Ceruloplasmin as Redox Marker Related to Heart Failure Severity
Abstract
:1. Introduction
2. Results
2.1. Demographic, Clinical and Laboratory Characteristics of the Patients Depending on the Weber Classification
2.2. Demographic, Clinical and Laboratory Characteristics of Patients Depending on CER Quartiles
2.3. CER and NYNA Class and Cardiopulmonary Exercise Testing Results
2.4. The Association between CER Concentration and Demography, Clinical Parameters and Laboratory Parameters—Univariable Analysis
2.5. The Association between CER Concentration Laboratory Parameters—Multiple Linear Regression
3. Discussion
4. Materials and Methods
4.1. Study Population and Clinical Assessment
4.2. Biochemical Methods
4.3. Statistical Analysis
5. Conclusions
6. Study Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shirazi, L.F.; Bissett, J.; Romeo, F.; Mehta, J.L. Role of Inflammation in Heart Failure. Curr. Atheroscler. Rep. 2017, 19, 26. [Google Scholar] [CrossRef]
- Anand, I.S.; Gupta, P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation 2018, 138, 80–98. [Google Scholar] [CrossRef]
- Van der Pol, A.; Van Gilst, W.H.; Voors, A.A.; Van der Meer, P. Treating Oxidative Stress in Heart Failure: Past, Present and Future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Parol, G.; Główczyńska, R. Jak w Codziennej Praktyce Kardiologicznej Interpretować Wyniki Badania Spiroergometrycznego u Pacjentów z Niewydolnością Serca. Folia Cardiol. 2014, 9, 313–320. [Google Scholar]
- Smarż, K.; Jaxa-Chamiec, T.; Budaj, A. Metody Oceny Wydolności Fizycznej Pacjentów Kardiologicznych—Elektrokardiograficzny, Spiroergometryczny i Echokardiograficzny Test Wysiłkowy Methods of Assessing Physical Capacity in Cardiac Patients—Electrocardiographic, Cardio-Pulmonary and Echocaradiographic execise teting. Post Nauk Med. 2015, 48, 79–83. [Google Scholar]
- Guazzi, M.; Bandera, F.; Ozemek, C.; Systrom, D.; Arena, R. Cardiopulmonary Exercise Testing: What Is Its Value? J. Am. Coll. Cardiol. 2017, 70, 1618–1636. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Borlaug, B.; Metra, M.; Losito, M.; Bandera, F.; Alfonzetti, E.; Boveri, S.; Sugimoto, T. Revisiting and Implementing the Weber and Ventilatory Functional Classifications in Heart Failure by Cardiopulmonary Imaging Phenotyping. J. Am. Heart Assoc. 2021, 10, e018822. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.T.; Kinasewitz, G.T.; Janicki, J.S.; Fishman, A.P. Oxygen Utilization and Ventilation during Exercise in Patients with Chronic Cardiac Failure. Circulation 1982, 65, 1213–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arena, R.; Myers, J.; Aslam, S.S.; Varughese, E.B.; Peberdy, M.A. Peak VO2 and VE/VCO2 Slope in Patients with Heart Failure: A Prognostic Comparison. Am. Heart J. 2004, 147, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Canter, C.E.; Hannan, M.M.; Semigran, M.J.; Uber, P.A.; Baran, D.A.; Danziger-Isakov, L.; Kirklin, J.K.; Kirk, R.; Kushwaha, S.S.; et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J. Heart Lung Transplant. 2016, 35, 1–23. [Google Scholar] [CrossRef]
