Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders
Abstract
:1. Introduction
2. Clinical Manifestations Induced by Hemostasis Disorders during Bothrops Envenomations
2.1. Bleeding
2.1.1. Local Hemorrhage
2.1.2. Systemic Hemorrhage
2.1.3. Thrombocytopenia and Incoagulability
2.2. Thrombosis
2.2.1. Thrombotic Microangiopathy
2.2.2. Macrothrombosis
2.3. Complications Associated to Hemostasis Disorders
2.4. Response to Antivenom
3. Toxins Involved in Bothrops Venom-Related Hemostasis Disorders
3.1. Enzymatic Proteins
3.1.1. Snake Venom Metalloproteinases
3.1.2. Snake Venom Serine Proteases
3.1.3. Phospholipases A2
3.1.4. L-Amino Acid Oxidases
3.2. Non-Enzymatic Proteins
3.2.1. Disintegrins
3.2.2. C-Type Lectin Proteins
3.3. Venom Variability
4. Pathophysiology of Bleeding
4.1. Vascular Damage
4.1.1. Degradation of Basement Membrane by SVMP
4.1.2. Consequences on the Endothelium
4.2. Platelet Impairments
4.2.1. Thrombocytopenia
4.2.2. Platelet Hypoaggregation
4.3. Venom-Induced Consumption Coagulopathy
4.3.1. Coagulation Factor Activators
4.3.2. Thrombine-Like Enzymes
4.3.3. Anticoagulant Toxins
4.4. Fibrinogenolysis and Fibrinolysis
4.4.1. Primary Fibrin(ogen)olysis
4.4.2. Secondary Fibrinolysis
5. Pathophysiology of Thrombosis
5.1. Prothrombotic State Induced by Bothrops Venoms
5.1.1. TF Surexpression and Endotheliopathy
5.1.2. Platelet Aggregates and Hypercoagulability
5.2. Macrothrombosis during Envenomation by B. lanceolatus and B. caribbaeus
5.2.1. Lack of Proaggregating or Procoagulant Activity of B. lanceolatus Venom
5.2.2. A TMA-Type Mechanism?
6. Conclusions: Between Scylla and Charybdis
Author Contributions
Funding
Conflicts of Interest
References
- Magalhães, S.F.V.; Peixoto, H.M.; Moura, N.; Monteiro, W.M.; de Oliveira, M.R.F. Snakebite envenomation in the brazilian amazon: A descriptive study. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 143–151. [Google Scholar] [CrossRef]
- Roriz, K.R.P.S.; Zaqueo, K.D.; Setubal, S.S.; Katsuragawa, T.H.; Silva, R.R.D.; Fernandes, C.F.C.; Cardoso, L.A.P.; Rodrigues, M.M.S.; Soares, A.M.; Stábeli, R.G.; et al. Epidemiological study of snakebite cases in brazilian western amazonia. Rev. Soc. Bras. Med. Trop. 2018, 51, 338–346. [Google Scholar] [CrossRef]
- Costa, M.K.B.D.; Fonseca, C.S.D.; Navoni, J.A.; Freire, E.M.X. Snakebite accidents in rio grande do norte state, Brazil: Epidemiology, health management and influence of the environmental scenario. Trop. Med. Int. Health 2019, 24, 432–441. [Google Scholar] [CrossRef]
- Chippaux, J.-P. Epidemiology of envenomations by terrestrial venomous animals in Brazil based on case reporting: From obvious facts to contingencies. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Souza, A.; de Almeida Gonçalves Sachett, J.; Alcântara, J.A.; Freire, M.; Alecrim, M.D.G.C.; Lacerda, M.; de Lima Ferreira, L.C.; Fan, H.W.; de Souza Sampaio, V.; Monteiro, W.M. Snakebites as cause of deaths in the western Brazilian Amazon: Why and who dies? deaths from snakebites in the Amazon. Toxicon 2018, 145, 15–24. [Google Scholar] [CrossRef]
- González-Andrade, F.; Chippaux, J.-P. Snake Bite Envenomation in Ecuador. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 588–591. [Google Scholar] [CrossRef]
- Mutricy, R.; Heckmann, X.; Douine, M.; Marty, C.; Jolivet, A.; Lambert, V.; Perotti, F.; Boels, D.; Larréché, S.; Chippaux, J.-P.; et al. High mortality due to snakebites in French Guiana: Time has come to re-evaluate medical management protocols. PLoS Negl. Trop. Dis. 2018, 12, e0006482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevilla-Sánchez, M.J.; Mora-Obando, D.; Calderón, J.J.; Guerrero-Vargas, J.A.; Ayerbe-González, S. Snakebite in the department of Nariño, Colombia: A retrospective analysis, 2008–2017. Biomedica 2019, 39, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Dolab, J.A.; de Roodt, A.R.; de Titto, E.H.; García, S.I.; Funes, R.; Salomón, O.D.; Chippaux, J.-P. Epidemiology of snakebite and use of antivenom in Argentina. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.; Gutiérrez, J.M. Mortality due to snakebite envenomation in Costa Rica (1993–2006). Toxicon 2008, 52, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Pecchio, M.; Suárez, J.A.; Hesse, S.; Hersh, A.M.; Gundacker, N.D. Descriptive epidemiology of snakebites in the Veraguas province of Panama, 2007–2008. Trans. R. Soc. Trop. Med. Hyg. 2018, 112, 463–466. [Google Scholar] [CrossRef]
- Carrasco, P.A.; Venegas, P.J.; Chaparro, J.C.; Scrocchi, G.J. Nomenclatural instability in the venomous snakes of the bothrops complex: Implications in toxinology and public health. Toxicon 2016, 119, 122–128. [Google Scholar] [CrossRef]
- Monteiro, W.M.; Contreras-Bernal, J.C.; Bisneto, P.F.; Sachett, J.; Mendonça da Silva, I.; Lacerda, M.; Guimarães da Costa, A.; Val, F.; Brasileiro, L.; Sartim, M.A.; et al. Bothrops atrox, the most important snake involved in human envenomings in the Amazon: How venomics contributes to the knowledge of snake biology and clinical toxinology. Toxicon X 2020, 6, 100037. [Google Scholar] [CrossRef] [PubMed]
- Sasa, M.; Segura Cano, S.E. New insights into snakebite epidemiology in Costa Rica: A retrospective evaluation of medical records. Toxicon X 2020, 7, 100055. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.A.; Jorge, M.T. Bites by snakes in the genus Bothrops: A series of 3139 cases. Rev. Soc. Bras. Med. Trop. 1997, 30, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Otero-Patiño, R. Epidemiological, clinical and therapeutic aspects of bothrops asper bites. Toxicon 2009, 54, 998–1011. [Google Scholar] [CrossRef]
- Hamdan, B.; Guedes, T.B.; Carrasco, P.A.; Melville, J. A Complex biogeographic history of diversification in neotropical lancehead pitvipers (serpentes, viperidae). Zool. Scr. 2020, 49, 145–158. [Google Scholar] [CrossRef]
- Fenwick, A.M.; Gutberlet, R.L.; Evans, J.A.; Parkinson, C.L. Morphological and molecular evidence for phylogeny and classification of South American pitvipers, Genera bothrops, bothriopsis, and bothrocophias (Serpentes: Viperidae). Zool. J. Linn. Soc. 2009, 156, 617–640. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, P.A.; Mattoni, C.; Leynaud, G.; Scrocchi, G. Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). Zool. Scr. 2012, 41, 109–124. [Google Scholar] [CrossRef]
- Tasoulis, T.; Isbister, G.K. A review and database of snake venom proteomes. Toxins 2017, 9, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasne, D.; Jude, B.; Susen, S. From normal to pathological hemostasis. Can. J. Anaesth. 2006, 53, S2–S11. [Google Scholar] [CrossRef] [Green Version]
- Arnout, J.; Hoylaerts, M.F.; Lijnen, H.R. Haemostasis. Handb. Exp. Pharmacol. 2006, 1–41. [Google Scholar] [CrossRef]
- Hoffman, M.; Monroe, D.M. A cell-based model of hemostasis. Thromb. Haemost. 2001, 85, 958–965. [Google Scholar]
- Simurda, T.; Brunclikova, M.; Asselta, R.; Caccia, S.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Genetic variants in the FGB and FGG genes mapping in the Beta and Gamma nodules of the fibrinogen molecule in congenital quantitative fibrinogen disorders associated with a thrombotic phenotype. Int. J. Mol. Sci. 2020, 21, 4616. [Google Scholar] [CrossRef]
- Pryzdial, E.L.G.; Lee, F.M.H.; Lin, B.H.; Carter, R.L.R.; Tegegn, T.Z.; Belletrutti, M.J. Blood Coagulation Dissected. Transfus. Apher. Sci. 2018, 57, 449–457. [Google Scholar] [CrossRef]
- Simurda, T.; Vilar, R.; Zolkova, J.; Ceznerova, E.; Kolkova, Z.; Loderer, D.; Neerman-Arbez, M.; Casini, A.; Brunclikova, M.; Skornova, I.; et al. A novel nonsense mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta chain of fibrinogen causing hypofibrinogenemia with bleeding phenotype. Biomedicines 2020, 8, 605. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Rucavado, A.; Chaves, F.; Díaz, C.; Escalante, T. Experimental pathology of local tissue damage induced by bothrops asper snake venom. Toxicon 2009, 54, 958–975. [Google Scholar] [CrossRef] [PubMed]
