Benign Partial Epilepsy--Treatment with Sulthiame. Dev. Med. Child Neurol. 1988, 30, 683–684. [Google Scholar] [CrossRef]
- May, T.W.; Korn-Merker, E.; Rambeck, B.; Boenigk, H.E. Pharmacokinetics of Sulthiame in Epileptic Patients. Ther. Drug Monit. 1994, 16, 251–257. [Google Scholar] [CrossRef]
- Bae, E.-K.; Lee, J.; Shin, J.-W.; Moon, J.; Lee, K.-J.; Shin, Y.-W.; Kim, T.-J.; Shin, D.; Jang, I.-J.; Lee, S.K. Factors Influencing Topiramate Clearance in Adult Patients with Epilepsy: A Population Pharmacokinetic Analysis. Seizure 2016, 37, 8–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chateauvieux, S.; Morceau, F.; Dicato, M.; Diederich, M. Molecular and Therapeutic Potential and Toxicity of Valproic Acid. J. Biomed. Biotechnol. 2010, 2010, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone Deacetylase Inhibitors as Anticancer Drugs. Int. J. Mol. Sci. 2017, 18, 1414. [Google Scholar] [CrossRef]
- Jogamoto, T.; Yamamoto, Y.; Fukuda, M.; Suzuki, Y.; Imai, K.; Takahashi, Y.; Inoue, Y.; Ohtsuka, Y. Add-on Stiripentol Elevates Serum Valproate Levels in Patients with or without Concomitant Topiramate Therapy. Epilepsy Res. 2017, 130, 7–12. [Google Scholar] [CrossRef]
- Sälke-Kellermann, R.A.; May, T.; Boenigk, H.E. Influence of Ethosuximide on Valproic Acid Serum Concentrations. Epilepsy Res. 1997, 26, 345–349. [Google Scholar] [CrossRef]
- Hooper, W.D.; Franklin, M.E.; Glue, P.; Banfield, C.R.; Radwanski, E.; McLaughlin, D.B.; McIntyre, M.E.; Dickinson, R.G.; Eadie, M.J. Effect of Felbamate on Valproic Acid Disposition in Healthy Volunteers: Inhibition of Beta-Oxidation. Epilepsia 1996, 37, 91–97. [Google Scholar] [CrossRef]
- Suzuki, E.; Nakai, D.; Yamamura, N.; Kobayashi, N.; Okazaki, O.; Izumi, T. Inhibition Mechanism of Carbapenem Antibiotics on Acylpeptide Hydrolase, a Key Enzyme in the Interaction with Valproic Acid. Xenobiotica 2011, 41, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Okumura, L.M.; Andreolio, C.; Di Giorgio, C.; Carvalho, P.R.A.; Piva, J.P. Meropenem-Induced Low Valproate Levels in a Cerebral Palsy Child. Braz. J. Infect. Dis. 2017, 21, 491. [Google Scholar] [CrossRef]
- Sheehan, N.L.; Brouillette, M.-J.; Delisle, M.-S.; Allan, J. Possible Interaction Between Lopinavir/Ritonavir And Valproic Acid Exacerbates Bipolar Disorder. Ann. Pharmacother. 2006, 40, 147–150. [Google Scholar] [CrossRef]
- Ikeda, H.; Murakami, T.; Takano, M.; Usui, T.; Kihira, K. Pharmacokinetic Interaction on Valproic Acid and Recurrence of Epileptic Seizures during Chemotherapy in an Epileptic Patient. Br. J. Clin. Pharmacol. 2005, 59, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-L.; Zeng, L.-N.; Li, Y.-P. Side Effects of Phenobarbital in Epilepsy: A Systematic Review. Epileptic Disord. 2011, 13, 349–365. [Google Scholar] [CrossRef]