- Floris, G.; Medda, R.; Padiglia, A.; Musci, G. The Physiopathological Significance of Ceruloplasmin: A Possible Therapeutic Approach. Biochem. Pharmacol. 2000, 60, 1735–1741. [Google Scholar] [CrossRef]
- Mukhopadhyay, C.K.; Attieh, Z.K.; Fox, P.L. Role of Ceruloplasmin in Cellular Iron Uptake. Science 1998, 279, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Banha, J.; Marques, L.; Oliveira, R.; De Fátima Martins, M.; Paixão, E.; Pereira, D.; Malhó, R.; Penque, D.; Costa, L. Ceruloplasmin Expression by Human Peripheral Blood Lymphocytes: A New Link between Immunity and Iron Metabolism. Free Radic. Biol. Med. 2008, 44, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Dunaief, J.L. Retinal Iron Homeostasis in Health and Disease. Front. Aging Neurosci. 2013, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, C.K.; Mazumder, B.; Fox, P.L. Role of Hypoxia-Inducible Factor-1 in Transcriptional Activation of Ceruloplasmin by Iron Deficiency. J. Biol. Chem. 2000, 275, 21048–21054. [Google Scholar] [CrossRef] [Green Version]
- White, C.; Kambe, T.; Fulcher, Y.G.; Sachdev, S.W.; Bush, A.I.; Fritsche, K.; Lee, J.; Quinn, T.P.; Petris, M.J. Copper Transport into the Secretory Pathway Is Regulated by Oxygen in Macrophages. J. Cell Sci. 2009, 122, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, I.M.; Kaplan, H.B.; Edelson, H.S.; Weissmann, G. Ceruloplasmin. A Scavenger of Superoxide Anion Radicals. J. Biol. Chem. 1979, 254, 4040–4045. [Google Scholar] [CrossRef]
- Vasilyev, V.B. Looking for a Partner: Ceruloplasmin in Protein–Protein Interactions. BioMetals 2019, 32, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.L.P.; Mocatta, T.J.; Shiva, S.; Seidel, A.; Chen, B.; Khalilova, I.; Paumann-Page, M.E.; Jameson, G.N.L.; Winterbourn, C.C.; Kettle, A.J. Ceruloplasmin Is an Endogenous Inhibitor of Myeloperoxidase. J. Biol. Chem. 2013, 288, 6465–6477. [Google Scholar] [CrossRef] [Green Version]
- Dadu, R.T.; Dodge, R.; Nambi, V.; Virani, S.S.; Hoogeveen, R.C.; Smith, N.L.; Chen, F.; Pankow, J.S.; Guild, C.; Tang, W.H.W.; et al. Ceruloplasmin and Heart Failure in the Atherosclerosis Risk in Communities Study. Circ. Hear. Fail. 2013, 6, 936–943. [Google Scholar] [CrossRef] [Green Version]
- Hammadah, M.; Fan, Y.; Wu, Y.; Hazen, S.L.; Tang, W.H.W. Prognostic Value of Elevated Serum Ceruloplasmin Levels in Patients with Heart Failure. J. Card. Fail. 2014, 20, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Correale, M.; Brunetti, N.; De Gennaro, L.; Biase, M. Acute Phase Proteins In Atherosclerosis (Acute Coronary Syndrome). Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, S.S. Role of Ceruloplasmin as a Low Grade Chronic Inflammatory Marker and Activated Innate Immune System in Pathogenesis of Diabetes Mellitus. J. Diabetes Metab. Disord. Control 2018, 5, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Romuk, E.; Jacheć, W.; Zbrojkiewicz, E.; Mroczek, A.; Niedziela, J.; Gąsior, M.; Rozentryt, P.; Wojciechowska, C. Ceruloplasmin, NT-ProBNP, and Clinical Data as Risk Factors of Death or Heart Transplantation in a 1-Year Follow-Up of Heart Failure Patients. J. Clin. Med. 2020, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Wilson Tang, W.H.; Wu, Y.; Hartiala, J.; Fan, Y.; Stewart, A.F.; Roberts, R.; McPherson, R.; Fox, P.L.; Allayee, H.; Hazen, S.L. Clinical and Genetic Association of Serum Ceruloplasmin with Cardiovascular Risk. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 516–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabassi, A.; Binno, S.M.; Tedeschi, S.; Ruzicka, V.; Dancelli, S.; Rocco, R.; Vicini, V.; Coghi, P.; Regolisti, G.; Montanari, A.; et al. Low Serum Ferroxidase i Activity Is Associated with Mortality in Heart Failure and Related to Both Peroxynitrite-Induced Cysteine Oxidation and Tyrosine Nitration of Ceruloplasmin. Circ. Res. 2014, 114, 1723–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Lin, H.; Zhou, Y.; Cheng, G.; Xu, G. Ceruloplasmin and the Extent of Heart Failure in Ischemic and Nonischemic Cardiomyopathy Patients. Mediat. Inflamm. 2013, 2013, 145. [Google Scholar] [CrossRef] [Green Version]
- Martin, F.; Linden, T.; Katschinski, D.M.; Oehme, F.; Flamme, I.; Mukhopadhyay, C.K.; Eckhardt, K.; Tröger, J.; Barth, S.; Camenisch, G.; et al. Copper-Dependent Activation of Hypoxia-Inducible Factor (HIF)-1: Implications for Ceruloplasmin Regulation. Blood 2005, 105, 4613–4619. [Google Scholar] [CrossRef] [Green Version]
- Wada, O.; Asanoi, H.; Miyagi, K.; Ishizaka, S.; Kameyama, T.; Seto, H.; Sasayama, S. Importance of Abnormal Lung Perfusion in Excessive Exercise Ventilation in Chronic Heart Failure. Am. Heart J. 1993, 125, 790–798. [Google Scholar] [CrossRef]
- Uren, N.G.; Davies, S.W.; Agnew, J.E.; Irwin, A.G.; Jordan, S.L.; Hilson, A.J.W.; Lipkin, D.P. Reduction of Mismatch of Global Ventilation and Perfusion on Exercise Is Related to Exercise Capacity in Chronic Heart Failure. Br. Heart J. 1993, 70, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Zeng, D.W.; Liu, Y.R.; Zhang, J.M.; Zhu, Y.Y.; Lin, S.; You, J.; Li, Y.B.; Chen, J.; Zheng, Q.; Jiang, J.J.; et al. Serum Ceruloplasmin Levels Correlate Negatively with Liver Fibrosis in Males with Chronic Hepatitis B: A New Noninvasive Model for Predicting Liver Fibrosis in HBV-Related Liver Disease. PLoS ONE 2013, 8, e77942. [Google Scholar] [CrossRef] [PubMed]
- Özgüneş, H.; Gürer, H.; Tuncer, S. Correlation between plasma malondialdehyde and ceruloplasmin activity values in rheumatoid arthritis. Clin. Biochem. 1995, 28, 193–194. [Google Scholar] [CrossRef]