- Silva de Oliveira, S.; Campos Alves, E.; Dos Santos Santos, A.; Freitas Nascimento, E.; Tavares Pereira, J.P.; Mendonça da Silva, I.; Sachett, J.; Dos Santos Ibiapina, H.N.; Santos Sarraf, L.K.; Contreras Bernal, J.C.; et al. Bothrops snakebites in the Amazon: Recovery from hemostatic disorders after brazilian antivenom therapy. Clin. Toxicol. 2020, 58, 266–274. [Google Scholar] [CrossRef]
- Oliveira, S.S.; Alves, E.C.; Santos, A.S.; Pereira, J.P.T.; Sarraff, L.K.S.; Nascimento, E.F.; de-Brito-Sousa, J.D.; Sampaio, V.S.; Lacerda, M.V.G.; Sachett, J.A.G.; et al. Factors associated with systemic bleeding in bothrops envenomation in a Tertiary Hospital in the Brazilian Amazon. Toxins 2019, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Nicoleti, A.F.; Medeiros, C.R.; Duarte, M.R.; França, F.O. Comparison of bothropoides Jararaca bites with and without envenoming treated at the Vital Brazil Hospital of the Butantan Institute, State of São Paulo, Brazil. Rev. Soc. Bras. Med. Trop. 2010, 43, 657–661. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.; Tyburn, B.; Ketterle, J.; Rieux, D.; Garnier, D.; Smadja, D. Troubles de la coagulation et thromboses induits par la morsure de serpent (bothrops lanceolatus) chez l’homme en Martinique. Réanimation Urgences 1994, 3, 25–30. [Google Scholar] [CrossRef]
- Otero-Patiño, R.; Segura, A.; Herrera, M.; Angulo, Y.; León, G.; Gutiérrez, J.M.; Barona, J.; Estrada, S.; Pereañez, A.; Quintana, J.C.; et al. Comparative study of the efficacy and safety of two polyvalent, caprylic acid fractionated [IgG and F(Ab’)2] antivenoms, in bothrops asper bites in Colombia. Toxicon 2012, 59, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Bucaretchi, F.; Herrera, S.R.; Hyslop, S.; Baracat, E.C.; Vieira, R.J. Snakebites by bothrops Spp in children in Campinas, São Paulo, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2001, 43, 329–333. [Google Scholar] [CrossRef]
- Pardal, P.P.; Souza, S.M.; Monteiro, M.R.; Fan, H.W.; Cardoso, J.L.; França, F.O.; Tomy, S.C.; Sano-Martins, I.S.; de Sousa-e-Silva, M.C.C.; Colombini, M.; et al. Clinical trial of two antivenoms for the treatment of bothrops and lachesis bites in the North Eastern Amazon region of Brazil. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 28–42. [Google Scholar] [CrossRef]
- Cunha, F.C.; Heerdt, M.; Torrez, P.P.; França, F.O.; Molin, G.Z.; Battisti, R.; Zannin, M. First report of hepatic hematoma after presumed bothrops envenomation. Rev. Soc. Bras. Med. Trop. 2015, 48, 633–635. [Google Scholar] [CrossRef] [Green Version]
- Pinto, L.J.; Lee Fernández, L.; Gutiérrez, J.M.; Simón, D.S.; Ceballos, Z.; Aguilar, L.F.; Sierra, M. Case report: Hemothorax in envenomation by the viperid snake bothrops asper. Am. J. Trop. Med. Hyg. 2019, 100, 714–716. [Google Scholar] [CrossRef]
- Benvenuti, L.A.; França, F.O.S.; Barbaro, K.C.; Nunes, J.R.; Cardoso, J.L.C. Pulmonary haemorrhage causing rapid death after bothrops Jararacussu snakebite: A case report. Toxicon 2003, 42, 331–334. [Google Scholar] [CrossRef]
- Pérez-Gómez, A.S.; Monteiro, W.M.; João, G.A.P.; Sousa, J.D.B.; Safe, I.P.; Damian, M.M.; Sachett, J.A.G.; Silva, I.M.D. Hemorrhagic Stroke Following Viper Bites and Delayed Antivenom Administration: Three Case Reports from the Western Brazilian Amazon. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190115. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.B.T.; Gondim, C.C.V.L.; Reichert, L.P.; da Silva, P.H.V.; Souza, R.M.D.C.E.; Fernandes, T.M.P.; Calvo, B.F. Hemorrhagic stroke secondary to bothrops Spp. venom: A case report. Toxicon 2017, 132, 6–8. [Google Scholar] [CrossRef]
- Mosquera, A.; Idrovo, L.A.; Tafur, A.; Del Brutto, O.H. stroke following bothrops Spp. snakebite. Neurology 2003, 60, 1577–1580. [Google Scholar] [CrossRef]
- Sachett, J.A.G.; Mota da Silva, A.; Dantas, A.W.C.B.; Dantas, T.R.; Colombini, M.; Moura da Silva, A.M.; Monteiro, W.M.; Bernarde, P.S. Cerebrovascular accidents related to snakebites in the Amazon-two case reports. Wilderness Environ. Med. 2020, 31, 337–343. [Google Scholar] [CrossRef]
- Jorge, M.T.; Ribeiro, L.A.; O’Connell, J.L. Prognostic factors for amputation in the Case of envenoming by snakes of the bothrops genus (Viperidae). Ann. Trop. Med. Parasitol. 1999, 93, 401–408. [Google Scholar] [CrossRef] [PubMed]
- SOliveira, S.; CAlves, E.; SSantos, A.; FNascimento, E.; TPereira, J.P.; MSilva, I.; AG Sachett, J.; SSarraff, L.K.; Freitas-de-Sousa, L.A.; Colombini, M.; et al. Bleeding disorders in bothrops atrox envenomations in the Brazilian Amazon: Participation of hemostatic factors and the Impact of tissue factor. Toxins 2020, 12, 554. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.L.; Sano-Martins, I.S.; Fan, H.W.; Cardoso, J.L.C.; Theakston, R.D.G.; Warrell, D.A. Butantan Institute Antivenom Study Group. Haematological evaluation of patients bitten by the Jararaca, Bothrops Jararaca, in Brazil. Toxicon 2008, 51, 1440–1448. [Google Scholar] [CrossRef]
- Kamiguti, A.S.; Cardoso, J.L.; Theakston, R.D.; Sano-Martins, I.S.; Hutton, R.A.; Rugman, F.P.; Warrell, D.A.; Hay, C.R. Coagulopathy and haemorrhage in human victims of Bothrops Jararaca envenoming in Brazil. Toxicon 1991, 29, 961–972. [Google Scholar] [CrossRef]
- Sano-Martins, I.S.; Santoro, M.L.; Castro, S.C.; Fan, H.W.; Cardoso, J.L.; Theakston, R.D. Platelet aggregation in patients bitten by the brazilian snake Bothrops Jararaca. Thromb. Res. 1997, 87, 183–195. [Google Scholar] [CrossRef]
- Resiere, D.; Houcke, S.; Pujo, J.M.; Mayence, C.; Mathien, C.; NkontCho, F.; Blaise, N.; Demar, M.P.; Hommel, D.; Kallel, H. Clinical features and management of snakebite envenoming in French Guiana. Toxins 2020, 12, 662. [Google Scholar] [CrossRef]
- Dempfle, C.E.; Kohl, R.; Harenberg, J.; Kirschstein, W.; Schlauch, D.; Heene, D.L. Coagulopathy after snake bite by Bothrops Neuwiedi: Case report and results of in vitro experiments. Blut 1990, 61, 369–374. [Google Scholar] [CrossRef]
- Heckmann, X.; Lambert, V.; Mion, G.; Ehrhardt, A.; Marty, C.; Perotti, F.; Carod, J.-F.; Jolivet, A.; Boels, D.; Lehida Andi, I.; et al. Failure of a Mexican antivenom on recovery from snakebite-related coagulopathy in French Guiana. Clin. Toxicol. 2021, 59, 193–199. [Google Scholar] [CrossRef]
- Sachetto, A.T.A.; Jensen, J.R.; Santoro, M.L. Liver gene regulation of hemostasis-related factors is altered by experimental snake envenomation in mice. PLoS Negl. Trop. Dis. 2020, 14, e0008379. [Google Scholar] [CrossRef] [PubMed]
- Sano-Martins, I.S.; Fan, H.W.; Castro, S.C.; Tomy, S.C.; Franca, F.O.; Jorge, M.T.; Kamiguti, A.S.; Warrell, D.A.; Theakston, R.D. Reliability of the simple 20 minute whole blood clotting test (WBCT20) as an indicator of low plasma fibrinogen concentration in patients envenomed by Bothrops snakes. Butantan institute antivenom study group. Toxicon 1994, 32, 1045–1050. [Google Scholar] [CrossRef]
- Kamiguti, A.S.; Rugman, F.P.; Theakston, R.D.; Franca, F.O.; Ishii, H.; Hay, C.R. The role of venom haemorrhagin in Spontaneous bleeding in Bothrops Jararaca envenoming. Butantan institute antivenom study group. Thromb. Haemost. 1992, 67, 484–488. [Google Scholar] [PubMed]
- Bucaretchi, F.; Pimenta, M.M.B.; Borrasca-Fernandes, C.F.; Prado, C.C.; Capitani, E.M.D.; Hyslop, S. Thrombotic microangiopathy following Bothrops Jararaca snakebite: Case report. Clin. Toxicol. 2019, 57, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Malaque, C.M.S.; Duayer, I.F.; Santoro, M.L. Acute kidney injury induced by thrombotic microangiopathy in two cases of bothrops envenomation. Clin. Toxicol. 2019, 57, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, J.; Faber, K.; Tuchscherer, D.T.; Tsakiris, D.A.; Weiler, S.; Hofer, K.E. Bite by a Juvenile Bothrops venezuelensis (Venezuelan Lancehead) resulting in severe envenomation: A case report. Toxicon 2020, 180, 39–42. [Google Scholar] [CrossRef]