- Bernus, I.; Dickinson, R.G.; Hooper, W.D.; Eadie, M.J. The Mechanism of the Carbamazepine-Valproate Interaction in Humans. Br. J. Clin. Pharmacol. 1997, 44, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Vecht, C.J.; Wagner, G.L.; Wilms, E.B. Treating Seizures in Patients with Brain Tumors: Drug Interactions between Antiepileptic and Chemotherapeutic Agents. Semin. Oncol. 2003, 30, 49–52. [Google Scholar] [CrossRef]
- Langenbruch, L.; Meuth, S.G.; Wiendl, H.; Mesters, R.; Möddel, G. Clinically Relevant Interaction of Rivaroxaban and Valproic Acid—A Case Report. Seizure 2020, 80, 46–47. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.J.; Sills, G.J. Combining Antiepileptic Drugs—Rational Polytherapy? Seizure 2011, 20, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketter, T.A. Monotherapy versus Combined Treatment with Second-Generation Antipsychotics in Bipolar Disorder. J. Clin. Psychiatry 2008, 69 (Suppl. 5), 9–15. [Google Scholar] [CrossRef] [PubMed]
- Longin, E.; Teich, M.; Koelfen, W.; König, S. Topiramate Enhances the Risk of Valproate-Associated Side Effects in Three Children. Epilepsia 2002, 43, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Marahatta, A.; Bhandary, B.; Jeong, S.-K.; Kim, H.-R.; Chae, H.-J. Soybean Greatly Reduces Valproic Acid Plasma Concentrations: A Food–Drug Interaction Study. Sci. Rep. 2015, 4, 4362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Liu, L.; Chu, X.; Xie, H.; Cao, L.; Guo, C.; Ji-Ye, A.; Cao, B.; Li, M.; Wang, G.; et al. Combined Effects of a High-Fat Diet and Chronic Valproic Acid Treatment on Hepatic Steatosis and Hepatotoxicity in Rats. Acta Pharmacol. Sin. 2014, 35, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.E.; Turner, Z.; Kossoff, E.H. Hepatic Dysfunction as a Complication of Combined Valproate and Ketogenic Diet. Pediatric Neurol. 2016, 54, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Jing, X.; Li, G.; Sun, J.; Guo, H.; Hu, Y.; Sun, F.; Wen, X.; Chen, F.; Wang, T.; et al. Valproate Decreases Vitamin D Levels in Pediatric Patients with Epilepsy. Seizure 2019, 71, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Karabiber, H. Effects of Valproate and Carbamazepine on Serum Levels of Homocysteine, Vitamin B12, and Folic Acid. Brain Dev. 2003, 25, 113–115. [Google Scholar] [CrossRef]
- Soltani, D.; Ghaffar Pour, M.; Tafakhori, A.; Sarraf, P.; Bitarafan, S. Nutritional Aspects of Treatment in Epileptic Patients. Iran. J. Child Neurol. 2016, 10, 1–12. [Google Scholar]
- Zhou, H.; Wang, N.; Xu, L.; Huang, H.-L.; Yu, C.-Y. Clinical Study on Anti-Epileptic Drug with B Vitamins for the Treatment of Epilepsy after Stroke. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3327–3331. [Google Scholar]