- Sarkar, A.; Dash, S.; Barik, B.K.; Muttigi, M.S.; Kedage, V.; Shetty, J.K.; Prakash, M. Copper and Ceruloplasmin Levels in Relation to Total Thiols and GST in Type 2 Diabetes Mellitus Patients. Indian J. Clin. Biochem. 2010, 25, 74–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, E.; Kiechle, F.L.; Artiss, J.D.; Zak, B. The Clinical Use of Alkaline Phosphatase Enzymes. Clin. Lab. Med. 1986, 6, 491–505. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C. Inhibition of the Fenton reaction by the protein Radical Damage to Deoxyribose. Chem. Biol. Interact 1985, 56, 3–10. [Google Scholar]
- Bakogiannis, C.; Briasoulis, A.; Mouselimis, D.; Tsarouchas, A.; Papageorgiou, N.; Papadopoulos, C.; Fragakis, N.; Vassilikos, V. Iron Deficiency as Therapeutic Target in Heart Failure: A Translational Approach. Heart Fail. Rev. 2020, 25, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, K.; Cohen-Solal, A.; Filippatos, G.; McMurray, J.J.; Ponikowski, P.; Poole-Wilson, P.A.; Strömberg, A.; Van Veldhuisen, D.J.; Atar, D.; Hoes, A.W.; et al. ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008. Eur. Heart J. 2008, 29, 2388–2442. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Adamopoulos, S.; Anker, S.D.; Auricchio, A.; Böhm, M.; Dickstein, K.; Falk, V.; Filippatos, G.; Fonseca, C.; Gomez-Sanchez, M.A.; et al. ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in Collaboration with the Heart. Eur. Heart J. 2012, 33, 1787–1847. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Richterich, R.; Gautier, E.; Stillhart, H.; Rossi, E. The heterogeneity of caeruloplasmin nd the enzymatic defect in Wilson’s disease. Helv. Paediatr. Acta 1960, 15, 424–436. [Google Scholar]
- Erel, O. A new automated colorimetric method for measuring total oxidant tatus. Clinl. Bioch. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Koster, J.F.; Biemond, P.; Swaak, A.J.G. Intracellular and Extracellular Sulphydryl Levels in Rheumatoid Arthritis. Ann. Rheum. Dis. 1986, 45, 44–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
Class A n = 72 | Class B n = 116 | Class C n = 276 | Class D n = 88 | p | |
---|---|---|---|---|---|
Female n (%) | 7 [9.72] | 9 [7.76] | 50 [18.1] | 15 [17.0] | <0.05 |
Age [years] | 50.0 [40.0–58.0] | 53.0 [48.0–58.0] | 55.0 [51.0–59.0] | 56.0 [50.0–61.0] | <0.001 |
BMI [kg/m2] | 26.5 [23.7–29.2] | 26.1 [23.7–28.5] | 26.5 [23.6–29.3] | 26.3 [22.8–30.2] | NS |
Exercise capacity, echocardiography | |||||
NYHA class I/II/III/IV n [%] | 20/39/13/0 [27.8/54.2/18.0/0] | 10/58/46/2 [8.6/50.0/39.7/1.7] | 2/89/155/30 [0.7/32.2/56.2/10.9] | 0/10/54/24 [0/11.4/61.4/27.3] | <0.01 |
6-min WT [m] | 455.5 [430.5–544.0] | 400.0 [380.0–440.0] | 347.0 [303.0–390.0] | 267.0 [220.0–325.0] | <0.001 |
LVEF [mm] | 25.5 [21.5–35.0] | 25.0 [21.0–31.0] | 23.0 [20.0–29.0] | 22.0 [19.0–26.0] | <0.001 |
LVEDV [mL] | 69.0 [63.0–75.0] | 69.0 [63.0–76.0] | 69.0 [64.0–76.0] | 73.0 [66.0–77.0] | NS |
RV diameter [mm] | 29.0 [25.0–33.0] | 28.0 [25.0–32.0] | 30.0 [26.0–34.0] | 31.0 [28.0–35.0] | <0.001 |
Laboratory parameters | |||||