- Mota, S.M.B.; Albuquerque, P.L.M.M.; Silva Júnior, G.B.D.; Daher, E.F. Thrombotic microangiopathy due to Bothrops Erythromelas: A case report in Northeast Brazil. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e53. [Google Scholar] [CrossRef]
- Resiere, D.; Mégarbane, B.; Valentino, R.; Mehdaoui, H.; Thomas, L. Bothrops lanceolatus bites: Guidelines for severity assessment and emergent management. Toxins 2010, 2, 163–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, L.; Tyburn, B.; Bucher, B.; Pecout, F.; Ketterle, J.; Rieux, D.; Smadja, D.; Garnier, D.; Plumelle, Y. Prevention of thromboses in human patients with Bothrops Lanceolatus Envenoming in Martinique: Failure of anticoagulants and efficacy of a monospecific antivenom. Research Group on snake bites in Martinique. Am. J. Trop. Med. Hyg. 1995, 52, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Tyburn, B.; Ketterlé, J.; Biao, T.; Mehdaoui, H.; Moravie, V.; Rouvel, C.; Plumelle, Y.; Bucher, B.; Canonge, D.; et al. Prognostic significance of clinical grading of patients envenomed by Bothrops Lanceolatus in Martinique. Members of the research group on snake bite in Martinique. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 542–545. [Google Scholar] [CrossRef]
- Malbranque, S.; Piercecchi-Marti, M.D.; Thomas, L.; Barbey, C.; Courcier, D.; Bucher, B.; Ridarch, A.; Smadja, D.; Warrell, D.A. Fatal diffuse thrombotic microangiopathy after a bite by the “Fer-de-Lance” Pit Viper (Bothrops Lanceolatus) of Martinique. Am. J. Trop. Med. Hyg. 2008, 78, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Numeric, P.; Moravie, V.; Didier, M.; Chatot-Henry, D.; Cirille, S.; Bucher, B.; Thomas, L. Multiple cerebral infarctions following a snakebite by Bothrops Caribbaeus. Am. J. Trop. Med. Hyg. 2002, 67, 287–288. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; Romero, M.; Núñez, J.; Chaves, F.; Borkow, G.; Ovadia, M. Skeletal Muscle necrosis and regeneration after injection of BaH1, a hemorrhagic metalloproteinase isolated from the venom of the snake Bothrops Asper (Terciopelo). Exp. Mol. Pathol. 1995, 62, 28–41. [Google Scholar] [CrossRef]
- Petretski, J.H.; Kanashiro, M.M.; Rodrigues, F.R.; Alves, E.W.; Machado, O.L.; Kipnis, T.L. Edema Induction by the disintegrin-like/cysteine-rich domains from a bothrops atrox hemorrhagin. Biochem. Biophys. Res. Commun. 2000, 276, 29–34. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Escalante, T.; Rucavado, A. experimental pathophysiology of systemic alterations induced by bothrops asper snake venom. Toxicon 2009, 54, 976–987. [Google Scholar] [CrossRef]
- Chacón, F.; Oviedo, A.; Escalante, T.; Solano, G.; Rucavado, A.; Gutiérrez, J.M. The lethality test used for estimating the potency of antivenoms against bothrops asper snake venom: Pathophysiological mechanisms, prophylactic analgesia, and a surrogate in vitro assay. Toxicon 2015, 93, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Sgrignolli, L.; Florido Mendes, G.E.; Carlos, C.P.; Burdmann, E.A. Acute kidney injury caused by bothrops snake venom. Nephron. Clin. Pract. 2011, 119, c131–c136, discussion c137. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, P.L.M.M.; Paiva, J.H.H.G.L.; Martins, A.M.C.; Meneses, G.C.; da Silva, G.B.; Buckley, N.; Daher, E.D.F. Clinical assessment and pathophysiology of bothrops venom-related acute kidney injury: A scoping review. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26, e20190076. [Google Scholar] [CrossRef]
- Alves, E.C.; Sachett, J.A.G.; Sampaio, V.S.; Sousa, J.D.B.; Oliveira, S.S.; Nascimento, E.F.D.; Santos, A.D.S.; da Silva, I.M.; da Silva, A.M.M.; Wen, F.H.; et al. Predicting acute renal failure in bothrops snakebite patients in a tertiary reference center, Western Brazilian Amazon. PLoS ONE 2018, 13, e0202361. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.; Fernandes, C.M.; Leiguez, E.; Chudzinski-Tavassi, A.M. Inflammation induced by platelet-activating viperid snake venoms: Perspectives on Thromboinflammation. Front. Immunol. 2019, 10, 2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slagboom, J.; Kool, J.; Harrison, R.A.; Casewell, N.R. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 2017, 177, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Otero, R.; León, G.; Gutiérrez, J.M.; Rojas, G.; Toro, M.F.; Barona, J.; Rodríguez, V.; Díaz, A.; Núñez, V.; Quintana, J.C.; et al. Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without Beta-propiolactone, in the treatment of bothrops asper bites in Colombia. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Jorge, M.T.; Cardoso, J.L.; Castro, S.C.; Ribeiro, L.; França, F.O.; de Almeida, M.E.; Kamiguti, A.S.; Santo-Martins, I.S.; Santoro, M.L.; Mancau, J.E. A randomized “blinded” comparison of two doses of antivenom in the treatment of bothrops envenoming in São Paulo, Brazil. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 111–114. [Google Scholar] [CrossRef]
- Smalligan, R.; Cole, J.; Brito, N.; Laing, G.D.; Mertz, B.L.; Manock, S.; Maudlin, J.; Quist, B.; Holland, G.; Nelson, S.; et al. Crotaline snake bite in the ecuadorian amazon: Randomised double blind comparative trial of three South American polyspecific antivenoms. BMJ 2004, 329, 1129. [Google Scholar] [CrossRef] [Green Version]
- Otero, R.; Gutiérrez, J.M.; Núñez, V.; Robles, A.; Estrada, R.; Segura, E.; Toro, M.F.; García, M.E.; Díaz, A.; Ramírez, E.C.; et al. A randomized double-blind clinical trial of two antivenoms in patients bitten by bothrops atrox in Colombia. The regional group on antivenom therapy research (REGATHER). Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 696–700. [Google Scholar] [CrossRef]
- Thomas, L.; Tyburn, B.; Lang, J.; Ketterle, J. Early Infusion of a purified monospecific F(Ab’)2 antivenom serum for bothrops lanceolatus bites in Martinique. Lancet 1996, 347, 406. [Google Scholar] [CrossRef]
- Thomas, L.; Chausson, N.; Uzan, J.; Kaidomar, S.; Vignes, R.; Plumelle, Y.; Bucher, B.; Smadja, D. Thrombotic stroke following snake bites by the “fer-de-lance”bothrops lanceolatus in Martinique despite antivenom treatment: A report of three recent cases. Toxicon 2006, 48, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.W.; Serrano, S.M.T. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 2005, 45, 969–985. [Google Scholar] [CrossRef]
- Markland, F.S.; Swenson, S. Snake venom metalloproteinases. Toxicon 2013, 62, 3–18. [Google Scholar] [CrossRef]
- Sanchez, E.F.; Flores-Ortiz, R.J.; Alvarenga, V.G.; Eble, J.A. Direct fibrinolytic snake venom metalloproteinases affecting hemostasis: Structural, biochemical features and therapeutic potential. Toxins 2017, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Camacho, E.; Escalante, T.; Remans, K.; Gutiérrez, J.M.; Rucavado, A. site mutation of residues in a loop surrounding the active site of a pi snake venom metalloproteinase abrogates its hemorrhagic activity. Biochem. Biophys. Res. Commun. 2019, 512, 859–863. [Google Scholar] [CrossRef]
- Watanabe, L.; Shannon, J.D.; Valente, R.H.; Rucavado, A.; Alape-Girón, A.; Kamiguti, A.S.; Theakston, R.D.G.; Fox, J.W.; Gutiérrez, J.M.; Arni, R.K. Amino acid sequence and crystal structure of BaP1, a metalloproteinase from bothrops asper snake venom that exerts multiple tissue-damaging activities. Protein Sci. 2003, 12, 2273–2281. [Google Scholar] [CrossRef]
- Akao, P.K.; Tonoli, C.C.C.; Navarro, M.S.; Cintra, A.C.O.; Neto, J.R.; Arni, R.K.; Murakami, M.T. Structural studies of BmooMPalpha-I, a non-hemorrhagic metalloproteinase from bothrops moojeni venom. Toxicon 2010, 55, 361–368. [Google Scholar] [CrossRef]
