Enhanced Antiviral Function of Magnesium Chloride-Modified Heparin on a Broad Spectrum of Viruses
Abstract
:1. Introduction
2. Results
2.1. Magnesium Enhances the Antiviral Function of Heparin
2.2. Nuclear Magnetic Resonance Analyses Reveal Conformational Change of Iduronic Acid of Heparin When Complexed with Magnesium Chloride or Calcium Chloride
2.3. Antiviral Function of Modified Heparin Is Not Cell-Type Dependent
2.4. Antiviral Function of Modified Heparin Is Based on Unspecific Shielding of Virus Surface Proteins
2.5. Modified Heparin Shows an Antiviral Function on HSV-1 and SARS-CoV-2
3. Discussion
4. Materials and Methods
4.1. Optimization of the Antiviral Effect of Modified Heparin on Eukaryotic Cells
4.2. Antiviral Effect of Modified Heparin on Primary Human Cells
4.3. Formulation of Modified Heparin
4.4. NMR Analyses
4.5. Modified Heparin Tested on HSV-1
4.6. SARS-CoV-2 Isolation, Infection and Detection
4.7. RNA Isolation and RT-qPCR of SARS-CoV-2
4.8. RT-ddPCR
4.9. Competition-Assay with hFX
4.10. Receptor Usage of HAdV5 on Treated CAR and CD46 Receptor Positive Cells
4.11. ELISA with IVIG and HAdV5 Treated with Modified Heparin
4.12. Annexin V/7-AAD and Bcl-2 Activation Staining
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.-Y.; Fink, E.; Grant, C.K.; Elder, J.H. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus. PLoS ONE 2014, 9, e115252. [Google Scholar] [CrossRef]
- Howell, A.; Taylor, T.; Miller, J.; Groveman, D.; Eccles, E.; Zacharski, L. Inhibition of HIV-1 infectivity by low molecular weight heparin. Int. J. Clin. Lab. Res. 1996, 26, 124–131. [Google Scholar] [CrossRef]
- Ghezzi, S.; Cooper, L.; Rubio, A.; Pagani, I.; Capobianchi, M.R.; Ippolito, G.; Pelletier, J.; Meneghetti, M.C.Z.; Lima, M.A.; Skidmore, M.A. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells. Antivir. Res. 2017, 140, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Andriuoli, G.; Mastacchi, R.; Barbanti, M.; Sarret, M. Comparison of the antithrombotic and haemorrhagic effects of heparin and a new low molecular weight heparin in rats. Pathophysiol. Haemost. Thromb. 1985, 15, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, M. Pharmacotherapeutic aspects of unfractionated and low molecular weight heparins. Drugs 1990, 40, 498–530. [Google Scholar] [CrossRef] [PubMed]
- Aiach, M.; Michaud, A.; Balian, J.-L.; Lefebvre, M.; Woler, M.; Fourtillan, J. A new low molecular weight heparin derivative. In vitro and in vivo studies. Thromb. Res. 1983, 31, 611–621. [Google Scholar] [CrossRef]
- Bara, L.; Billaud, E.; Gramond, G.; Kher, A.; Samama, M. Comparative pharmacokinetics of a low molecular weight heparin (PK 10 169) and unfractionated heparin after intravenous and subcutaneous administration. Thromb. Res. 1985, 39, 631–636. [Google Scholar] [CrossRef]
- Shi, C.; Wang, C.; Wang, H.; Yang, C.; Cai, F.; Zeng, F.; Cheng, F.; Liu, Y.; Zhou, T.; Deng, B. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: A retrospective cohort study. Clin. Transl. Sci. 2020, 13, 1087–1095. [Google Scholar] [CrossRef]
- Andersson, L.-O.; Barrowcliffe, T.; Holmer, E.; Johnson, E.; Sims, G. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin III and by gel filtration. Thromb. Res. 1976, 9, 575–583. [Google Scholar] [CrossRef]
- Johnson, E.; Kirkwood, T.L.; Stirling, Y.; Perez-Requejo, J.; Ingram, G.C.; Bangham, D.; Brozović, M. Four heparin preparations: Anti-Xa potentiating effect of heparin after subcutaneous injection. Thromb. Haemost. 1976, 35, 586–591. [Google Scholar] [CrossRef]