- Janković, S.M. Evaluation of Zonisamide for the Treatment of Focal Epilepsy: A Review of Pharmacokinetics, Clinical Efficacy and Adverse Effects. Expert Opin. Drug Metab. Toxicol. 2020, 16, 169–177. [Google Scholar] [CrossRef]
- Kwan, S.; Chuang, Y.; Huang, C.; Chen, T.; Jou, S.; Dash, A. Zonisamide: Review of Recent Clinical Evidence for Treatment of Epilepsy. CNS Neurosci. Ther. 2015, 21, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Reimers, A.; Helde, G.; Becser Andersen, N.; Aurlien, D.; Surlien Navjord, E.; Haggag, K.; Christensen, J.; Lillestølen, K.M.; Nakken, K.O.; Brodtkorb, E. Zonisamide Serum Concentrations during Pregnancy. Epilepsy Res. 2018, 144, 25–29. [Google Scholar] [CrossRef]
Drug | Absorption (%) | tmax (h) | Bioavailability (%) | Protein Binding (%) | Vd/F(L/kg) | Metabolic Pathway | Metabolites | Excretion | Cl/F | t0.5 (h) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Brivaracetam (BRV) | ~100 | 0.5–2 | ~100 | ≤20 | 0.5 | extensive metabolized by hydrolysis via amidase enzymes and oxidation by CYP2C9 and CYP2C19 | 3 inactive metabolites (acid, hydroxy and hydroxyacid) | >95% excreted in urine (10% unchanged) | 0.7–1.07 mL/min/kg | 7–8 | [19,20,21,22] |
Cannabidiol (CBD) | low | 0.5–4 | 5–19 oral 13–31 inhaled | 94–99 | 19.5–32.7 | metabolized in the liver by cytochrome P450 isoenzymes, including CYP2C9, CYP2C19, CYP2D6 and CYP3A4, to the active metabolite 7-hydroxy-CBD and further to inactive metabolites | active metabolite 7-hydroxy-cannabidiol (7-OH-CBD) | excreted in urine and feces | 2546–4741 L/h in fasted stated after multiple dose p.o., 533 L/h in fed state p.o., 3252–3783 L/h single doses p.o., 74.4 L/h i.v. injection | 1.4–10.9 p.o. spray, 1.1–2.4 nebulizer, 1.0–3.2 oral, 24 i.v. infusion, 31 smoking, 2–5 days chronic oral | [18,22,23,24,25,26,27,28] |
Carbamazepine (CBZ) | 85 | 19 ± 7 after a single dose 5.9 ± 1.8 after multiple dosing | 75–85 | 75–80 | 0.8–2.0 | extensively (>90%) metabolized in the liver by CYP3A4 and CYP2C8 | main active metabolite carbamazepine-10,11-epoxide (CBZE) | mainly excreted as hydroxylated and conjugated metabolites and <1% unchanged | 25 ± 5 mL/min after a single dose and 80 ± 30 mL/min after multiple dosing | 18–65 after a single dose, 10–20 after multiple dosing | [19,22,29,30] |
Cenobamate (CNB) | 88 | 1–4 | 88 | 60 | 0.6–0.7 | extensively metabolized by glucuronidation via UGT2B7 and oxidation via CYP2E1, CYP2A6, CYP2B6 and less by CYP2C19 and CYP3A4/5 isoenzymes | eight inactive metabolites | unchanged drug and its metabolites are excreted with urine (88%) and feces (5%) | 0.5–1.4 L/h | 50–60 | [22,31,32,33,34] |
Clobazam (CLB) | >87 | 1–3 | ≥95 | 80–90 CBZ70 N-CLB | 0.9–1.8 | extensive metabolized in the liver by CYP3A4 isoenzyme (98%) to an active metabolite N-desmethylclobazam (N-CLB) and other metabolites | main active metabolite N-desmethylclobazam (N-CLB) and over 20 other metabolites | eliminated via urine (~94%) as metabolites | 1.9–2.3 L/h | 10–30 CLB, 36–46 N-CLB | [19,22,29,35] |