- Calvete, J.J.; Marcinkiewicz, C.; Monleón, D.; Esteve, V.; Celda, B.; Juárez, P.; Sanz, L. Snake venom disintegrins: Evolution of structure and function. Toxicon 2005, 45, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Olaoba, O.T.; Karina Dos Santos, P.; Selistre-de-Araujo, H.S.; Ferreira de Souza, D.H. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020, 7, 100052. [Google Scholar] [CrossRef] [PubMed]
- Laing, G.D.; Moura-da-Silva, A.M. Jararhagin and its multiple effects on hemostasis. Toxicon 2005, 45, 987–996. [Google Scholar] [CrossRef]
- García, L.T.; Parreiras e Silva, L.T.; Ramos, O.H.P.; Carmona, A.K.; Bersanetti, P.A.; Selistre-de-Araujo, H.S. The effect of post-translational modifications on the hemorrhagic activity of snake venom metalloproteinases. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2004, 138, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Kini, R.M. Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. Pathophysiol. Haemost. Thromb. 2005, 34, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Sajevic, T.; Leonardi, A.; Križaj, I. Haemostatically active proteins in snake venoms. Toxicon 2011, 57, 627–645. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, C.; Gutiérrez, J.M.; Lomonte, B. Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: Common aspects of their mechanisms of action. Cell. Mol. Life Sci. 2008, 65, 2897–2912. [Google Scholar] [CrossRef]
- Six, D.A.; Dennis, E.A. The expanding superfamily of phospholipase A(2) enzymes: Classification and characterization. Biochim. Biophys. Acta 2000, 1488, 1–19. [Google Scholar] [CrossRef]
- De Queiroz, M.R.; de Sousa, B.B.; da Cunha Pereira, D.F.; Mamede, C.C.N.; Matias, M.S.; de Morais, N.C.G.; de Oliveira Costa, J.; de Oliveira, F. The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon 2017, 133, 33–47. [Google Scholar] [CrossRef]
- Paloschi, M.V.; Pontes, A.S.; Soares, A.M.; Zuliani, J.P. An update on potential molecular mechanisms underlying the actions of snake venom l-amino acid oxidases (LAAOs). Curr. Med. Chem. 2018, 25, 2520–2530. [Google Scholar] [CrossRef] [PubMed]
- Lazarovici, P.; Marcinkiewicz, C.; Lelkes, P.I. from snake venom’s disintegrins and C-type lectins to anti-platelet drugs. Toxins 2019, 11, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesar, P.H.S.; Braga, M.A.; Trento, M.V.C.; Menaldo, D.L.; Marcussi, S. Snake venom disintegrins: An overview of their interaction with integrins. Curr. Drug Targets 2019, 20, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Eble, J.A. Structurally robust and functionally highly versatile-C-type lectin (-Related) proteins in snake venoms. Toxins 2019, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Clemetson, K.J.; Lu, Q.; Clemetson, J.M. Snake C-type Lectin-like proteins and platelet receptors. Pathophysiol. Haemost. Thromb. 2005, 34, 150–155. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Sanz, L.; Escolano, J.; Fernández, J.; Lomonte, B.; Angulo, Y.; Rucavado, A.; Warrell, D.A.; Calvete, J.J. Snake venomics of the lesser antillean pit vipers bothrops caribbaeus and bothrops lanceolatus: Correlation with toxicological activities and immunoreactivity of a heterologous antivenom. J. Proteome Res. 2008, 7, 4396–4408. [Google Scholar] [CrossRef]
- Terra, R.M.S.; Pinto, A.F.M.; Guimarães, J.A.; Fox, J.W. Proteomic Profiling of Snake Venom Metalloproteinases (SVMPs): Insights into venom induced pathology. Toxicon 2009, 54, 836–844. [Google Scholar] [CrossRef]
- Freitas-de-Sousa, L.A.; Nachtigall, P.G.; Portes-Junior, J.A.; Holding, M.L.; Nystrom, G.S.; Ellsworth, S.A.; Guimarães, N.C.; Tioyama, E.; Ortiz, F.; Silva, B.R.; et al. Size matters: An evaluation of the Molecular Basis of Ontogenetic Modifications in the Composition of Bothrops Jararacussu snake venom. Toxins 2020, 12, 791. [Google Scholar] [CrossRef]
- Núñez, V.; Cid, P.; Sanz, L.; De La Torre, P.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M.; Calvete, J.J. snake venomics and antivenomics of Bothrops Atrox Venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J. Proteom. 2009, 73, 57–78. [Google Scholar] [CrossRef]
- Calvete, J.J.; Sanz, L.; Pérez, A.; Borges, A.; Vargas, A.M.; Lomonte, B.; Angulo, Y.; Gutiérrez, J.M.; Chalkidis, H.M.; Mourão, R.H.V.; et al. Snake population venomics and antivenomics of Bothrops Atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J. Proteom. 2011, 74, 510–527. [Google Scholar] [CrossRef]
- Kohlhoff, M.; Borges, M.H.; Yarleque, A.; Cabezas, C.; Richardson, M.; Sanchez, E.F. Exploring the proteomes of the venoms of the Peruvian Pit Vipers Bothrops atrox, B. barnetti and B. pictus. J. Proteom. 2012, 75, 2181–2195. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, D.M.; Tasima, L.J.; Bravo-Tobar, C.A.; Serino-Silva, C.; Tashima, A.K.; Rodrigues, C.F.B.; Aguiar, W.D.S.; Galizio, N.D.C.; de Lima, E.O.V.; Kavazoi, V.K.; et al. Venom complexity of Bothrops Atrox (Common lancehead) siblings. J. Venom. Anim. Toxins Incl. Trop. Dis. 2020, 26, e20200018. [Google Scholar] [CrossRef] [PubMed]
- Alape-Girón, A.; Flores-Díaz, M.; Sanz, L.; Madrigal, M.; Escolano, J.; Sasa, M.; Calvete, J.J. Studies on the venom proteome of Bothrops Asper: Perspectives and applications. Toxicon 2009, 54, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Mora-Obando, D.; Salazar-Valenzuela, D.; Pla, D.; Lomonte, B.; Guerrero-Vargas, J.A.; Ayerbe, S.; Gibbs, H.L.; Calvete, J.J. Venom variation in Bothrops Asper lineages from North-Western South America. J. Proteom. 2020, 229, 103945. [Google Scholar] [CrossRef]
- Gonçalves-Machado, L.; Pla, D.; Sanz, L.; Jorge, R.J.B.; Leitão-De-Araújo, M.; Alves, M.L.M.; Alvares, D.J.; De Miranda, J.; Nowatzki, J.; de Morais-Zani, K.; et al. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. J. Proteom. 2016, 135, 73–89. [Google Scholar] [CrossRef]
- Da Costa Galizio, N.; Serino-Silva, C.; Stuginski, D.R.; Abreu PA, E.; Sant’Anna, S.S.; Grego, K.F.; de Morais-Zani, K. Compositional and functional investigation of individual and pooled venoms from long-term captive and recently wild-caught Bothrops Jararaca snakes. J. Proteom. 2018, 186, 56–70. [Google Scholar] [CrossRef]
- Augusto-de-Oliveira, C.; Stuginski, D.R.; Kitano, E.S.; Andrade-Silva, D.; Liberato, T.; Fukushima, I.; Serrano, S.M.T.; Zelanis, A. Dynamic rearrangement in snake venom gland proteome: Insights into Bothrops Jararaca intraspecific venom variation. J. Proteome Res. 2016, 15, 3752–3762. [Google Scholar] [CrossRef]
- Jorge, R.J.; Monteiro, H.S.; Gonçalves-Machado, L.; Guarnieri, M.C.; Ximenes, R.M.; Borges-Nojosa, D.M.; Luna, K.P.; Zingali, R.B.; Corrêa-Netto, C.; Gutiérrez, J.M.; et al. Venomics and antivenomics of Bothrops Erythromelas from five geographic populations within the caatinga ecoregion of Northeastern Brazil. J. Proteom. 2015, 114, 93–114. [Google Scholar] [CrossRef]
- Rodrigues, C.F.B.; Zdenek, C.N.; Bourke, L.A.; Seneci, L.; Chowdhury, A.; Freitas-de-Sousa, L.A.; de Alcantara Menezes, F.; Moura-da-Silva, A.M.; Tanaka-Azevedo, A.M.; Fry, B.G. Clinical implications of ontogenetic differences in the coagulotoxic activity of Bothrops Jararacussu venoms. Toxicol. Lett. 2021, 348, 59–72. [Google Scholar] [CrossRef]
- Girón, M.E.; Padrón, V.; Ramos, M.I.; Sánchez, E.E.; Guerrero, B.; García, A.; Uzcátegui, N.L.; Navarrete, L.F.; Rodríguez-Acosta, A. intraspecies geographical variability in the South American tigra mariposa (Bothrops Venezuelensis Sandner 1952) snake venom activities. Toxicon 2018, 144, 23–33. [Google Scholar] [CrossRef]
- Saldarriaga, M.M.; Otero, R.; Núñez, V.; Toro, M.F.; Díaz, A.; Gutiérrez, J.M. Ontogenetic variability of Bothrops Atrox and Bothrops Asper snake venoms from Colombia. Toxicon 2003, 42, 405–411. [Google Scholar] [CrossRef]