- Abildgaard, U. Highly purified antithrombin III with heparin cofactor activity prepared by disc electrophoresis. Scand. J. Clin. Lab. Investig. 1968, 21, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, J.; Warkentin, T.E.; Shaughnessy, S.G.; Anand, S.S.; Halperin, J.L.; Raschke, R.; Granger, C.; Ohman, E.M.; Dalen, J.E. Heparin and low-molecular-weight heparin mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 2001, 119, 64S–94S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnaswamy, A.; Lincoff, A.M.; Cannon, C.P. The use and limitations of unfractionated heparin. Crit. Pathw. Cardiol. 2010, 9, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Basu, D.; Gallus, A.; Hirsh, J.; Cade, J. A prospective study of the value of monitoring heparin treatment with the activated partial thromboplastin time. N. Engl. J. Med. 1972, 287, 324–327. [Google Scholar] [CrossRef]
- Bounameaux, H.; Marbet, G.A.; Lämmle, B.; Eichlisberger, R.; Duçkert, F. Monitoring of Heparin Treatment. Comparison between Thrombin Time, Activated Partial Thromboplastin Time, and Plasma Heparin Concentration, and Analysis of the Behavior of Antithrombin III. Am. J. Clin. Pathol. 1980, 74, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Gram, J.; Mercker, S.; Bruhn, H. Does protamine chloride neutralize low molecular weight heparin sufficiently? Thromb. Res. 1988, 52, 353–359. [Google Scholar] [CrossRef]
- Karpukhin, L.; Feofanova, M.; Nikolaeva, L.; Mamontov, M.; Dobrynina, N. Complexation of magnesium and calcium ions with heparin. Russ. J. Inorg. Chem. 2006, 51, 908–914. [Google Scholar] [CrossRef]
- Sarrazin, S.; Lamanna, W.; Esko, J. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef] [Green Version]
- Stevic, I.; Parmar, N.; Paredes, N.; Berry, L.R.; Chan, A.K. Binding of heparin to metals. Cell Biochem. Biophys. 2011, 59, 171–178. [Google Scholar] [CrossRef]
- Yamane, Y.; Saito, S.; Koizumi, T. Effects of calcium and magnesium on the anticoagulant action of heparin. Chem. Pharm. Bull. 1983, 31, 3214–3221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, F.; Lucas, R.; Angulo, J.; Martin-Lomas, M.; Nieto, P.M. The heparin–Ca2+ interaction: The influence of the O-sulfation pattern on binding. Carbohydr. Res. 2004, 339, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Rudd, T.R.; Guimond, S.E.; Skidmore, M.A.; Duchesne, L.; Guerrini, M.; Torri, G.; Cosentino, C.; Brown, A.; Clarke, D.T.; Turnbull, J.E. Influence of substitution pattern and cation binding on conformation and activity in heparin derivatives. Glycobiology 2007, 17, 983–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, R.A.; Osborn, H.; Runge, J.; Gallagher, E.J.; Chiang, W.; Feldman, J.; Gaeta, T.; Freeman, K.; Levin, B.; Mancherje, N. IV magnesium sulfate in the treatment of acute severe asthma: A multicenter randomized controlled trial. Chest 2002, 122, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ehrhardt, A. Getting genetic access to natural adenovirus genomes to explore vector diversity. Virus Genes 2017, 53, 675–683. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, J.; Liu, J.; Wang, H.; Schiwon, M.; Janz, S.; Schaffarczyk, L.; von der Goltz, L.; Ehrke-Schulz, E.; Dörner, J. An engineered virus library as a resource for the spectrum-wide exploration of virus and vector diversity. Cell Rep. 2017, 19, 1698–1709. [Google Scholar] [CrossRef] [Green Version]
- Rabenstein, D.L.; Robert, J.M.; Peng, J. Multinuclear magnetic resonance studies of the interaction of inorganic cations with heparin. Carbohydr. Res. 1995, 278, 239–256. [Google Scholar] [CrossRef]
- Hricovíni, M.; Guerrini, M.; Bisio, A. Structure of heparin-derived tetrasaccharide complexed to the plasma protein antithrombin derived from NOEs, J-couplings and chemical shifts. Eur. J. Biochem. 1999, 261, 789–801. [Google Scholar] [CrossRef]
- Kessler, H.; Müller, A.; Oschkinat, H. Differences and sums of traces within, COSY spectra (DISCO) for the extraction of coupling constants:‘Decoupling’after the measurement. Magn. Reson. Chem. 1985, 23, 844–852. [Google Scholar] [CrossRef]
- Mulloy, B.; Forster, M.J. Conformation and dynamics of heparin and heparan sulfate. Glycobiology 2000, 10, 1147–1156. [Google Scholar] [CrossRef]