NT-proBNP [pg/mL] /100 | 657.8 [252.4–1378.5] | 978.9 [505.7–1620.0] | 1867.0 [762.5–3474.0] | 2253.0 [1103.0–4399.0] | <0.001 |
RBC [1012 /L] | 4.7 [4.4–5.0] | 4.6 [4.3–5.0] | 4.5 [4.2–4.9] | 4.6 [4.2–4.9] | NS |
WBC [109 /L] | 6.5 [5.3–7.7] | 7.0 [5.9–8.3] | 7.0 [5.9–8.3] | 6.4 [5.4–7.7] | NS |
PLT [109 /L] | 183.0 [152.0–223.5] | 181.5 [139.0–217.0] | 184.0 [154.0–219.0] | 180.0 [145.0–236.0] | NS |
Hemoglobin [mmol/L] | 14,5 [13.9–15.2] | 14.2 [13.4–15.0] | 14.0 [13.1–15.0] | 13.9 [12.7–14.8] | <0.01 |
Iron [µmol/L] | 18.4 [15.1–23.2] | 17.5 [13.3–22.2] | 17.2 [12.0–22.6] | 16.7 [11.8–19.6] | NS |
Uric acid [µmol/L]/ 10 | 429.5 [354.0–487.5] | 392.0 [322.0–480.0] | 408.0 [323.0–516.0] | 425.0 [351.0–559.0] | <0.05 |
Serum protein [g/L] | 71.5 [67.0–76.0] | 71.0 [68.0–74.0] | 71.0 [67.0–75.0] | 71.0 [66.0–76.0] | NS |
Albumin [g/L] | 43.0 [40.0–45.0] | 42.5 [40.0–45.0] | 42.0 [40.0–44.0] | 41.0 [38.0–43.0] | <0.01 |
Fibrinogen [mg/dL] | 349.5 [307.5–405.0] | 366.0 [315.0–435.0] | 402.0 [346.0–465.0] | 431.0 [371.0–471.0] | <0.001 |
C-reactive protein [mg/L] | 1.5 [0.8–2.9] | 1.6 [0.9–4.2] | 3.3 [1.6–7.0] | 3.9 [2.3–7.5] | <0.001 |
Bilirubin [µmol/L] | 11.3 [7.7–16.5] | 11.4 [9.1–16.6] | 15.2 [10.6–21.9] | 17.3 [12.3–26.2] | <0.001 |
AST [IU/l] | 24.0 [21.0–33.5] | 23.0 [19.0–31.0] | 23.0 [18.0–30.0] | 23.0 [18.0–29.0] | NS |
ALT [IU/l] | 27.5 [19.5–42.0] | 24.0 [19.0–34.0] | 25.0 [17.0–36.0] | 22.0 [15.0–31.0] | <0.05 |
GGTP [IU/l] | 37.0 [20.0–84.5] | 42.5 [25.0–100.0] | 54.0 [29.0–107.0] | 62.0 [33.0–117.0] | <0.01 |
ALP [IU/l] | 63.0 [51.0–76.0] | 60.5 [49.0–81.0] | 70.0 [57.0–90.0] | 81.0 [60.0–104.0] | <0.001 |
Fasting glucose [mmol/L] | 5.4 [4.9–6.4] | 5.6 [5.0–6.3] | 5.6 [5.0–6.4] | 5.4 [5.0–6.1] | NS |
Total Cholesterol [mmol/L] | 4.1 [3.6–5.4] | 4.4 [3.7–5.2] | 4.2 [3.6–5.0] | 4.1 [3.3–5.2] | NS |
Cholesterol HDL [mmol/L] | 1.2 [1.0–1.5] | 1.2 [0.9–1.6] | 1.1 [0.9–1.4] | 1.1 [0.9–1.4] | NS |
Triglycerides [mmol/L] | 1.4 [0.9–2.0] | 1.2 [0.9–1.8] | 1.2 [0.9–1.7] | 1.1 [0.8–1.5] | NS |
SH [µmol/g protein] | 317.0 [235.2–368.0] | 296.7 [229.5–360.0] | 283.6 [212.4–347.9] | 260.6 [225.1–318.8] | <0.05 |
MDA [µmol/L] | 1.6 [1.3–2.2] | 1.6 [1.3–2.0] | 1.8 [1.4–2.1] | 1.8 [1.55–2.15] | <0.05 |
TAC [mmol/L] | 1.11 [0.99–1.22] | 1.09 [0.99–1.22] | 1.13 [1.02–1.25] | 1.14 [1.06–1.27] | NS |
TOS [mmol/L] | 5.2 [4.2–6.5] | 4.8 [4.2–6.0] | 4.8 [4.1–6.1] | 4.8 [4.1–6.0] | NS |
CER [mg/dL] | 25.5 [21.8–29.5] | 2.0 [22.7–34.35] | 29.1 [24.1–36.5] | 30.7 [25.8–38.1] | <0.001 |
Comorbidities | |||||
Ischemic DCM n [%] | 54 [75.0] | 102 [88.0] | 244 [88.4] | 79 [89.7] | <0.05 |
Diabetes n [%] | 21 [29.1] | 36 [31.0] | 85 [30.7] | 28 [31.8] | NS |
Arterial hypertension n [%] | 39 [54.2] | 63 [54.3] | 168 [60.9] | 55 [62.5] | NS |
Permanent atrial fibrillation; n [%] | 8 [11.1] | 32 [27.6] | 73 [26.4] | 34 [38.6] | <0.001 |
ICD presence n [%] | 9 [12.5] | 20 [17.2] | 56 [20.2] | 18 [20.4] | NS |
CER Quartiles [mg/dL] | |||||
---|---|---|---|---|---|