- Alape-Girón, A.; Sanz, L.; Escolano, J.; Flores-Díaz, M.; Madrigal, M.; Sasa, M.; Calvete, J.J. Snake venomics of the lancehead pitviper Bothrops Asper: Geographic, individual, and ontogenetic variations. J. Proteome Res. 2008, 7, 3556–3571. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.C.C.; Bisneto, P.F.; Pereira, J.P.T.; Ibiapina, H.N.D.S.; Sarraff, L.K.S.; Monteiro-Júnior, C.; da Silva Pereira, H.; Santos, B.; de Moura, V.M.; de Oliveira, S.S.; et al. “Bad things come in small packages”: Predicting venom-induced coagulopathy in bothrops atrox bites using snake ontogenetic parameters. Clin. Toxicol 2020, 58, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Amazonas, D.R.; Freitas-de-Sousa, L.A.; Orefice, D.P.; Sousa, L.F.; Martinez, M.G.; Mourão, R.H.V.; Chalkidis, H.M.; Camargo, P.B.; Moura-da-Silva, A.M. Evidence for snake venom plasticity in a long-term study with individual captive Bothrops Atrox. Toxins 2019, 11, 294. [Google Scholar] [CrossRef] [Green Version]
- Patiño, R.S.P.; Salazar-Valenzuela, D.; Medina-Villamizar, E.; Mendes, B.; Proaño-Bolaños, C.; da Silva, S.L.; Almeida, J.R. Bothrops Atrox from Ecuadorian Amazon: Initial analyses of venoms from individuals. Toxicon 2021, 193, 63–72. [Google Scholar] [CrossRef]
- Sousa, L.F.; Zdenek, C.N.; Dobson, J.S.; Op den Brouw, B.; Coimbra, F.; Gillett, A.; Del-Rei, T.H.M.; Chalkidis, H.M.; Sant’Anna, S.; Teixeira-da-Rocha, M.M.; et al. Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) venoms from Brazil: Differential biochemistry and antivenom efficacy resulting from Prey-Driven venom variation. Toxins 2018, 10, 411. [Google Scholar] [CrossRef] [Green Version]
- Lomonte, B.; Lundgren, J.; Johansson, B.; Bagge, U. The dynamics of local tissue damage induced by Bothrops Asper snake venom and myotoxin II on the mouse cremaster muscle: An intravital and electron microscopic study. Toxicon 1994, 32, 41–55. [Google Scholar] [CrossRef]
- Farsky, S.H.; Gonçalves, L.R.; Cury, Y. Characterization of local tissue damage evoked by Bothrops Jararaca venom in the rat connective tissue microcirculation: An intravital microscopic study. Toxicon 1999, 37, 1079–1083. [Google Scholar] [CrossRef]
- Moreira, L.; Gutiérrez, J.M.; Borkow, G.; Ovadia, M. Ultrastructural alterations in mouse capillary blood vessels after experimental injection of venom from the snake Bothrops Asper (Terciopelo). Exp. Mol. Pathol. 1992, 57, 124–133. [Google Scholar] [CrossRef]
- Bogarín, G.; Romero, M.; Rojas, G.; Lutsch, C.; Casadamont, M.; Lang, J.; Otero, R.; Gutiérrez, J.M. Neutralization, by a monospecific Bothrops Lanceolatus antivenom, of toxic activities induced by homologous and heterologous Bothírops snake venoms. Toxicon 1999, 37, 551–557. [Google Scholar] [CrossRef]
- Segura, A.; Castillo, M.C.; Núñez, V.; Yarlequé, A.; Gonçalves, L.R.C.; Villalta, M.; Bonilla, C.; Herrera, M.; Vargas, M.; Fernández, M.; et al. Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms. Toxicon 2010, 56, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Resiere, D.; Arias, A.S.; Villalta, M.; Rucavado, A.; Brouste, Y.; Cabié, A.; Névière, R.; Césaire, R.; Kallel, H.; Mégarbane, B.; et al. Preclinical evaluation of the neutralizing ability of a monospecific antivenom for the treatment of envenomings by Bothrops Lanceolatus in Martinique. Toxicon 2018, 148, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Rucavado, A.; Lomonte, B.; Ovadia, M.; Gutiérrez, J.M. Local tissue damage induced by BaP1, a metalloproteinase isolated from Bothrops Asper (Terciopelo) snake venom. Exp. Mol. Pathol. 1995, 63, 186–199. [Google Scholar] [CrossRef]
- Moreira, L.; Borkow, G.; Ovadia, M.; Gutiérrez, J.M. Pathological changes induced by BaH1, a hemorrhagic proteinase isolated from Bothrops Asper (Terciopelo) snake venom, on mouse capillary blood vessels. Toxicon 1994, 32, 976–987. [Google Scholar] [CrossRef]
- Rucavado, A.; Escalante, T.; Franceschi, A.; Chaves, F.; León, G.; Cury, Y.; Ovadia, M.; Gutiérrez, J.M. Inhibition of local hemorrhage and dermonecrosis induced by Bothrops Asper snake venom: Effectiveness of early in situ administration of the peptidomimetic metalloproteinase inhibitor batimastat and the chelating agent CaNa2EDTA. Am. J. Trop. Med. Hyg. 2000, 63, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Lomonte, B.; Gutiérrez, J.M.; Borkow, G.; Ovadia, M.; Tarkowski, A.; Hanson, L.A. Activity of hemorrhagic metalloproteinase BaH-1 and Myotoxin II from Bothrops Asper snake venom on capillary endothelial cells in vitro. Toxicon 1994, 32, 505–510. [Google Scholar] [CrossRef]
- Franceschi, A.; Rucavado, A.; Mora, N.; Gutiérrez, J.M. Purification and characterization of BaH4, a hemorrhagic metalloproteinase from the venom of the snake Bothrops Asper. Toxicon 2000, 38, 63–77. [Google Scholar] [CrossRef]
- Schattner, M.; Fritzen, M.; Ventura Jde, S.; de Albuquerque Modesto, J.C.; Pozner, R.G.; Moura-da-Silva, A.M.; Chudzinski-Tavassi, A.M. The snake venom metalloproteases berythractivase and Jararhagin activate endothelial cells. Biol. Chem. 2005, 386, 369–374. [Google Scholar] [CrossRef]
- Baldo, C.; Tanjoni, I.; León, I.R.; Batista, I.F.C.; Della-Casa, M.S.; Clissa, P.B.; Weinlich, R.; Lopes-Ferreira, M.; Lebrun, I.; Amarante-Mendes, G.P.; et al. BnP1, a novel P-I metalloproteinase from Bothrops Neuwiedi venom: Biological effects benchmarking relatively to Jararhagin, a P-III SVMP. Toxicon 2008, 51, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Escalante, T.; Shannon, J.; Moura-da-Silva, A.M.; Gutiérrez, J.M.; Fox, J.W. Novel insights into capillary vessel basement membrane damage by snake venom hemorrhagic metalloproteinases: A biochemical and immunohistochemical study. Arch. Biochem. Biophys. 2006, 455, 144–153. [Google Scholar] [CrossRef]
- Escalante, T.; Ortiz, N.; Rucavado, A.; Sanchez, E.F.; Richardson, M.; Fox, J.W.; Gutiérrez, J.M. Role of collagens and perlecan in microvascular stability: Exploring the mechanism of capillary vessel damage by snake venom metalloproteinases. PLoS ONE 2011, 6, e28017. [Google Scholar] [CrossRef]
- Anai, K.; Sugiki, M.; Yoshida, E.; Maruyama, M. Neutralization of a snake venom hemorrhagic metalloproteinase prevents coagulopathy after subcutaneous injection of Bothrops Jararaca venom in rats. Toxicon 2002, 40, 63–68. [Google Scholar] [CrossRef]
- Herrera, C.; Macêdo, J.K.A.; Feoli, A.; Escalante, T.; Rucavado, A.; Gutiérrez, J.M.; Fox, J.W. Muscle tissue damage induced by the venom of Bothrops Asper: Identification of early and late pathological events through proteomic analysis. PLoS Negl. Trop. Dis. 2016, 10, e0004599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, C.; Escalante, T.; Voisin, M.-B.; Rucavado, A.; Morazán, D.; Macêdo, J.K.A.; Calvete, J.J.; Sanz, L.; Nourshargh, S.; Gutiérrez, J.M.; et al. Tissue localization and extracellular matrix degradation by PI, PII and PIII snake venom metalloproteinases: Clues on the mechanisms of venom-induced hemorrhage. PLoS Negl. Trop. Dis. 2015, 9, e0003731. [Google Scholar] [CrossRef]
- Baldo, C.; Jamora, C.; Yamanouye, N.; Zorn, T.M.; Moura-da-Silva, A.M. Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: Tissue distribution and in situ hydrolysis. PLoS Negl. Trop. Dis. 2010, 4, e727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura-da-Silva, A.M.; Ramos, O.H.P.; Baldo, C.; Niland, S.; Hansen, U.; Ventura, J.S.; Furlan, S.; Butera, D.; Della-Casa, M.S.; Tanjoni, I.; et al. Collagen binding is a key factor for the hemorrhagic activity of snake venom metalloproteinases. Biochimie 2008, 90, 484–492. [Google Scholar] [CrossRef]
