The pH-Dependent Controlled Release of Encapsulated Vitamin B1 from Liposomal Nanocarrier
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Drug Encapsulation in Different Media
2.2. Analysis of the pH-Dependent Vitamin Release from LIPs
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of the B1-Loaded Vesicles
3.2.2. Characterization Methods
3.2.3. In Vitro Drug Release Measurements
3.2.4. Nonlinear Fitting of the Dissolution Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holowka, E.P.; Bhatia, S.K. Drug Delivery: Materials Design and Clinical Perspective; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9781493919987. [Google Scholar]
- Han, S.K.; Kim, R.S.; Lee, J.H.; Tae, G.; Cho, S.H.; Yuk, S.H. Core-Shell Nanoparticles for Drug Delivery and Molecular Imaging. In Nanomaterials for Medical Diagnosis and Therapy; Wiley-VCH: Weinheim, Germany, 2007; Volume 10, ISBN 9783527313907. [Google Scholar]
- Varga, N.; Benkő, M.; Sebők, D.; Bohus, G.; Janovák, L.; Dékány, I. Mesoporous silica core–shell composite functionalized with polyelectrolytes for drug delivery. Microporous Mesoporous Mater. 2015, 213, 134–141. [Google Scholar] [CrossRef]
- Bharti, C.; Gulati, N.; Nagaich, U.; Pal, A. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015, 5, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Kovalainen, M.; Kamakura, R.; Riikonen, J.; Finnilä, M.; Nissinen, T.; Rantanen, J.; Niemelä, M.; Perämäki, P.; Mäkinen, M.; Herzig, K.; et al. Biodegradation of inorganic drug delivery systems in subcutaneous conditions. Eur. J. Pharm. Biopharm. 2018, 122, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Gillies, E.R.; Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 2005, 10, 35–43. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, Q.; Song, X.; Zheng, Y.; Ren, W.; Zhang, J.; Ouyang, L.; Wu, F.; He, G. Biocompatible poly(ethylene glycol)-poly(γ-cholesterol-L-glutamate) copolymers: Synthesis, characterization, andin vitrostudies. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4532–4537. [Google Scholar] [CrossRef]
- Varga, N.; Turcsányi, Á.; Hornok, V.; Csapó, E. Vitamin E-Loaded PLA- and PLGA-Based Core-Shell Nanoparticles: Synthesis, Structure Optimization and Controlled Drug Release. Pharmaceutics 2019, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Csapó, E.; Szokolai, H.; Juhasz, Á.; Varga, N.; Janovák, L.; Dékány, I. Cross-linked and hydrophobized hyaluronic acid-based controlled drug release systems. Carbohydr. Polym. 2018, 195, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turcsányi, Á.; Varga, N.; Csapó, E. Chitosan-modified hyaluronic acid-based nanosized drug carriers. Int. J. Biol. Macromol. 2020, 148, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: Harnessing nature to cure disease. Mol. Cell. Ther. 2016, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv. 2016, 13, 1609–1623. [Google Scholar] [CrossRef] [Green Version]
- Kovács, A.N.; Varga, N.; Juhász, Á.; Csapó, E. Serum protein-hyaluronic acid complex nanocarriers: Structural characterisation and encapsulation possibilities. Carbohydr. Polym. 2020, 251, 117047. [Google Scholar] [CrossRef]