1st <23.7 n = 139 | 2nd 23.7–28.70 n = 139 | 3rd 23.7–28.70 n = 137 | 4th >36 n = 137 | p | |
Female n [%] | 15 [10.8] | 17 [12.2] | 20 [14.6] | 27 [19.7] | NS |
Age [years] | 54.0 [49.0–58.0] | 54.0 [49.0–60.0] | 54.0 [48.0–58.0] | 55.0 [49.0–60.0] | NS |
BMI [kg/m2] | 26.7 [24.3–29.4] | 27.0 [24.2–30.0] | 26.4 [23.5–29.7] | 26.0 [22.6–28.5] | NS |
Exercise Capacity, Echocardiography | |||||
NYHA n I/II/III/IV [%] | 20/56/57/6 14.4/40.3/41.0/4.3 | 8/58/62/11 5.8/41.7/44.6/7.9 | 3/40/76/18 2.2/29.2/55.5/13.1 | 1/42/73/21 0.7/30.7/53.3/15.7 | <0.001 |
Peak VO2 [ml/kg/min] | 15.2 [12.2–19.2] | 14.6 [12.0–17.5] | 13.9 [11.2–17.0] | 13.2 [10.6–16.4] | <0.001 |
VE/CO2 Slope | 42.0 [37.0–50.0] | 44.0 [38.5–51.0] | 49.0 [41.0–57.0] | 48.0 [41.0–57.0] | <0.001 |
6-min WT [m] | 390.0 [335.0–440.0] | 390.0 [343.0–432.5] | 372.5 [284.0–423.0] | 346.0 [267.0–390.0] | <0.05 |
LVEF [%] | 25.0 [20.0–33.0] | 24.0 [20.0–32.0] | 24.0 [20.0–28.0] | 22.5 [20.0–28.0] | NS |
LVEDV [mL] | 208.0 [163.0–264.0] | 220.0 [163.0–287.0] | 228.0 [190.0–286.0] | 237.0 [168.0–293.0] | NS |
RV diameter [mm] | 27.0 [24.0–31.0] | 29.0 [26.0–33.0] | 30.0 [27.0–34.0] | 31.0 [28.0–35.0] | <0.001 |
Laboratory Parameters | |||||
NT-proBNP [pg/mL] | 1038.0 [516.5–2141.0] | 1369.5 [656.0–3476.0] | 1603.0 [707.9–3259.0] | 1701.5 [883.9–3642.0] | NS |
RBC [1012/L] | 4.5 [4.1–4.8] | 4.6 [4.3–5.0] | 4.6 [4.3–5.0] | 4.6 [4.2–5.0] | NS |
WBC [109/L] | 6.8 [5.5–8.2] | 6.7 [5.4–8.1] | 7.2 [5.8–8.6] | 6.7 [6.1–7.9] | NS |
PLT [109/L] | 180.5 [148.0–220.0] | 182.5 [155.0–215.0] | 190.0 [153.0–235.0] | 170.5 [147.5–216.0] | NS |
Hemoglobin [mmol/L] | 13.9 [13.1–14.8] | 14.0 [12.9–15.0] | 14.3 [13.2–15.1] | 14.0 [13.1–15.1] | NS |
Iron [μmol/L] | 16.8 [12.9–20.1] | 17.7 [11.5–22.1] | 17.2 [12.3–22.9] | 17.3 [12.4–24.1] | NS |
Uric Acid [μmol/L]/10 | 373.5 [331.0–446.0] | 413.0 [328.0–500.0] | 414.0 [316.0–507.0] | 438.5 [327.5–557.5] | <0.05 |
Serum Protein [g/L] | 70.0 [67.0–74.0] | 69.0 [66.0–73.0] | 73.0 [69.0–76.0] | 73.0 [69.0–77.0] | <0.001 |
Albumin [g/L] | 42.0 [40.0–44.0] | 41.0 [39.0–43.0] | 41.0 [39.0–44.0] | 43.0 [40.0–45.0] | <0.01 |
Fibrinogen [mg/dl] | 367.5 [322.0–438.0] | 386.5 [330.0–441.0] | 424.0 [359.0–481.0] | 408.0 [341.0–489.0] | <0.001 |
C-reactive Protein [mg/L] | 2.0 [0.9–4.9] | 2.0 [1.1–5.9] | 3.7 [1.9–7.2] | 3.4 [1.7–7.5] | <0.001 |
Bilirubin [μmol/L] | 11.6 [8.7–16.2] | 13.8 [9.6–18.4] | 15.1 [9.8–21.7] | 16.8 [11.2–27.1] | <0.001 |
AST [IU/L] | 22.5 [18.0–28.0] | 23.0 [18.0–29.0] | 25.0 [19.0–31.0] | 24.0 [20.0–33.0] | NS |
ALT [IU/L] | 22.5 [17.0–34.0] | 24.0 [17.0–34.0] | 26.0 [18.0–35.0] | 25.0 [18.0–38.0] | NS |
GGTP [IU/L] | 39.5 [23.0–74.0] | 42.0 [25.0–87.0] | 57.0 [29.0–119.0] | 65.0 [30.5–152.0] | <0.001 |
ALP [IU/L] | 65.0 [51.0–79.8] | 63.0 [52.0–77.0] | 74.0 [60.0–95.3] | 75.5 [59.0–107.0] | <0.001 |
Fasting Glucose [mmol/L] | 5.5 [5.0–6.3] | 5.5 [4.9–6.2] | 5.6 [5.0–6.8] | 5.5 [5.0–6.2] | NS |