- Freitas-de-Sousa, L.A.; Colombini, M.; Lopes-Ferreira, M.; Serrano, S.M.T.; Moura-da-Silva, A.M. Insights into the mechanisms involved in strong hemorrhage and dermonecrosis induced by Atroxlysin-Ia, a PI-class snake venom metalloproteinase. Toxins 2017, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Bustillo, S.; García-Denegri, M.E.; Gay, C.; Van de Velde, A.C.; Acosta, O.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M.; Leiva, L. Phospholipase A(2) enhances the endothelial cell detachment effect of a snake venom metalloproteinase in the absence of catalysis. Chem. Biol. Interact. 2015, 240, 30–36. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Núñez, J.; Escalante, T.; Rucavado, A. Blood flow is required for rapid endothelial cell damage induced by a snake venom hemorrhagic metalloproteinase. Microvasc. Res. 2006, 71, 55–63. [Google Scholar] [CrossRef]
- Kawano, J.; Anai, K.; Sugiki, M.; Yoshida, E.; Maruyama, M. Vascular endothelial cell injury induced by Bothrops Jararaca Venom; non-significance of hemorrhagic metalloproteinase. Toxicon 2002, 40, 1553–1562. [Google Scholar] [CrossRef]
- Jansson, J.H.; Boman, K.; Brännström, M.; Nilsson, T.K. High concentration of thrombomodulin in plasma is associated with hemorrhage: A prospective study in patients receiving long-term anticoagulant treatment. Circulation 1997, 96, 2938–2943. [Google Scholar] [CrossRef] [PubMed]
- Asega, A.F.; Menezes, M.C.; Trevisan-Silva, D.; Cajado-Carvalho, D.; Bertholim, L.; Oliveira, A.K.; Zelanis, A.; Serrano, S.M.T. Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Sci. Rep. 2020, 10, 12912. [Google Scholar] [CrossRef]
- Rucavado, A.; Soto, M.; Escalante, T.; Loría, G.D.; Arni, R.; Gutiérrez, J.M. Thrombocytopenia and platelet hypoaggregation induced by Bothrops Asper snake venom. toxins involved and their contribution to metalloproteinase-induced pulmonary hemorrhage. Thromb. Haemost. 2005, 94, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.G.; de Albuquerque, C.Z.; Mattaraia, V.G.M.; Santoro, M.L. Comparative study of platelet aggregation and secretion induced by Bothrops Jararaca snake venom and thrombin. Toxicon 2019, 159, 50–60. [Google Scholar] [CrossRef]
- Sartim, M.A.; Costa, T.R.; Laure, H.J.; Espíndola, M.S.; Frantz, F.G.; Sorgi, C.A.; Cintra, A.C.O.; Arantes, E.C.; Faccioli, L.H.; Rosa, J.C.; et al. Moojenactivase, a novel pro-coagulant PIIId metalloprotease isolated from bothrops moojeni snake venom, activates coagulation factors II and X and induces tissue factor up-regulation in Leukocytes. Arch. Toxicol. 2016, 90, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- Senise, L.V.; Yamashita, K.M.; Santoro, M.L. Bothrops Jararaca envenomation: Pathogenesis of hemostatic disturbances and intravascular hemolysis. Exp. Biol. Med. 2015, 240, 1528–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, B.F.; Serrano, S.M.; Kuliopulos, A.; Niewiarowski, S. Interaction of viper venom serine peptidases with thrombin receptors on human platelets. FEBS Lett. 2000, 477, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Nishida, S.; Fujimura, Y.; Miura, S.; Ozaki, Y.; Usami, Y.; Suzuki, M.; Titani, K.; Yoshida, E.; Sugimoto, M.; Yoshioka, A. Purification and characterization of bothrombin, a fibrinogen-clotting serine protease from the venom of Bothrops Jararaca. Biochemistry 1994, 33, 1843–1849. [Google Scholar] [CrossRef]
- Rucavado, A.; Soto, M.; Kamiguti, A.S.; Theakston, R.D.; Fox, J.W.; Escalante, T.; Gutiérrez, J.M. Characterization of aspercetin, a platelet aggregating component from the venom of the snake Bothrops Asper which induces thrombocytopenia and potentiates metalloproteinase-induced hemorrhage. Thromb. Haemost. 2001, 85, 710–715. [Google Scholar]
- Andrews, R.K.; Booth, W.J.; Gorman, J.J.; Castaldi, P.A.; Berndt, M.C. Purification of botrocetin from Bothrops Jararaca venom. analysis of the botrocetin-mediated interaction between von willebrand factor and the human platelet membrane glycoprotein Ib-IX complex. Biochemistry 1989, 28, 8317–8326. [Google Scholar] [CrossRef] [PubMed]
- Fuly, A.L.; Soares, A.M.; Marcussi, S.; Giglio, J.R.; Guimarães, J.A. Signal transduction pathways involved in the platelet aggregation induced by a D-49 phospholipase A2 isolated from Bothrops Jararacussu snake venom. Biochimie 2004, 86, 731–739. [Google Scholar] [CrossRef]
- Mounier, C.; Vargaftig, B.B.; Franken, P.A.; Verheij, H.M.; Bon, C.; Touqui, L. Platelet secretory phospholipase A2 fails to induce rabbit platelet activation and to release arachidonic acid in contrast with venom phospholipases A2. Biochim. Biophys. Acta 1994, 1214, 88–96. [Google Scholar] [CrossRef]
- Stábeli, R.G.; Sant’Ana, C.D.; Ribeiro, P.H.; Costa, T.R.; Ticli, F.K.; Pires, M.G.; Nomizo, A.; Albuquerque, S.; Malta-Neto, N.R.; Marins, M.; et al. Cytotoxic L-amino acid oxidase from Bothrops Moojeni: Biochemical and functional characterization. Int. J. Biol. Macromol. 2007, 41, 132–140. [Google Scholar] [CrossRef]
- Santoro, M.L.; Vaquero, T.S.; Paes Leme, A.F.; Serrano, S.M.T. NPP-BJ, a nucleotide pyrophosphatase/phosphodiesterase from Bothrops Jararaca snake venom, inhibits platelet aggregation. Toxicon 2009, 54, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Kamiguti, A.S.; Hay, C.R.; Theakston, R.D.; Zuzel, M. Insights into the mechanism of haemorrhage caused by snake venom metalloproteinases. Toxicon 1996, 34, 627–642. [Google Scholar] [CrossRef]
- De Luca, M.; Ward, C.M.; Ohmori, K.; Andrews, R.K.; Berndt, M.C. Jararhagin and Jaracetin: Novel snake venom inhibitors of the integrin collagen receptor, Alpha 2 Beta 1. Biochem. Biophys. Res. Commun. 1995, 206, 570–576. [Google Scholar] [CrossRef]
- Loría, G.D.; Rucavado, A.; Kamiguti, A.S.; Theakston, R.D.G.; Fox, J.W.; Alape, A.; Gutiérrez, J.M. Characterization of “basparin A,” a prothrombin-activating metalloproteinase, from the venom of the snake Bothrops Asper that inhibits platelet aggregation and induces defibrination and thrombosis. Arch. Biochem. Biophys. 2003, 418, 13–24. [Google Scholar] [CrossRef]
- Pinto, A.; Angulo, Y.; Jiménez, R.; Lomonte, B. Isolation of Bothrasperin, a disintegrin with potent platelet aggregation inhibitory activity, from the venom of the snake Bothrops Asper. Rev. Biol. Trop. 2003, 51, 253–259. [Google Scholar] [PubMed]
- Serrano, S.M.; Reichl, A.P.; Mentele, R.; Auerswald, E.A.; Santoro, M.L.; Sampaio, C.A.; Camargo, A.C.; Assakura, M.T. A novel phospholipase A2, BJ-PLA2, from the venom of the snake Bothrops Jararaca: Purification, primary structure analysis, and its characterization as a platelet-aggregation-inhibiting factor. Arch. Biochem. Biophys. 1999, 367, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Roberto, P.G.; Kashima, S.; Marcussi, S.; Pereira, J.O.; Astolfi-Filho, S.; Nomizo, A.; Giglio, J.R.; Fontes, M.R.M.; Soares, A.M.; França, S.C. Cloning and identification of a complete CDNA coding for a bactericidal and antitumoral acidic phospholipase a2 from Bothrops Jararacussu Venom. Protein J. 2004, 23, 273–285. [Google Scholar] [CrossRef]
- Santos-Filho, N.A.; Silveira, L.B.; Oliveira, C.Z.; Bernardes, C.P.; Menaldo, D.L.; Fuly, A.L.; Arantes, E.C.; Sampaio, S.V.; Mamede, C.C.N.; Beletti, M.E.; et al. A new acidic myotoxic, Anti-platelet and prostaglandin I2 inductor phospholipase A2 isolated from Bothrops Moojeni snake venom. Toxicon 2008, 52, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Silveira, L.B.; Marchi-Salvador, D.P.; Santos-Filho, N.A.; Silva, F.P.; Marcussi, S.; Fuly, A.L.; Nomizo, A.; da Silva, S.L.; Stábeli, R.G.; Arantes, E.C.; et al. Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops Moojeni snake venom. J. Pharm. Biomed. Anal. 2013, 73, 35–43. [Google Scholar] [CrossRef]