- Ferro, D.R.; Provasoli, A.; Ragazzi, M.; Casu, B.; Torri, G.; Bossennec, V.; Perly, B.; Sinaÿ, P.; Petitou, M.; Choay, J. Conformer populations of L-iduronic acid residues in glycosaminoglycan sequences. Carbohydr. Res. 1990, 195, 157–167. [Google Scholar] [CrossRef]
- Waddington, S.N.; McVey, J.H.; Bhella, D.; Parker, A.L.; Barker, K.; Atoda, H.; Pink, R.; Buckley, S.M.; Greig, J.A.; Denby, L. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008, 132, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Gammon, E.A.; Sajib, A.M.; Sandey, M.; Smith, B.F. Cell-surface integrins and CAR are both essential for adenovirus type 5 transduction of canine cells of lymphocytic origin. PLoS ONE 2017, 12, e0169532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaggar, A.; Shayakhmetov, D.M.; Lieber, A. CD46 is a cellular receptor for group B adenoviruses. Nat. Med. 2003, 9, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 2020, 183, 1043–1057.e15. [Google Scholar] [CrossRef] [PubMed]
- Hudák, A.; Letoha, A.; Szilák, L.; Letoha, T. Contribution of syndecans to the cellular entry of SARS-CoV-2. Int. J. Mol. Sci. 2021, 22, 5336. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Lei, H.-Y.; Lin, Y.-S.; Yeh, T.-M.; Chen, S.-H.; Liu, H.-S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antivir. Res. 2002, 56, 93–96. [Google Scholar] [CrossRef]
- Zhang, F.; Aguilera, J.; Beaudet, J.M.; Xie, Q.; Lerch, T.F.; Davulcu, O.; Colón, W.; Chapman, M.S.; Linhardt, R.J. Characterization of interactions between heparin/glycosaminoglycan and adeno-associated virus. Biochemistry 2013, 52, 6275–6285. [Google Scholar] [CrossRef] [Green Version]
- Tandon, R.; Sharp, J.S.; Zhang, F.; Pomin, V.H.; Ashpole, N.M.; Mitra, D.; McCandless, M.G.; Jin, W.; Liu, H.; Sharma, P. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol. 2020, 95, e01987-20. [Google Scholar] [CrossRef]
- Karlin, S.; Brendel, V. Charge configurations in viral proteins. Proc. Natl. Acad. Sci. USA 1988, 85, 9396–9400. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.-G.; Lindman, K.; Wadell, G. Hydropathic characteristics of adenovirus hexons. Arch. Virol. 1997, 142, 1307–1322. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhang, T.; Zhang, W.; Sun, Q.; Li, H.; Li, J.-p. Elucidating the interactions between heparin/heparan sulfate and SARS-CoV-2-related proteins—An important strategy for developing novel therapeutics for the COVID-19 pandemic. Front. Mol. Biosci. 2020, 7, 628551. [Google Scholar] [CrossRef]
- Kwon, P.S.; Oh, H.; Kwon, S.-J.; Jin, W.; Zhang, F.; Fraser, K.; Hong, J.J.; Linhardt, R.J.; Dordick, J.S. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov. 2020, 6, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Tree, J.A.; Turnbull, J.E.; Buttigieg, K.R.; Elmore, M.J.; Coombes, N.; Hogwood, J.; Mycroft-West, C.J.; Lima, M.A.; Skidmore, M.A.; Karlsson, R. Unfractionated heparin inhibits live wild type SARS-CoV-2 cell infectivity at therapeutically relevant concentrations. Br. J. Pharmacol. 2021, 178, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Mycroft-West, C.J.; Su, D.; Pagani, I.; Rudd, T.R.; Elli, S.; Guimond, S.E.; Miller, G.; Meneghetti, M.C.; Nader, H.B.; Li, Y. Heparin inhibits cellular invasion by SARS-CoV-2: Structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin. BioRxiv 2020. [Google Scholar] [CrossRef]
- Conzelmann, C.; Müller, J.A.; Perkhofer, L.; Sparrer, K.M.; Zelikin, A.N.; Münch, J.; Kleger, A. Inhaled and systemic heparin as a repurposed direct antiviral drug for prevention and treatment of COVID-19. Clin. Med. 2020, 20, e218. [Google Scholar] [CrossRef] [PubMed]
- Paiardi, G.; Richter, S.; Rusnati, M.; Wade, R.C. Mechanism of inhibition of SARS-CoV-2 infection by the interaction of the spike glycoprotein with heparin. arXiv 2021, arXiv:2103.07722. [Google Scholar]
- Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 1995, 6, 277–293. [Google Scholar] [CrossRef]