Eslicarbazepine Acetate (ESL) | >90 | 1–4 | >90 | <40 | 0.88 | extensively metabolized to eslicarbazepine (95%) by hydrolytic first-pass metabolism | main active metabolite S-licarbazepine | eliminated primarily via renal excretion | 3 ± 0.7 L/h | 9–20 | [19,22,29,36] |
Ethosuximide (ESM) | 90–100 | 1–4 | >90 | 0–22 | 0.6–0.7 | hepatic extensive metabolized mainly by CYP3A4 and CYP2E1 isoenzymes | no active metabolite | excretion mainly via the kidneys and biliary, 10–20% excreted unchanged | 0.01 ± 0.004 L/h/kg | 40–60 adults, 30–40 children | [19,29,37,38,39,40] |
Felbamate (FBM) | >90 | 2–6 h | >90 | 20–48 | 0.7–1.0 | 50% metabolized in the liver by the CYP3A4 and CYP2E1 to p-hydroxy and 2-hydroxy FBM | active metabolite atropaldehyde and multiple inactive metabolites | around 50% is excreted unchanged in urine | 26 ± 3 mL/h/kg (single dose), 30 ± 8 mL/h/kg (multiple dosing) | 16–25 | [19,22,29] |
Gabapentin (GBP) | Saturable, maximum of 5 g/day can be absorbed | 2–4 | 27–80 | <3 | 0.8 | undergoes little or no metabolism | no active metabolite | excreted unchanged by the kidney | ~125 mL/min | 5–7 | [22,41,42] |
Lacosamide (LCM) | ~100 | 1–4 | ~100 | <15 | 0.6–0.7 | metabolized in the liver by demethylation, primarily byCYP2C19 to inactive O-desmethyl derivatives | inactive O-desmethyl- lacosamide derivatives | mainly renal excretion (40% unchanged, 30% as O-desmethyl-lacosamide and 20% polar fraction),<0.5% in faeces | 2.13 L/h | 12–14 | [19,29,43,44] |
Lamotrigine (LTG) | ≥95 | 1–3 | >95 | 55–66 | 0.9–1.3 | extensively metabolized in the liver via UGT1A4, 1A1 and 2B7 isoenzymes to form 2-N and 5-N glucuronides | inactive metabolites 2-N and 5-N glucuronide | renal excretion (<10% unchanged) | 0.18–1.21 mL/min/kg | 15–35 | [19,22,29,45] |
Levetiracetam (LEV) | ≥95 | 1.3–5.2 | >95 | <10 | 0.5–0.7 | not metabolized in the liver by CYP450 system | inactive carboxylic acid metabolite LO57 | 66–70% excreted unchanged in urine and 24–27% as inactive metabolites | 0.96 mL/min/kg | 6–8 | [19,20,22,29,46] |
Oxcarbazepine (OXC) | >90 | 1–5 | >95 | 60 40 (MHD) | 0.7–0.75 | extensively metabolized in the liver to MHD via reduction, then by glucuronidation and hydroxylation via CYP isoenzymes | main active metabolite 10-hydroxy carbazepine (MHD) | primarily excreted with urine (>95%), less than 1% unchanged, <4% fecal excretion | 84.9 L/h | 1–5 7–20 (MHD) | [19,22,29,47] |
Perampanel (PER) | 100 | 0.5–2.5 | ~100 | >95 | 1.1 | extensively metabolized in the liver, primarily via CYP3A4 and CYP3A5, as well as CYP1A2, CYP2B6, followed by glucuronidation | no active metabolitesand various inactive metabolites | eliminated in feces and urine | ~13 mL/min adolescents,~10–11 mL/min elderly, adults | ~105 | [19,22,29,48,49] |