- De Albuquerque Modesto, J.C.; Spencer, P.J.; Fritzen, M.; Valença, R.C.; Oliva, M.L.V.; da Silva, M.B.; Chudzinski-Tavassi, A.M.; Guarnieri, M.C. BE-I-PLA2, a novel acidic phospholipase A2 from Bothrops Erythromelas venom: Isolation, cloning and characterization as potent anti-platelet and inductor of prostaglandin I2 release by endothelial cells. Biochem. Pharmacol. 2006, 72, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Naumann, G.B.; Silva, L.F.; Silva, L.; Faria, G.; Richardson, M.; Evangelista, K.; Kohlhoff, M.; Gontijo, C.M.F.; Navdaev, A.; de Rezende, F.F.; et al. Cytotoxicity and inhibition of platelet aggregation caused by an L-amino acid oxidase from Bothrops Leucurus venom. Biochim. Biophys. Acta 2011, 1810, 683–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, L.F.; Bernardoni, J.L.; Zdenek, C.N.; Dobson, J.; Coimbra, F.; Gillett, A.; Lopes-Ferreira, M.; Moura-da-Silva, A.M.; Fry, B.G. Differential coagulotoxicity of metalloprotease isoforms from Bothrops Neuwiedi snake venom and consequent variations in antivenom efficacy. Toxicol. Lett. 2020, 333, 211–221. [Google Scholar] [CrossRef]
- Bourke, L.A.; Zdenek, C.N.; Neri-Castro, E.; Bénard-Valle, M.; Alagón, A.; Gutiérrez, J.M.; Sanchez, E.F.; Aldridge, M.; Fry, B.G. Pan-American lancehead Pit-vipers: Coagulotoxic venom effects and antivenom neutralisation of Bothrops Asper and B. atrox geographical variants. Toxins 2021, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, V.G.; Frank, N.; Afshar, S. De novo assessment and review of pan-american pit viper anticoagulant and procoagulant venom activities via kinetomic analyses. Toxins 2019, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Pinto, A.F.M.; Guimarães, J.A. Purification and Functional characterization of bothrojaractivase, a prothrombin-activating metalloproteinase isolated from Bothrops Jararaca snake venom. Toxicon 2008, 51, 488–501. [Google Scholar] [CrossRef]
- Kini, R.M.; Koh, C.Y. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: Definition and nomenclature of interaction sites. Toxins 2016, 8, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kini, R.M. The intriguing world of prothrombin activators from snake venom. Toxicon 2005, 45, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, H.; Bon, C. Blood coagulation induced by the venom of Bothrops Atrox. 2. identification, purification, and properties of two factor X activators. Biochemistry 1987, 26, 780–787. [Google Scholar] [CrossRef]
- Niewiarowski, S.; Kirby, E.P.; Brudzynski, T.M.; Stocker, K. Thrombocytin, a serine protease from Bothrops Atrox venom. 2. interaction with platelets and plasma-clotting factors. Biochemistry 1979, 18, 3570–3577. [Google Scholar] [CrossRef] [PubMed]
- Rosing, J.; Govers-Riemslag, J.W.; Yukelson, L.; Tans, G. Factor V activation and inactivation by venom proteases. Haemostasis 2001, 31, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.C.F.; Rios, D.R.A.; Leite, P.M.; Alves, L.C.; Magalhães, H.P.B.; das Graças Carvalho, M. Thrombin generation test for evaluating hemostatic effects of Brazilian snake venoms. Toxicon 2019, 163, 36–43. [Google Scholar] [CrossRef]
- Isbister, G.K. Snakebite doesn’t cause disseminated intravascular coagulation: Coagulopathy and thrombotic microangiopathy in snake envenoming. Semin. Thromb. Hemost. 2010, 36, 444–451. [Google Scholar] [CrossRef]
- Castro, H.C.; Zingali, R.B.; Albuquerque, M.G.; Pujol-Luz, M.; Rodrigues, C.R. Snake venom thrombin-like enzymes: From reptilase to now. Cell. Mol. Life Sci. 2004, 61, 843–856. [Google Scholar] [CrossRef]
- Sachetto, A.T.A.; Mackman, N. Modulation of the mammalian coagulation system by venoms and other proteins from snakes, arthropods, nematodes and insects. Thromb. Res. 2019, 178, 145–154. [Google Scholar] [CrossRef]
- Pérez, A.V.; Saravia, P.; Rucavado, A.; Sant’Ana, C.D.; Soares, A.M.; Gutiérrez, J.M. Local and systemic pathophysiological alterations induced by a serine proteinase from the venom of the snake Bothrops Jararacussu. Toxicon 2007, 49, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.M.; Alves, A.F.; Barbaro, K.C.; Santoro, M.L. Bothrops Jararaca venom metalloproteinases are essential for coagulopathy and increase plasma tissue factor levels during envenomation. PLoS Negl. Trop. Dis. 2014, 8, e2814. [Google Scholar] [CrossRef]
- Zingali, R.B.; Jandrot-Perrus, M.; Guillin, M.C.; Bon, C. Bothrojaracin, a new thrombin inhibitor isolated from Bothrops Jararaca venom: Characterization and mechanism of thrombin inhibition. Biochemistry 1993, 32, 10794–10802. [Google Scholar] [CrossRef]
- Arocas, V.; Zingali, R.B.; Guillin, M.C.; Bon, C.; Jandrot-Perrus, M. Bothrojaracin: A potent two-site-directed thrombin inhibitor. Biochemistry 1996, 35, 9083–9089. [Google Scholar] [CrossRef]
- Sekiya, F.; Atoda, H.; Morita, T. Isolation and characterization of an anticoagulant protein homologous to botrocetin from the venom of Bothrops Jararaca. Biochemistry 1993, 32, 6892–6897. [Google Scholar] [CrossRef]
- Patiño, A.C.; Pereañez, J.A.; Núñez, V.; Benjumea, D.M.; Fernandez, M.; Rucavado, A.; Sanz, L.; Calvete, J.J. Isolation and biological characterization of Batx-I, a weak hemorrhagic and fibrinogenolytic pi metalloproteinase from Colombian Bothrops Atrox venom. Toxicon 2010, 56, 936–943. [Google Scholar] [CrossRef]
- Kamiguti, A.S.; Slupsky, J.R.; Zuzel, M.; Hay, C.R. Properties of fibrinogen cleaved by Jararhagin, a metalloproteinase from the venom of Bothrops Jararaca. Thromb. Haemost. 1994, 72, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Sugiki, M.; Maruyama, M.; Yoshida, E.; Mihara, H.; Kamiguti, A.S.; Theakston, D.G. Enhancement of plasma fibrinolysis in vitro by Jararhagin, the main haemorrhagic metalloproteinase in Bothrops Jararaca venom. Toxicon 1995, 33, 1605–1617. [Google Scholar] [CrossRef]
- Carone, S.E.I.; Menaldo, D.L.; Sartim, M.A.; Bernardes, C.P.; Caetano, R.C.; da Silva, R.R.; Cabral, H.; Barraviera, B.; Ferreira Junior, R.S.; Sampaio, S.V. BjSP, a novel serine protease from Bothrops Jararaca snake venom that degrades fibrinogen without forming fibrin clots. Toxicol. Appl. Pharmacol. 2018, 357, 50–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sant’ Ana, C.D.; Ticli, F.K.; Oliveira, L.L.; Giglio, J.R.; Rechia, C.G.V.; Fuly, A.L.; Selistre de Araújo, H.S.; Franco, J.J.; Stabeli, R.G.; Soares, A.M.; et al. BjussuSP-I: A new thrombin-like enzyme isolated from Bothrops Jararacussu snake venom. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 151, 443–454. [Google Scholar] [CrossRef]
- Urano, T.; Ihara, H.; Takada, Y.; Fujie, M.; Takada, A. The cleavage and Inactivation of plasminogen activator inhibitor type 1 and Alpha2-antiplasmin by reptilase, a thrombin-like venom enzyme. Blood Coagul. Fibrinolysis 2000, 11, 145–153. [Google Scholar] [CrossRef]
- Queiroz, L.S.; Santo Neto, H.; Rodrigues-Simioni, L.; Prado-Franceschi, J. Muscle necrosis and regeneration after envenomation by Bothrops Jararacussu snake venom. Toxicon 1984, 22, 339–346. [Google Scholar] [CrossRef]
- Cogo, J.C.; Prado-Franceschi, J.; Cruz-Hofling, M.A.; Corrado, A.P.; Rodrigues-Simioni, L. Effect of bothrops insularis venom on the mouse and chick nerve-muscle preparation. Toxicon 1993, 31, 1237–1247. [Google Scholar] [CrossRef]
- Assafim, M.; Ferreira, M.S.; Frattani, F.S.; Guimarães, J.A.; Monteiro, R.Q.; Zingali, R.B. Counteracting effect of glycyrrhizin on the hemostatic abnormalities induced by Bothrops Jararaca Snake venom. Br. J. Pharmacol. 2006, 148, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.S.; Assafim, M.; Arruda, E.Z.; Melo, P.A.; Zingali, R.B.; Monteiro, R.Q. Suramin counteracts the haemostatic disturbances produced by Bothrops Jararaca snake venom. Toxicon 2007, 49, 931–938. [Google Scholar] [CrossRef]
- Burdmann, E.A.; Woronik, V.; Prado, E.B.; Abdulkader, R.C.; Saldanha, L.B.; Barreto, O.C.; Marcondes, M. Snakebite-induced acute renal failure: An experimental model. Am. J. Trop. Med. Hyg. 1993, 48, 82–88. [Google Scholar] [CrossRef]