- Azmin, M.N.; Florence, A.T.; Handjani-Vila, R.M.; Stuart, J.F.B.; Vanlerberghe, G.; Whittaker, J.S. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J. Pharm. Pharmacol. 1985, 37, 237–242. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, P.; Feng, Q.; Wang, N.; Chen, Z.; Huang, Y.; Zheng, W.; Jiang, X. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater. 2017, 9, e441. [Google Scholar] [CrossRef]
- He, Z.-Y.; Zhang, Y.-G.; Yang, Y.-H.; Ma, C.-C.; Wang, P.; Du, W.; Li, L.; Xiang, R.; Song, X.-R.; Zhao, X.; et al. In Vivo Ovarian Cancer Gene Therapy Using CRISPR-Cas9. Hum. Gene Ther. 2018, 29, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Gumulec, J.; Fojtu, M.; Raudenska, M.; Sztalmachova, M.; Skotakova, A.; Vlachova, J.; Skalickova, S.; Nejdl, L.; Kopel, P.; Knopfova, L.; et al. Modulation of Induced Cytotoxicity of Doxorubicin by Using Apoferritin and Liposomal Cages. Int. J. Mol. Sci. 2014, 15, 22960–22977. [Google Scholar] [CrossRef] [PubMed]
- Kamaly, N.; Miller, A.D. Paramagnetic Liposome Nanoparticles for Cellular and Tumour Imaging. Int. J. Mol. Sci. 2010, 11, 1759–1776. [Google Scholar] [CrossRef]
- Ning, B.; Huang, Z.; Youngquist, B.M.; Scott, J.W.; Niu, A.; Bojanowski, C.M.; Zwezdaryk, K.J.; Saba, N.S.; Fan, J.; Yin, X.-M.; et al. Liposome-mediated detection of SARS-CoV-2 RNA-positive extracellular vesicles in plasma. Nat. Nanotechnol. 2021. [Google Scholar] [CrossRef]
- Aleshin, V.A.; Graf, A.V.; Artiukhov, A.V.; Boyko, A.I.; Ksenofontov, A.L.; Maslova, M.V.; Nogués, I.; di Salvo, M.L.; Bunik, V.I. Daytime Dependence of the Activity of the Rat Brain Pyruvate Dehydrogenase Corresponds to the Mitochondrial Sirtuin 3 Level and Acetylation of Brain Proteins, All Regulated by Thiamine Administration Decreasing Phosphorylation of PDHA Ser293. Int. J. Mol. Sci. 2021, 22, 8006. [Google Scholar] [CrossRef]
- Anderson, S.H.; Charles, T.J.; Nicol, A.D. Thiamine Deficiency at a District General Hospital: Report of Five Cases. Qjm Int. J. Med. 1985, 55, 15–32. [Google Scholar] [CrossRef]
- Bhuvaneswaran, C.; Sreenivasan, A. Problems of thiamine deficiency states and their amelioration. Ann. N. Y. Acad. Sci. 2006, 98, 576–601. [Google Scholar] [CrossRef] [PubMed]
- Hoyumpa, A.M. Mechanisms of thiamin deficiency in chronic alcoholism. Am. J. Clin. Nutr. 1980, 33, 2750–2761. [Google Scholar] [CrossRef]
- Berry-Koch, A.; Moench, R.; Hakewill, P.; Dualeh, M. Alleviation of Nutritional Deficiency Diseases in Refugees. Food Nutr. Bull. 1990, 12, 1–7. [Google Scholar] [CrossRef]
- Fathima, S.J.; Fathima, I.; Abhishek, V.; Khanum, F. Phosphatidylcholine, an edible carrier for nanoencapsulation of unstable thiamine. Food Chem. 2016, 197, 562–570. [Google Scholar] [CrossRef]
- Juhász, Á.; Ungor, D.; Berta, K.; Seres, L.; Csapó, E. Spreadsheet-based nonlinear analysis of in vitro release properties of a model drug from colloidal carriers. J. Mol. Liq. 2021, 328, 115405. [Google Scholar] [CrossRef]
- Gibaldi, M.; Feldman, S. Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms. J. Pharm. Sci. 1967, 56, 1238–1242. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.R.; Jones, A.B.; Hikal, A.H.; Williamson, J.S.; Wyandt, C.M. Characterization of Drug Release from Liposomal Formulations in Ocular Fluid. Drug Deliv. 1998, 5, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Peppas, N.A. Higuchi equation: Derivation, applications, use and misuse. Int. J. Pharm. 2011, 418, 6–12. [Google Scholar] [CrossRef]