Phenobarbital (PHB) | 70–90 | 2–4 | >90 | 48–55 | 0.5–1.0 | extensively (>70%) metabolized in the liver, mainly by isoenzymes of cytochrome CYP2C9 and less by CYP2C19 and CYP2E1 | main metabolite p-hydroxy phenobarbital | excreted primarily by the kidneys, 20–40% unchanged | 0.06–0.23 L/kg/day | 53–118 adults, 400 newborns | [19,22,29,50,51,52,53] |
Phenytoin (PHT) | 90–100 | 7–42 | 70–100 | >90 | 0.5–1.0 | hepatic metabolism in 98% by CYP2C9 and CYP2C19 isoenzymes | no active metabolites | excreted as inactive metabolites in the bile, <5% unchanged in urine | 0.0174 L/h/kg | 7–42 | [19,22,29,54,55] |
Phosphenytoin (FOS) | 100 | ~0.5 | ~100 | 95–99 | 0.04–0.13 | metabolized by phosphatases, to phenytoin, phosphate and formaldehyde | phenytoin (PHT) | renal excretion is the same as PHT | 12.9–22.8 L/h | 15 min (FOS to PHT) | [19,22,29,56] |
Piracetam (PIR) | ~100 | 0.5–1.5 | ~100 | not protein bound | 0.6 | neither metabolized by the liver | no active metabolites | ~90% is excreted in the urine as unchanged drug | 80–90 mL/min | 4–6 | [19,22,57] |
Pregabalin (PGB) | ≥90 | 1–2 | >90 | not protein bound | 0.5–0.6 | undergo little or no metabolism (<2%) | N-methylated derivative of PGB | excreted virtually unchanged by the kidneys | ~70 mL/min | 5–7 | [19,22,41] |
Primidone (PRM) | >60 | 2–4 | >90 | 20–45 | 0.5–0.8 | extensive hepatic metabolism by CYP2C9 and CYP2C19 isoenzymes | active metabolites-phenylethylmalonamide (PEMA) and PHB | excreted in urine (40–50% unchanged) | 30 mL/min | 7–22 adult, 5–11 child, 8–80 newborn | [19,22,29,58,59] |
Rufinamide (RFM) | ≥85 | 4–6 | 70–85 | 26–35 | 0.7–1.2 | extensively metabolized by carboxyesterases into inactive carboxylic acid derivative CGP 47,292 via hydrolysis | no active metabolites | >90% renally excreted (66% as CGP 47292, 2% as unchanged drug) and about 9% in feces | 3.0–3.5 L/h children, 4.9–5.6 L/h adolescents and adults | 6–10 | [19,22,29,60,61] |
Stiripentol (STP) | >70 | 0.5–2 | low | 96–99 | 1.0 | extensively metabolized in the liver, primarily by demethylation, glucuronidation and metabolism involving the enzymatic activity of CYP1A2, CYP2C19 and CYP3A4 isoenzymes | 13 metabolites | >73% renal excretion | 8–40 L/kg/day | 2–13 | [19,22,62,63,64] |
Sulthiame (STM) | 100 | 1–5 | 100 | 29 | 64.8 | moderate metabolism in the liver by unknown isoenzymes | unknown metabolites | renal elimination (80–90%) | 8–40 L/h | 5–7 | [19,65,66] |
Tiagabine (TGB) | ≥90 | 0.5–2 | ≤90 | >95 | 1.0 | extensively metabolized by CYP3A4 | at least 4 pharmacologically inactive metabolites | 25% excreted in urine and 63% in feces, primarily as metabolites, and 2% unchanged | 109 mL/min | 5–9 | [19,22,29,67,68] |