Total Cholesterol [mmol/L] | 4.2 [3.6–5.0] | 4.2 [3.6–5.0] | 4.2 [3.5–5.3] | 4.5 [3.7–5.2] | NS |
Cholesterol HDL [mmol/L] | 1.2 [1.0–1.5] | 1.1 [0.9–1.4] | 1.1 [0.9–1.3] | 1.1 [0.9–1.4] | NS |
Triglycerides [mmol/L] | 1.1 [0.8–1.6] | 1.2 [0.9–1.7] | 1.3 [1.0–1.7] | 1.2 [0.9–1.7] | NS |
SH [μmol/g protein] | 304.4 [242.6–364.6] | 307.4 [231.6–357.7] | 290.9 [225.7–356.0] | 234.8 [174.9–305.3] | <0.001 |
MDA [μmol/L] | 1.7 [1.3–2.0] | 1.6 [1.3–1.9] | 1.7 [1.4–2.2] | 2.0 [1.5–2.4] | <0.001 |
TAC [mmol/L] | 1.1 [1.0–1.2] | 1.1 [1.0–1.2] | 1.1 [1.0–1.2] | 1.2 [1.1–1.3] | <0.001 |
TOS [mmol/L] | 4.3 [3.3–5.1] | 5.0 [4.3–5.9] | 5.4 [4.4–6.5] | 5.2 [4.3–6.8] | <0.001 |
Comorbidities | |||||
Ischemic DCM n [%] | 124 [89.2] | 113 [81.3] | 118 [84.9] | 124 [89.2] | NS |
Diabetes n [%] | 36 [25.9] | 43 [30.9] | 48 [34.5] | 43 [30.9] | NS |
Arterial Hypertension n [%] | 80 [57.6] | 85 [61.2] | 70 [50.4] | 90 [64.7] | NS |
Permanent Atrial Fibrillation; n [%] | 20 [14.4] | 37 [26.6] | 41 [29.5] | 49 [35.3] | <0.001 |
ICD Presence n [%] | 17 [12.2] | 24 [17.3] | 36 [25.9] | 26 [18.7] | NS |
Explanatory Variables | pVO2 ≤ 12 mL/kg/min | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p | Adjusted OR | 95% CI | p | |
Male | 1 | 1 | ||||
Female | 2.396 | 1.537–3.737 | <0.001 | 2.260 | 1.418–3.602 | <0.001 |
Age | 1.028 | 1.011–1.046 | 0.001 | 1.031 | 1.013–1.049 | <0.001 |
BMI | 1.029 | 0.992–1.067 | 0.130 | |||
CER | 1.024 | 1.008–1.040 | 0.003 | 1.022 | 1.006–1.039 | <0.05 |
Dependent Variables | b * | Standard Error | β | T | p |
---|---|---|---|---|---|
Intercept Term | 14.886 | 1.830 | <0.001 | ||
TOS | 0.235 | 0.040 | 0.997 | 0.171 | <0.001 |
MDA | 0.194 | 0.040 | 3.776 | 0.785 | <0.001 |
ALP | 0.178 | 0.040 | 0.045 | 0.010 | <0.001 |
R | 0.38 |
R2 Value | 0.14 |
The Adjusted R2 Value | 0.13 |
p-Value | <0.001 |
Standard Error of the Estimate | 9.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazar-Poloczek, E.; Romuk, E.; Rozentryt, P.; Duda, S.; Gąsior, M.; Wojciechowska, C. Ceruloplasmin as Redox Marker Related to Heart Failure Severity. Int. J. Mol. Sci. 2021, 22, 10074. https://doi.org/10.3390/ijms221810074
Lazar-Poloczek E, Romuk E, Rozentryt P, Duda S, Gąsior M, Wojciechowska C. Ceruloplasmin as Redox Marker Related to Heart Failure Severity. International Journal of Molecular Sciences. 2021; 22(18):10074. https://doi.org/10.3390/ijms221810074
Chicago/Turabian StyleLazar-Poloczek, Elżbieta, Ewa Romuk, Piotr Rozentryt, Sylwia Duda, Mariusz Gąsior, and Celina Wojciechowska. 2021. "Ceruloplasmin as Redox Marker Related to Heart Failure Severity" International Journal of Molecular Sciences 22, no. 18: 10074. https://doi.org/10.3390/ijms221810074
APA StyleLazar-Poloczek, E., Romuk, E., Rozentryt, P., Duda, S., Gąsior, M., & Wojciechowska, C. (2021). Ceruloplasmin as Redox Marker Related to Heart Failure Severity. International Journal of Molecular Sciences, 22(18), 10074. https://doi.org/10.3390/ijms221810074