- Langenbucher, F. Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. J. Pharm. Pharmacol. 1972, 24, 979–981. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Hopfenberg, H.B.; Hsu, K.C. Swelling-controlled, constant rate delivery systems. Polym. Eng. Sci. 1978, 18, 1186–1191. [Google Scholar] [CrossRef]
- Hixson, A.W.; Crowell, J.H. Dependence of Reaction Velocity upon Surface and Agitation. Ind. Eng. Chem. 1931, 23, 1160–1168. [Google Scholar] [CrossRef]
- Samaha, D.; Shehayeb, R.; Kyriacos, S. Modeling and Comparison of Dissolution Profiles of Diltiazem Modified-Release Formulations. Dissolution Technol. 2009, 16, 41–46. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; Virji, M.A.; Harvey, C.J.; Sbarra, D.C.; Day, G.A.; Hoover, M.D. Influence of artificial gastric juice composition on bioaccessibility of cobalt- and tungsten-containing powders. Int. J. Hyg. Environ. Health 2010, 213, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyńska, M.; Voelkel, A. Stability of simulated body fluids such as blood plasma, artificial urine and artificial saliva. Microchem. J. 2017, 134, 197–201. [Google Scholar] [CrossRef]
- Deák, Á.; Csapó, E.; Juhasz, A.; Dékány, I.; Janovák, L. Anti-ulcerant kynurenic acid molecules intercalated Mg/Al-layered double hydroxide and its release study. Appl. Clay Sci. 2018, 156, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Wójcik-Pastuszka, D.; Barczyszyn, K.; Musiał, W. The Influence of the Hydrophobic Polymeric Coating on 5-ASA Release from the Bipolymeric Milibeads with Amidated Pectin. Materials 2021, 14, 3924. [Google Scholar] [CrossRef]
PBS (pH = 7.4, 0.15 M NaCl) | |||
---|---|---|---|
t1/2 (min) | td (min) | Drug retention | |
pure vitamin B1 | 1.96 | 2.62 | 0.00 |
manufactured B1 tablet | 2.57 | 3.49 | 1.31 |
liposomal carrier | 8.71 | 10.94 | 4.44 |
Artificial gastric juice (pH = 1.5, 0.2 M KCl) | |||
pure vitamin B1 | 2.96 | 3.11 | 0.00 |
manufactured B1 tablet | 3.93 | 4.55 | 1.33 |
liposomal carrier | 4.56 | 5.91 | 1.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhász, Á.; Ungor, D.; Várkonyi, E.Z.; Varga, N.; Csapó, E. The pH-Dependent Controlled Release of Encapsulated Vitamin B1 from Liposomal Nanocarrier. Int. J. Mol. Sci. 2021, 22, 9851. https://doi.org/10.3390/ijms22189851
Juhász Á, Ungor D, Várkonyi EZ, Varga N, Csapó E. The pH-Dependent Controlled Release of Encapsulated Vitamin B1 from Liposomal Nanocarrier. International Journal of Molecular Sciences. 2021; 22(18):9851. https://doi.org/10.3390/ijms22189851
Chicago/Turabian StyleJuhász, Ádám, Ditta Ungor, Egon Z. Várkonyi, Norbert Varga, and Edit Csapó. 2021. "The pH-Dependent Controlled Release of Encapsulated Vitamin B1 from Liposomal Nanocarrier" International Journal of Molecular Sciences 22, no. 18: 9851. https://doi.org/10.3390/ijms22189851
APA StyleJuhász, Á., Ungor, D., Várkonyi, E. Z., Varga, N., & Csapó, E. (2021). The pH-Dependent Controlled Release of Encapsulated Vitamin B1 from Liposomal Nanocarrier. International Journal of Molecular Sciences, 22(18), 9851. https://doi.org/10.3390/ijms22189851