Topiramate (TPM) | ≥80 | 2–4 | >80 | 9–20 | 0.6–0.8 | metabolized mainly by glucuronidation, hydroxylation and hydrolysis and sulfonation, 50% undergoes hepatic metabolism by CYP isoenzymes | no active metabolites | mainly excreted in urine, 70–80% unchanged | 22–36 mL/min | 20–30 | [19,22,29,69,70,71] |
Valproic acid (VPA) | 100 | 1–7 | ~90 | 74–93 | 0.1–0.2 | extensively metabolized in the liver by glucuronidation (50%), β-oxidation (40%) and oxidation by cytochrome P450 (10%) | major metabolite: valproate glucuronide | <3% is excreted unchanged in the urine | 0.56 L/h/m2 | 6–17 | [19,22,29,72] |
Vigabatrin (VGB) | 60–80 | 1–2 | 60–80 | not protein bound | 0.8–1.0 | undergoes little or no metabolism by the liver | no active metabolites | 95% eliminated in urine, of which ~80% is unchanged | 2.4 L/h infants, 5.1 L/h children, 5.8 L/h adolescents,10.5 L/h adults | 5–8 | [19,22,29,73] |
Zonisamide (ZNS) | ≥90 | 2–5 | >90 | 40 | 1.0–1.9 | extensively metabolized in the liver, primarily by acetylation, to form N-acetyl zonisamide and reduction by CYP3A4 to form 2-sulfamoylacetylphenol | no active metabolites | 35% excreted primarily in urine as unchanged form and as the glucuronide of a metabolite | 0.30–0.35 mL/min/kg | 27–70 | [19,22,29] |
Added AED | Pre-Existing AED | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BRVh | CBDh | CBZc,h | CLB | CNBc,h | ESL-ar | ESM | FBM | GBPr | LCMc,h | LTGh | LEVr | OXC | PERh,r | PHBc,h | PHTc,h | PGBc,r | PRMr | RFNc | STM | STP | TGB | TPMh,r | VPAh | VGB | ZNSr | ||
BRV | BRV ▲ | CBZ ▲ CBZ-E ▲ | PHT ▲ | ||||||||||||||||||||||||
CBD | CLB ▼ DMCLB ▲ | ESL ▲ | PRM ↓ | RFN ▲ | STP ↑ | TPM ▲ | ZNS ▲ | ||||||||||||||||||||
CBZ | CBD ↓ | BRV ↓ | N-CLB ↑ | ESL ↓ | ESM ↓ | FBM ▼ | CBZ ↓ | LTG ▼ | H-OXC ↓ | PRM ↑ | RFN ↓ | STM ↓ | TGB ▼ | ZNS ▼ | |||||||||||||
CLB | |||||||||||||||||||||||||||
CNB | CBZ ▼ | LCM ↓ | LTG ▼ | LEV ↓ | PHB ▲ | PHT ▲ | |||||||||||||||||||||
ESL-a | PHT ↑ | VPA ↓ | |||||||||||||||||||||||||
FBM | CBZ ▼CBZ-E ▲ | PHB ▲ | PHT ▲ | VPA ▲ | |||||||||||||||||||||||
ESM | PRM↑ | ||||||||||||||||||||||||||
GBP | FBM ↑ | PHT ↑ | |||||||||||||||||||||||||
LCM | LCM ↓ | PHT ↑ | PRM ↓ | LCM ↑ | |||||||||||||||||||||||
LTG | PHB ↓ | VPA ↓ | |||||||||||||||||||||||||
LEV | |||||||||||||||||||||||||||
OXC | LTG ↓ | PHB ↑ | PHT ↑ | RFN ↓ | TPM ↓ | ||||||||||||||||||||||
PER | LTG ↓ | ||||||||||||||||||||||||||
PHB | CBD ↓ | CBZ ↓ | N-CLB ↑ | ESL ↓ | ESM ↓ | FBM↓ | LCM ↓ | LTG ▼ | H-OXC ↓ | BRV ↓ | BRV ↓ | RFN ↓ | TGB ▼ | TPM ▼ | ZNS ▼ | ||||||||||||
PHT | CBZ ↓ | N-CLB ↑ | CNB ↓ | ESL ↓ | ESM ↓ | FBM ▼ | LCM ↓ | LTG ▼ | H-OXC ↓ | PER ▼ | PHB ↓ | PGB ↓ | PRM ↓ | RFN ↓ | STM ↓ | TGB ▼ | TPM ▼ | VPA ↓ | ZNS ▼ | ||||||||
PGB | |||||||||||||||||||||||||||
PRM | CBZ ↓ | ESM ↓ | FBM ↓ | LCM ↓ | LTG ▼ | OXC ↓ | PHT ↓ | PRM ↓ | RFN ↓ | STM ↓ | TGB ▼ | ZNS ▼ | |||||||||||||||