- Silva, M.B.; Schattner, M.; Ramos, C.R.R.; Junqueira-de-Azevedo, I.L.M.; Guarnieri, M.C.; Lazzari, M.A.; Sampaio, C.A.M.; Pozner, R.G.; Ventura, J.S.; Ho, P.L.; et al. A prothrombin activator from Bothrops Erythromelas (Jararaca-Da-Seca) snake venom: Characterization and molecular cloning. Biochem. J. 2003, 369, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.L.; Fritzen, M.; Faria, F.; Motta, G.; Chudzinski-Tavassi, A.M. Releasing or expression modulating mediator involved in hemostasis by Berythractivase and Jararhagin (SVMPs). Toxicon 2006, 47, 788–796. [Google Scholar] [CrossRef]
- Mota, S.M.B.; Albuquerque, P.L.M.M.; Meneses, G.C.; da Silva Junior, G.B.; Martins, A.M.C.; De Francesco Daher, E. Role of endothelial biomarkers in predicting acute kidney injury in Bothrops Envenoming. Toxicol. Lett. 2021, 345, 61–66. [Google Scholar] [CrossRef]
- Sartim, M.A.; Cezarette, G.N.; Jacob-Ferreira, A.L.; Frantz, F.G.; Faccioli, L.H.; Sampaio, S.V. Disseminated Intravascular Coagulation Caused by Moojenactivase, a Procoagulant Snake Venom Metalloprotease. Int. J. Biol. Macromol. 2017, 103, 1077–1086. [Google Scholar] [CrossRef]
- Sanders, W.E.; Read, M.S.; Reddick, R.L.; Garris, J.B.; Brinkhous, K.M. Thrombotic thrombocytopenia with von willebrand factor deficiency induced by botrocetin. An animal model. Lab. Investig. 1988, 59, 443–452. [Google Scholar]
- Vu, T.T.; Stafford, A.R.; Leslie, B.A.; Kim, P.Y.; Fredenburgh, J.C.; Weitz, J.I. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin. J. Biol. Chem. 2013, 288, 16862–16871. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Dong, N.; da Cunha, V.; Martin-McNulty, B.; Tran, K.; Nagashima, M.; Wu, Q.; Morser, J.; Wang, Y.-X. Activated thrombin-activatable fibrinolysis inhibitor attenuates spontaneous fibrinolysis of batroxobin-induced fibrin deposition in rat lungs. Thromb. Haemost. 2003, 90, 414–421. [Google Scholar] [CrossRef]
- Herrera, C.; Rucavado, A.; Warrell, D.A.; Gutiérrez, J.M. Systemic effects induced by the venom of the Snake Bothrops Caribbaeus in a murine model. Toxicon 2013, 63, 19–31. [Google Scholar] [CrossRef]
- Lôbo de Araújo, A.; Kamiguti, A.; Bon, C. Coagulant and anticoagulant activities of Bothrops Lanceolatus (Fer de Lance) venom. Toxicon 2001, 39, 371–375. [Google Scholar] [CrossRef]
- McFarlane, P.A.; Bitzan, M.; Broome, C.; Baran, D.; Garland, J.; Girard, L.-P.; Grewal, K.; Lapeyraque, A.-L.; Patriquin, C.J.; Pavenski, K.; et al. Making the correct diagnosis in thrombotic microangiopathy: A narrative review. Can. J. Kidney Health Dis. 2021, 8, 20543581211008708. [Google Scholar] [CrossRef]
- Joly, B.S.; Coppo, P.; Veyradier, A. An update on pathogenesis and diagnosis of thrombotic thrombocytopenic purpura. Expert Rev. Hematol. 2019, 12, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Cointe, A.; Mariani Kurkdjian, P.; Rafat, C.; Hertig, A. Shiga toxin-associated hemolytic uremic syndrome: A narrative review. Toxins 2020, 12, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroka, A.; Donato, J.L.; Bon, C.; Hyslop, S.; de Araújo, A.L. Purification and characterization of a hemorrhagic metalloproteinase from Bothrops Lanceolatus (Fer-de-Lance) snake venom. Toxicon 2005, 45, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Delafontaine, M.; Villas-Boas, I.M.; Mathieu, L.; Josset, P.; Blomet, J.; Tambourgi, D.V. Enzymatic and pro-inflammatory activities of Bothrops Lanceolatus venom: Relevance for envenomation. Toxins 2017, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Nagasawa, K.; Horiuchi, T.; Tsuru, T.; Nishizaka, H.; Niho, Y. C5a induces tissue factor activity on endothelial cells. Thromb. Haemost. 1997, 77, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, F.; Pausa, M.; Nardon, E.; Introna, M.; Mantovani, A.; Dobrina, A. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J. Exp. Med. 1997, 185, 1619–1627. [Google Scholar] [CrossRef] [Green Version]
- Delafontaine, M.; Villas-Boas, I.M.; Pidde, G.; van den Berg, C.W.; Mathieu, L.; Blomet, J.; Tambourgi, D.V. Venom from Bothrops Lanceolatus, a snake species native to martinique, potently activates the complement system. J. Immunol. Res. 2018, 2018, 3462136. [Google Scholar] [CrossRef] [Green Version]
- Silva de França, F.; Gabrili, J.J.M.; Mathieu, L.; Burgher, F.; Blomet, J.; Tambourgi, D.V. Bothrops Lanceolatus snake (Fer-de-Lance) venom triggers inflammatory mediators’ storm in human blood. Arch. Toxicol. 2021, 95, 1129–1138. [Google Scholar] [CrossRef]
- Pidde-Queiroz, G.; Furtado Mde, F.; Filgueiras, C.F.; Pessoa, L.A.; Spadafora-Ferreira, M.; van den Berg, C.W.; Tambourgi, D.V. Human complement activation and anaphylatoxins generation induced by Snake venom toxins from Bothrops Genus. Mol. Immunol. 2010, 47, 2537–2544. [Google Scholar] [CrossRef]
Species | B. atrox | B. asper | B. jararaca | B. erythromelas | B. lanceolatus | B. caribbaeus |
---|---|---|---|---|---|---|
Snake venom metalloproteinases (SVMP) | 25.8–85.0 | 30.7–47.4 | 10.0–64.0 | 32.5–59.9 | 42.4–74.2 | 68.6 |
PI-SVMP | 4.6–65 | 13.9–35.1 | 3.6–10.4 | 2.7–14.4 | 25.8 | 30.6 |
PII-SVMP | 4.0–5.2 | <0.1–3.9 | - | - | - | - |
PIII-SVMP | 3.1–69 | 8.2–19.8 | 6.7–25.2 | 29.8–45.5 | 48.4 | 38.0 |
Snake venom serine proteases | 0.5–21.5 | 4.4–18.2 | 3.0–36.0 | 4.0–9.7 | 14.4–27.4 | 4.7 |
Phospholipases A2 | 4.2–48.0 | 0.4–45.5 | <0.1–20.2 | 8.1–15.1 | 4.5–8.6 | 12.8 |
L-amino acid oxydases | 0.5–16.9 | 1.1–9.2 | <0.1–9.7 | 2.8–14.0 | 8.4 | |
Disintegrins | <0.1–3.2 | <0.1–7.5 | 0.2–7 | 3.4–8.9 | 1.7 | |
C-type lectin proteins | 0.4–13.1 | 0.3–16.9 | 9.0–36.0 | 8.4–21.6 | <0.1–4.5 | |
References | [99,100,101,102,103] | [104,105] | [98,106,107,108] | [109] | [97,98] | [97] |
Protein Family | Vascular Effect | Platelet Effect | Coagulation Effect | Fibrinolysis Effect |
---|---|---|---|---|
Snake venom metalloproteinases | Hemorrhage | Aggregation Inhibition of aggregation | FII, FX activation Fibrinogen degradation | Fibrin degradation Tissu-type plasminogen activator activation α2-antiplasmin inhibition |
Snake venom serine proteases | Aggregation | FV, FVIII, FXIII activation Fibrinogen clotting Fibrinogen degradation | Fibrin degradation PAI-1 and α2-antiplasmin inhibition | |
Phospholipases A2 | Hemorrhage | Aggregation Inhibition of aggregation | ||
L-amino acid oxydases | Aggregation Inhibition of aggregation | |||
Disintegrins | Inhibition of aggregation | |||
C-type lectin proteins | Aggregation Inhibition of aggregation | FIX, FX, FIIa, Protein S inhibition |
Species | B. atrox | B. asper | B. jararaca | B. lanceolatus | B. caribbaeus |
---|---|---|---|---|---|
Median lethal activity (LD50) (µg/g) 1 | 3.89–4.75 (ip) | 3.39–3.79 (ip) | 1.89–2.125 (ip) | 6 (iv)/12.8 (ip) | 3 (iv)/7.5 (ip) |
Local minimum hemorrhagic dose (MHD) (µg) 2 | 1.4–2.4 | 0.8–1.5 | 0.26 | 3.6–3.7 | 0.7 |
Minimum coagulant concentration (MCC) (µg/mL) 3 | 0.8–3 | 0.32–1 | 0.54 | NA | NA |
Minimum defibrinating dose (MDD) (µg) 4 | 1.7–5 | 3–5 | 3.3 | NA | NA |
References | [121,122] | [121,122] | [122] | [121,123] | [97] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larréché, S.; Chippaux, J.-P.; Chevillard, L.; Mathé, S.; Résière, D.; Siguret, V.; Mégarbane, B. Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. Int. J. Mol. Sci. 2021, 22, 9643. https://doi.org/10.3390/ijms22179643
Larréché S, Chippaux J-P, Chevillard L, Mathé S, Résière D, Siguret V, Mégarbane B. Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. International Journal of Molecular Sciences. 2021; 22(17):9643. https://doi.org/10.3390/ijms22179643
Chicago/Turabian StyleLarréché, Sébastien, Jean-Philippe Chippaux, Lucie Chevillard, Simon Mathé, Dabor Résière, Virginie Siguret, and Bruno Mégarbane. 2021. "Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders" International Journal of Molecular Sciences 22, no. 17: 9643. https://doi.org/10.3390/ijms22179643
APA StyleLarréché, S., Chippaux, J. -P., Chevillard, L., Mathé, S., Résière, D., Siguret, V., & Mégarbane, B. (2021). Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. International Journal of Molecular Sciences, 22(17), 9643. https://doi.org/10.3390/ijms22179643