- Lee, W.; Tonelli, M.; Markley, J.L. NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics 2015, 31, 1325–1327. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Experimental. In Gaussian 09, Revision C.01; ScienceOpen, Inc.: Boston, MA, USA, 2010; pp. S1–S20. [Google Scholar]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The m PW and m PW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Mulloy, B.; Forster, M.; Jones, C.; Davies, D. Nmr and molecular-modelling studies of the solution conformation of heparin. Biochem. J. 1993, 293, 849–858. [Google Scholar] [CrossRef] [Green Version]
- Bunz, O.; Mese, K.; Funk, C.; Wulf, M.; Bailer, S.M.; Piwowarczyk, A.; Ehrhardt, A. Cold atmospheric plasma as antiviral therapy–effect on human herpes simplex virus type 1. J. Gen. Virol. 2020, 101, jgv001382. [Google Scholar] [CrossRef] [PubMed]
- Park, W.B.; Kwon, N.-J.; Choi, S.-J.; Kang, C.K.; Choe, P.G.; Kim, J.Y.; Yun, J.; Lee, G.-W.; Seong, M.-W.; Kim, N.J. Virus isolation from the first patient with SARS-CoV-2 in Korea. J. Korean Med. Sci. 2020, 35, e84. [Google Scholar] [CrossRef] [PubMed]
- Tami, C.; Puig, M.; Reepmeyer, J.C.; Ye, H.; D’Avignon, D.A.; Buhse, L.; Verthelyi, D. Inhibition of Taq polymerase as a method for screening heparin for oversulfated contaminants. Biomaterials 2008, 29, 4808–4814. [Google Scholar] [CrossRef] [PubMed]
- Yokota, M.; Tatsumi, N.; Nathalang, O.; Yamada, T.; Tsuda, I. Effects of heparin on polymerase chain reaction for blood white cells. J. Clin. Lab. Anal. 1999, 13, 133–140. [Google Scholar] [CrossRef]
- García, M.E.; Blanco, J.L.; Caballero, J.; Gargallo-Viola, D. Anticoagulants interfere with PCR used to diagnose invasive aspergillosis. J. Clin. Microbiol. 2002, 40, 1567–1568. [Google Scholar] [CrossRef] [Green Version]
- Satsangi, J.; Jewell, D.; Welsh, K.; Bunce, M.; Bell, J. Effect of heparin on polymerase chain reaction. Lancet (Lond. Engl.) 1994, 343, 1509–1510. [Google Scholar] [CrossRef]
- Suo, T.; Liu, X.; Feng, J.; Guo, M.; Hu, W.; Guo, D.; Ullah, H.; Yang, Y.; Zhang, Q.; Wang, X. ddPCR: A more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg. Microbes Infect. 2020, 9, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Feng, J.; Zhang, Q.; Guo, D.; Zhang, L.; Suo, T.; Hu, W.; Guo, M.; Wang, X.; Huang, Z. Analytical comparisons of SARS-COV-2 detection by qRT-PCR and ddPCR with multiple primer/probe sets. Emerg. Microbes Infect. 2020, 9, 1175–1179. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mese, K.; Bunz, O.; Volkwein, W.; Vemulapalli, S.P.B.; Zhang, W.; Schellhorn, S.; Heenemann, K.; Rueckner, A.; Sing, A.; Vahlenkamp, T.W.; et al. Enhanced Antiviral Function of Magnesium Chloride-Modified Heparin on a Broad Spectrum of Viruses. Int. J. Mol. Sci. 2021, 22, 10075. https://doi.org/10.3390/ijms221810075
Mese K, Bunz O, Volkwein W, Vemulapalli SPB, Zhang W, Schellhorn S, Heenemann K, Rueckner A, Sing A, Vahlenkamp TW, et al. Enhanced Antiviral Function of Magnesium Chloride-Modified Heparin on a Broad Spectrum of Viruses. International Journal of Molecular Sciences. 2021; 22(18):10075. https://doi.org/10.3390/ijms221810075
Chicago/Turabian StyleMese, Kemal, Oskar Bunz, Wolfram Volkwein, Sahithya P. B. Vemulapalli, Wenli Zhang, Sebastian Schellhorn, Kristin Heenemann, Antje Rueckner, Andreas Sing, Thomas W. Vahlenkamp, and et al. 2021. "Enhanced Antiviral Function of Magnesium Chloride-Modified Heparin on a Broad Spectrum of Viruses" International Journal of Molecular Sciences 22, no. 18: 10075. https://doi.org/10.3390/ijms221810075
APA StyleMese, K., Bunz, O., Volkwein, W., Vemulapalli, S. P. B., Zhang, W., Schellhorn, S., Heenemann, K., Rueckner, A., Sing, A., Vahlenkamp, T. W., Severing, A. -L., Gao, J., Aydin, M., Jung, D., Bachmann, H. S., Zänker, K. S., Busch, U., Baiker, A., Griesinger, C., & Ehrhardt, A. (2021). Enhanced Antiviral Function of Magnesium Chloride-Modified Heparin on a Broad Spectrum of Viruses. International Journal of Molecular Sciences, 22(18), 10075. https://doi.org/10.3390/ijms221810075