RFN | RFN ▲ | CBZ ↓ | PH B↑ | ||||||||||||||||||||||||
STM | CLB ↑ | ||||||||||||||||||||||||||
STP | 7-OH-CBD ▼ 7-COOH-CBD ▼ | CBZ ▲ | CLB ▲ NCL B▲ | ESM ↑ | PHB ▲ | PHT ▲ | TGB ▲ | VPA ▲ | |||||||||||||||||||
TGB | |||||||||||||||||||||||||||
TPM | CBD ↓ | ESL ↓ | |||||||||||||||||||||||||
VPA | CBZ-E ↑ | VPA ↓ | FBM ↑ | LTG ▲ | RFN ↑ | TPM ↓ | |||||||||||||||||||||
VGB | CBZ ▼ | VGB ↑ | PHB ↓ | PHT▼ | PRM ↓ | RFN ↓ | |||||||||||||||||||||
ZNS | PHB ↓ |
Drugs Used in the Treatment of COVID-19 Patients | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AEDs | ATV | DRV/c | LPV/r | RDV | FAVI | SOF | CLQ | HCLQ | NITA | RBV | TCZ | IFN--1a | OSV |
BRV | BRV | BRV | BRV | BRV | |||||||||
CBD | CBD | CBD | CBD | CBD , HCLQ | |||||||||
CBZ | CBZ , ATV | CBZ , DRV/c | CBZ , LPV/r | RDV | SOF | CBZ , CLQ | CBZ , HCLQ | CBZ | |||||
CLB | CLB | CLB | CLB | ||||||||||
CNB | ATV | DRV/c | CNB , LPV/r | CLQ | HCLQ | ||||||||
ESL-a | ATV | DRV/c | LPV/r | RDV | CLQ | HCLQ | |||||||
ESM | ESM | ESM | ESM | ||||||||||
FBM | FBM | DRV/c | FBM | FBM | FBM | ||||||||
GBP | |||||||||||||
LCM | DRV/c | LCM | LCM | LCM | LCM | ||||||||
LTG | LTG | LTG | LTG | LTG | |||||||||
LEV | |||||||||||||
OXC | ATV | OXC , DRV/c | LPV/r | RDV | SOF | OXC , CLQ | OXC , HCLQ | ||||||
PER | PER | DRV/c | PER | PER | |||||||||
PHB | ATV | PHB , DRV/c | LPV/r | RDV | SOF | PHB , CLQ | PHB , HCLQ | PHB | |||||
PHT | ATV | DRV/c | PHT , LPV/r | RDV | SOF | PHT , CLQ | PHT , HCLQ | PHT | PHT | ||||
PGB | |||||||||||||
PRM | ATV | DRV/c | PRM , LPV/r | RDV | CLQ | HCLQ | PRM | ||||||
RFN | ATV | DRV/c | LPV/r | RDV | CLQ | HCLQ | |||||||
STM | STM | STM | STM | ||||||||||
STP | |||||||||||||
TGB | TGB | TGB | TGB | ||||||||||
TPM | DRV/c | LPV/r | |||||||||||
VPA | DRV/c | VPA , LPV/r | |||||||||||
VGB | |||||||||||||
ZNS | ZNS | ZNS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaźniewicz-Łada, M.; Główka, A.K.; Mikulska, A.A.; Główka, F.K. Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients. Int. J. Mol. Sci. 2021, 22, 9582. https://doi.org/10.3390/ijms22179582
Karaźniewicz-Łada M, Główka AK, Mikulska AA, Główka FK. Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients. International Journal of Molecular Sciences. 2021; 22(17):9582. https://doi.org/10.3390/ijms22179582
Chicago/Turabian StyleKaraźniewicz-Łada, Marta, Anna K. Główka, Aniceta A. Mikulska, and Franciszek K. Główka. 2021. "Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients" International Journal of Molecular Sciences 22, no. 17: 9582. https://doi.org/10.3390/ijms22179582
APA StyleKaraźniewicz-Łada, M., Główka, A. K., Mikulska, A. A., & Główka, F. K. (2021). Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients. International Journal of Molecular Sciences, 22(17), 9582. https://doi.org/10.3390/ijms22179582